Prof. Dr.-Ing. Dipl.-Wirt. Ing. Oliver Fischer Technische Universität München, Lehrstuhl für Massivbau
Prof. Dr.-Ing. André Borrmann Technische Universität München, Lehrstuhl für Computergestützte Modellierung und Simulation
Daniel Auer, M. Sc.Technische Universität München, Lehrstuhl für Massivbau
Lothar Kolbeck, M.Sc.Technische Universität München, Lehrstuhl für Computergestützte Modellierung und Simulation
The basic idea of the research project is to further develop the modularization principle by using faceted structural elements made of carbonreinforced ultra-high performance concrete [6] for concrete bridge construction. A conceptual sketch of the construction method is shown in Figure 1. The approach, comparable to the geometric division of load-bearing structures into finite elements, is characterized by systematic decomposition of the overall structure into modules that can be easily manufactured. The boundary conditions to be complied with result from structural mechanical properties on the one hand, and from the requirements of manufacturing on the other hand. This complex optimization problem can only be solved by applying computer-aided methods which are informed by geometry, joining and fabrication techniques of the modules.
The focus in the research project is on plate-shaped modules that can be applied to a wide range of potentially complex construction situations. Through graph-based data modeling in the background and procedural generation of the parametric geometry, these modules can be used as a powerful interface between design and manufacturing in an end-to-end digital process chain. The shape and adaptability of the module is shown in Figure 2.
Based on a trajectory-sensitive, iteratively optimized and homogenized determination of the printing paths, the additive manufacturing can be automated with the help of robotics and custom nozzle technology, see Figure 3:
The segmentation and production of the modules is always preceded by a bridge geometry specified by the engineer. The decomposition of the initial geometry into modules is done by applying a graph rewriting system. A graph rewriting system is a set of rules where each rule allows to recognize an occurring pattern in the product model structure of structures and to develop it automatically [2,4,7], for example a recursive subdivision of a girder up to segments suitable for manufacturing. Geometric and semantic-topological development go hand in hand, as exemplified by Figure 3. In addition to automating knowledge-intensive processes such as segmentation, the graph structures also enable a semantic-topologic structuring of the segmented girders.
As a first validation of the project ideas, the Paulifurt Bridge and a planar projection of the Trumpfsteg have already been modeled, as shown in Figure 5. Further research includes a generalization for additional and more complex bridge structures.
[7] Kolbeck, L.; Vilgertshofer, S.; Abualdenien, S.; Borrmann, A.
Graph Rewriting Techniques for Engineering Design
Frontiers in Built Environment 7, Februar 2022, S. 1–19.
[6] Rutzen, M.; Lauff P., Niedermeier R., Fischer O., Raith M.; Grosse C.; Weiss U., Peter M.; Volkmer D.
Influence of fiber alignment on pseudoductility and microcracking in a cementitious carbon fiber composite material
Materials and Structures, 54:58, 2021. (doi:10.1617/s11527-021-01649-2)
[5] Borrmann, A.; Bruckmann, T.; Dörfler, K.; Hartmann, T.; Smarsly, K.
Towards realizing the information backbone of robotized construction – Computational Methods and cyber-physical architectures for collaborative robotic fleets
In: Proceedings of the CIB W78 Conference, Luxembourg, 2021
[4] Abualdenien, J.; Borrmann, A.
PBG: A parametric building graph capturing and transferring detailing patterns of building models
In: Proceedings of the CIB W78 Conference, Luxembourg, 2021
[3] Slepicka, M.; Vilgertshofer, S.; Borrmann, A.
Fabrication Information Modeling: Closing the gap between Building Information Modeling and Digital Fabrication
In: Proceedings of the 38th International Symposium on Automation and Robotics in Construction (ISARC), Dubai, UAE, 2021
[2] Kolbeck, L.; Auer, D.; Fischer, O.; Vilgertshofer, S.; Borrmann, A.
Modulare Brückenbauwerke aus carbonfaserbewehrtem Ultrahochleistungsbeton – Graph-basierter Entwurf und trajektoriensensitive Fertigung
Beton- und Stahlbetonbau 116, Sonderheft Schneller bauen S2, September 2021, S. 24–33.
(https://doi.org/10.1002/best.202100053)
[1] Fischer, O.; Auer, D.; Borrmann, A.; Afzal, M.:
Brückenbauwerke mit komplexer Geometrie durch facettierte Flächenelemente aus carbonbewehrtem Ultrahochleistungsbeton - Graphbasierte Zerlegung und trajektoriensensitive Fertigung.
In: BetonWerk International Nr. 5, 2020, S. 18
Link zum Artikel
2022
[10] Mucheng, X.
Bottom-up design of modular concrete structures utilizing formal grammars
Master-Thesis, Technische Universität München, Lehrstuhl für Computergestützte Modellierung und Simulation, Lothar Kolbeck, M.Sc.
[9] Zhehong, Z.
Parametrische Entwurfsplanung von Brückenbauteilen in Modulbauweise mit statisch optimierter Segmentierung und einem Konzept der adaptiven Detaillierung
Master-Thesis, Technische Universität München, Lehrstuhl für Massivbau, Daniel Auer, M.Sc & Lothar Kolbeck, M.Sc.
2021
[8] Abaría, A.
Development and optimization of a nozzle system for the extrusion of ultra-high-strength concretes with carbon short fibers for use in the additive manufacturing process
Master-Thesis, Technische Universität München, Lehrstuhl für Massivbau, Betreuer: Daniel Auer, M. Sc.
[7] Fernández, B.
Optimization of the material composition of ultra-high-strength concrete formulations with carbon short fibers for application in the additive manufacturing process
Master-Thesis, Technische Universität München, Lehrstuhl für Massivbau, Betreuer: Daniel Auer M. Sc.
[6] Tappeiner, C.
Verbundverhalten der Zwischenschichten lagenweise extrudierter Betone
Master-Thesis, Technische Universität München, Lehrstuhl für Massivbau, Betreuer: Daniel Auer, M. Sc.
[5] Huber, S.
Entwicklung einer Formgrammatik für die statisch optimierte Segmentierung von Brückenbauteilen in Modulbauweise
Bachelor-Thesis, Technische Universität München, Lehrstuhl für Computergestützte Modellierung und Simulation, Lothar Kolbeck, M.Sc.
[4] Hammerschick, S.
Zum Tragverhalten von dehnungsverfestigenden zementgebundenen Hochleistungswerkstoffen
Master-Thesis, Technische Universität München, Lehrstuhl für Massivbau, Betreuer: Daniel Auer, M. Sc.
[3] Färber, A.
Numerische Simulation additiv gefertigter Bauteile aus Carbonkurzfaserbeton
Master-Thesis, Technische Universität München, Lehrstuhl für Massivbau, Betreuer: Daniel Auer, M. Sc.
[2] Klöck, V.
Dokumentation des additiven Fertigungsprozesses hinsichtlich der Anwendung im Betonbau
Bachelor-Thesis, Technische Universität München, Lehrstuhl für Massivbau, Betreuer: Daniel Auer, M. Sc.
[1] Vollherbst, A.
Pumpenförderung von Kurzfaserbetonen
Bachelor-Thesis, Technische Universität München, Lehrstuhl für Massivbau, Betreuer: Daniel Auer, M. Sc.