Prof. Dr. Günter von Kiedrowski

Günter von Kiedrowski

Print view | Normal

Topicbild


Room: NC 2/170
Tel.: 0234/32-23218
kiedro (at) rub.de

  Please contact the Office:
  Stefanie Wittmann
  Room: NC 2/172
  Tel.: 0234/32-28218
  Fax: 0234/32-14355
  eMail: oc1-sek@ruhr-uni-bochum.de


Eingeladene Vorträge und Seminare


Publications



CV and key papers

Günter von Kiedrowski (born 27.02.1953 in Werdohl, Northrine-Westphalia) holds the Chair of Bioorganic Chemistry (OC I) at Ruhr University Bochum, Germany. He studied chemistry in Münster and Göttingen (Ph.D. 1983 with L.F. Tietze), was a postdoctoral scholar of Leslie E. Orgel at the Salk-Institute in La Jolla, CA, became Professor for Organic Chemistry in Freiburg (1993-1996) before he moved to Bochum in 1996. The von Kiedrowski group initiated the field of chemical self-replicating systems [Angew. Chem. Int. Ed. 25, 932−935 (1986)], discovered the first case of parabolic growth [Angew. Chem. Int. Ed. 30, 423−426 and 892 (1991)], laid the theoretical foundation for its understanding [Bioorg. Chem. Front. 3, 113−146 (1993)] and introduced early examples for self-replicating molecular networks [Angew. Chem. int. Ed. 32, 1198−1201 (1993), Nature, 369, 221 (1994)]. The group also pioneered the programmable self-assembly of three-dimensionally defined nanoobjects from trisoligos, viz. synthetic three-armed junctons as molecular building blocks [Angew. Chem. Int. Ed. 38, 3311–3315, 1999; Pure Appl. Chem. 2003, 75, 609; Angew. Chem. Int. Ed. 47, 8552-5, 2008] and developed enzyme-free methods for the chemical copying of connectivity in such trisoligos [Nature 420, 286 (2002)] as well as the surface-promoted replication and exponential amplification of DNA analogues [Nature 396, 245 (1998)]. In the context of DNA-nanotechnology the group introducedthermostable, monoconjugable gold-nanoparticles (1.4 nm) based on multidentate thioether ligands [M. Pankau et al. Angew. Chem. Int. Ed. 2006, 118, 1923]. Von Kiedrowski’s SimFit program (1989-2010) [e.g. E. Hayden et al. Angew. Chem. Int. Ed. 2008, 47, 8424, I. Stahl et al. J. Amer. Chem. Soc. 2006, 128, 14014-5, H. Schöneborn et al. Chembiochem 2001, 2, 922-7] is routinely employed for the kinetic modelling and analysis of chemical reaction networks in several labs, including most of the leading labs dealing with chemical self-replication. A current focus is laid on the coupling and integration of autocatalytic reactions based on chemical self-replication, autocatalytic compartimentation, metabolic autocatalysis and organoautocatalysis, chiral symmetry breaking, and informational nanotechnology, which is one of the goals of the emergent field of “systems chemistry”. Another goal of the field is to arrive at a deeper mechanistic understanding of complex systems such as replicators with the penultimate goal to be able to design and “synthesize” or “program” a given dynamic behavior at will [A. Dieckmann et al. J. Syst. Chem. 2010, 1:10] The term “Systems Chemistry” was coined by the group in 2005 [M. Kindermann et al. Angew. Chem. Int. Ed. 2005, 44, 6750]. The field is supported by the COST Action CM0703 (“Systems Chemistry”) which convenes research within 48 labs in Europe. Von Kiedrowski was founding chairman of CM0703 (04/2008-03/2011) and is Editor-In-Chief (with S. Otto and P. Herdewijn) of the open access Journal of Systems Chemistry [J. Syst. Chem. 2010, 1:1]. He initiated the ChemBioGenesis series of annual meetings (Chembiogenesis 2005, Venice, which had a post-conference ECLT workshop on Systems Chemistry, pdf), as well as the ESF-COST High Level Research Conference series in Systems Chemistry and served as conference chair in 4 of these meetings. Von Kiedrowski received the Chemiedozentenstipendium (a 50 kDM award by Fonds der Chemischen Industrie) in 1989; his 1994 paper with Dirk Sievers [Nature, 369, 221 (1994)] was recently selected for inclusion in the looking back list, which compiles 35 Nature publications with chemical background from the period 1950-2000.Von Kiedrowski has given more than 120 invited (including plenary) lectures at international meetings, and more than 130 invited seminars (pdf) outside his home institutions. His group’s work has been reviewed in numerous public books on the origin of life. His private interests spans from computer science and theoretical biology to the development of microelectronics for autonomous aerial vehicles and RC soaring.