Topicbild

Bildarchiv des Mathematischen Forschungsinstituts Oberwolfach



Arbeitsgebiete

  • Algebraische Lie Theorie
  • Algebraische Gruppen
  • Darstellungstheorie
  • Endliche Gruppen vom Lie-Typ
  • Hyperebenenarrangements
  • Spiegelungsarrangements

  • DFG project: Serre's notion of Complete Reducibility and Geometric Invariant Theory (within the DFG Priority Programme in Representation Theory).
     
  • DFG project: Computational aspects of the Cohomology of Coxeter arrangements: On Conjectures of Lehrer-Solomon and Felder-Veselov (within the DFG Priority Programme "Algorithmic and experimental methods in Algebra, Geometry and Number Theory").
     
  • DFG project: Arrangements of complex reflection groups: Geometry and combinatorics (joint with M. Cuntz (Kaiserslautern) within the DFG Priority Programme "Algorithmic and experimental methods in Algebra, Geometry and Number Theory").
     
  • DFG project: Inductive freeness and rank-generating functions for arrangements of ideal type: Two conjectures of Sommers and Tymoczko revisited (within the DFG GEPRIS).
     
  • Publications on MathSciNet.

  • Recent preprints on the ArXiv.
     
  • Latest preprints:

    Relative complete reducibility and normalised subgroups

    with M. Gruchot and A. Litterick
    Abstract:
    We study a relative variant of Serre's notion of G-complete reducibility for a reductive algebraic group G. We let K be a reductive subgroup of G, and consider subgroups of G which normalise the identity component K^o. We show that such a subgroup is relatively G-completely reducible with respect to K if and only if its image in the automorphism group of K^o is completely reducible. This allows us to generalise a number of fundamental results from the absolute to the relative setting. We also derive analogous results for Lie subalgebras of the Lie algebra of G, as well as `rational' versions over non-algebraically closed fields.
    math.GR/1810.12096

    On the Invariants of the Cohomology of Complements of Coxeter Arrangements

    with J.M. Douglass and G. Pfeiffer
    Abstract:
    We refine Brieskorn's study of the cohomology of the complement of the reflection arrangement of a finite Coxeter group W. As a result we complete the verification of a conjecture by Felder and Veselov that gives an explicit basis of the space of W-invariants in this cohomology ring.
    math.RT/1810.02563

    A Hodge filtration of logarithmic vector fields for well-generated complex reflection groups

    with T. Abe, C. Stump and M. Yoshinaga
    Abstract:
    Given an irreducible well-generated complex reflection group, we construct an explicit basis for the module of vector fields with logarithmic poles along its reflection arrangement. This construction yields in particular a Hodge filtration of that module. Our approach is based on a detailed analysis of a flat connection applied to the primitive vector field. This generalizes and unifies analogous results for real reflection groups.
    math.DG/1809.05026

    Relative GL(V)-complete reducibility

    with M. Bate and M. Gruchot
    Abstract:
    Let K be a reductive subgroup of a reductive group G over an algebraically closed field k. Using the notion of relative complete reducibility, in previous work of Bate-Martin-Roehrle-Tange a purely algebraic characterization of the closed K-orbits in G^n was given, where K acts by simultaneous conjugation on n-tuples of elements from G. This characterization generalizes work of Richardson and is also a natural generalization of Serre's notion of G-complete reducibility. In this paper we revisit this idea, focusing on the particular case when the ambient group G is a general linear group, giving a representation-theoretic characterization of relative complete reducibility. Along the way, we extend and generalize several results from the aforementioned work of Bate-Martin-Roehrle-Tange.
    math.GR/1806.03067

    The K(pi,1)-problem for restrictions of complex reflection arrangements

    with Nils Amend and Pierre Deligne
    Abstract:
    Let W in GL(V) be a complex reflection group, and A(W) the set of the mirrors of the complex reflections in W. It is known that the complement X(A(W)) of the reflection arrangement A(W) is a K(pi,1) space. For Y an intersection of hyperplanes in A(W), let X(A(W)^Y) be the complement in Y of the hyperplanes in A(W) not containing Y. We hope that X(A(W)^Y) is always a K(pi,1). We prove it in case of the monomial groups W=G(r,p,l). Using known results, we then show that there remain only three irreducible complex reflection groups, leading to just eight such induced arrangements for which this K(pi,1) property remains to be proved.
    math.AT/1708.05452

    Freeness of multi-reflection arrangements via primitive vector fields

    with T. Hoge, T. Mano, and C. Stump
    Abstract:
    In 2002, Terao showed that every reflection multi-arrangement of a real reflection group with constant multiplicity is free by providing a basis of the module of derivations. We first generalize Terao's result to multi-arrangements stemming from well-generated unitary reflection groups, where the multiplicity of a hyperplane depends on the order of its stabilizer. Here the exponents depend on the exponents of the dual reflection representation. We then extend our results further to all imprimitive irreducible unitary reflection groups. In this case the exponents turn out to depend on the exponents of a certain Galois twist of the dual reflection representation that comes from a Beynon-Lusztig type semi-palindromicity of the fake degrees.
    math.GR/1703.08980


  •  

    Former and current PhD students:
    Simon Goodwin (University of Birmingham)
    Michael Bate (University of York)
    Russell Fowler (Npower)
    Glenn Ubly (NHS)
    Sebastian Herpel (Barmenia Allgemeine Versicherungs-AG)
    Peter Mosch (Gothaer Lebensversicherung AG)
    Nils Amend (INTER Krankenversicherung AG)
    Anne Schauenburg
    Maike Gruchot
    Tilman Möller
    Falk Bannuscher


    Editorial Activity:

    Tbilisi Mathematical Journal .

    Computer Programs