
MetroSAT: Logic-based computation of metro maps
Samantha Fuchs

Algorithms and Complexity Group
TU Wien

Vienna, Austria
samantha.fuchs@student.tuwien.ac.at

Soeren Nickel
Algorithms and Complexity Group

TU Wien
Vienna, Austria

soeren.nickel@ac.tuwien.ac.at

Martin Nöllenburg
Algorithms and Complexity Group

TU Wien
Vienna, Austria

noellenburg@ac.tuwien.ac.at

Abstract—Computing schematic metro maps is often framed
as an NP-hard optimization task. A natural way to model such a
task is to use rigorous mathematical optimization techniques like
Integer Linear Programming (ILP). We present two alternative
logic-based models, which obtain high-quality results using Max-
imum Satisfiability (MaxSAT) and Satisfiability Modulo Theory
(SMT), both employing dedicated solvers, to achieve high-quality
results in a competitive time.

I. INTRODUCTION

Transit or metro maps are abstract representations of stations
and their connections in a public transportation network.
Exact geographical relations and positions can be distorted to
emphasize network topology and legibility. A common class of
such maps are octolinear metro maps, which draw edges in one
of the eight octolinear directions and reduce line complexity
by avoiding bends and distributing stations equally along them.

Various automated approaches to compute schematic maps
of geographically embedded metro networks have been pre-
sented. State-of-the-art approaches include least squares op-
timization [14], force-based graph drawing [6], multi-criteria
hill climbing [12], [13] and iterative shortest path search on
octolinear grids [2], [3] (for a complete overview, we refer to
a recent and extensive survey [15]). However there have also
been successful approaches using declarative constraint-based
approaches like Integer Linear Programming (ILP) [2], [10].
In spite of being NP-hard optimization problems themselves,
they have been shown to reasonably quickly yield high-
quality results for instances of moderately sized metro maps
using highly optimized state-of-the-art solvers like Gurobi or
CPLEX. These methods are highly customizable, can be easily
extended [3], [9] and do not need deep algorithmic know-how
beyond formal constraint modeling.

This work is inspired by experimental results in other
areas of graph drawing, where logic-based methods such as
MaxSAT [16] and SMT [8] have been applied and showed
significant runtime improvements over ILP approaches. We
present a MaxSAT and an SMT1 model for the formal Metro
Map Layout Problem defined by Nöllenburg and Wolff [10].

Formally we are given a planar input graph G = (V,E),
with an embedding (assumed to be the geographical positions
of the stations connected with straight line segments). Further
we are given a line cover L, which is a set of paths (the metro

1While this could be called a MaxSMT model, as it also maximizes a given
objective function, we will simply use the term SMT model in this paper.

lines), whose union is E. The goal is to find a topology-
preserving plane drawing of G, in which every edge is a
straight line segment parallel to the four octolinear orientations
(horizontal, vertical and ±45◦-diagonal).

While our set of constraints is in large parts equivalent to
the existing ILP model of Nöllenburg and Wolff [10], the
main contribution is the translation of the linear arithmetic
constraints into a SAT model in Boolean logic (Section II) and
the combination of linear arithmetic constraints and Boolean
clauses into an SMT model (Section III). Finally we present
a small case study in Section IV and conclude with open
problems in Section V.

II. SAT MODEL

A Boolean variable a can be either true (a = 1) or false
(a = 0) and its negation ¬a inverts the truth value of a; a and
¬a are denoted as literals. A clause c = (l1 ∨ · · · ∨ li) is a set
of literals and we say c is true (c = 1) if any l ∈ c is true. A
Boolean formula φ = c1 ∧ · · · ∧ cj is a set of clauses and we
say φ is satisfiable if we can assign true or false to all variables
in φ, s.t., all c ∈ φ are true2. A weighted MaxSAT instance is
formula ψ = c1 ∧ · · · ∧ cj ∧ s1 ∧ · · · ∧ sk and a set of integer
weights w1, . . . , wk, where s1, . . . , sk are called soft clauses.
The MaxSAT problem asks to find a variable assignement, s.t.,
c1 ∧ · · · ∧ cj (hard clauses) is true and the sum

∑k
i=1 wisi is

maximized. We will use MaxSAT to model the hard and soft
constraints of the metro map layout problem.

A. Unary Encoding

To encode integers in our SAT model, we use unary
encoding as defined by [16]. Integer variables are denoted by
a, b and are considered to be bounded in this section. Scalar
values are denoted by i, j, k. An integer variable a that is
bounded by la ≤ a ≤ ua is encoded by ua − la different
Boolean variables (ala+1, ala+2, · · · , aua−1, aua). Note that
this requires bounded variables, as we only use a constant set
of boolean variables per integer variable. The state ai = 1 in
unary encoding is equivalent to the constraint a ≥ i, hence
a = i is encoded by the assignment (ala+1 = 1, · · · , ai =
1, ai+1 = 0, · · · , aua = 0). Note that we omit the variable
ala as it has to be true in every assignment. To ensure this

2This definition of a Boolean formula is a special case called conjunctive
normal form (CNF); every Boolean formula can be transformed into CNF.

behaviour, we add the implication clauses ¬ai∨ai−1 for each
unary variable a within its range la + 2 ≤ i ≤ ua.

We can also model inequalities a ≤ b between two inte-
ger variables a and b as a set of clauses ¬ai ∨ bi for all
max{la, lb}+1 ≤ i ≤ min{ua, ub}. The unary encoding of an
integer a requires only a linear number (in the smaller range
of the two variables) of clauses to be instantiated, instead of a
quadratic amount necessary for a naı̈ve encoding (setting one
variable to true and all other to false for every allowed value
of a). Note that we can easily model equality constraints a = b
as a ≤ b∧b ≤ a, offsets (a+g ≤ b) and coefficients (a = b ·g)
by adding or multiplying the offset g to the index of b.

Equations (and inequalities) containing three different inte-
ger variables are more complex. With two variables we needed
one clause per index in the specific range, but now we need
two indices and add clauses for each combinations of them.
For a− b ≤ c this leads to the following clauses:

¬ai ∨ bj ∨ ci−j+1
∀la < i ≤ ua
∀lb < j ≤ ub

with lc < i− j + 1 ≤ uc.

Again we can restrict the values for each variable using the
bounds of the other variables. From a ≤ c+b ≤ ub+uc we get
¬aub+uc+1, from la−ub ≤ a−b ≤ c we get cla−ub and bla−uc

respectively. Additionally we disallow each combination of
two variables that would exceed the range of the third variable.
The constraints for a+ b = c can be built in a similar fashion.

In the following sections we use integer variables, inequali-
ties and equations for better readability. In the implementation
these are replaced by clauses as defined in this section.

B. Coordinates

0

1
2

3

4

5
6

7

u

w

v

Fig. 1: The closest
octolinear direction of
(u, v) and (u,w) is 3
and 6, respectively.

In a schematic metro map each
vertex v of the input graph G has
Cartesian x(v) and y(v) coordi-
nates in the plane. In an optimized
drawing we can use an underly-
ing grid3 and represent these co-
ordinates with integers. To model
all needed constraints we use a
(partially redundant) set of four
variables x(v)=̂z0(v), y(v)=̂z2(v),
z1(v) and z3(v) (representing one
of the octolinear direction each),
from [10] with one modification,
namely the coordinates are doubled to ensure integrality. This
is necessary, because with our simple implementation of unary
encoding we can only model integer values.

z0(v) = 2x(v) (1)
z1(v) = x(v) + y(v) (2)
z2(v) = 2y(v) (3)
z3(v) = y(v)− x(v) (4)

3Gridsizes in this paper were determined experimentally.

An edge (u, v) has a direction variable dir(u, v), taking
values in {0, 1, . . . , 7} depending on z0(u), z1(u), z2(u),
z3(u) and z0(v), z1(v), z2(v), z3(v). Valid values for dir(u, v)
are the closest octolinear direction secu(v) (Fig. 1) plus/minus
a constant offset dev, forming the set S(u, v) of admissible
directions. We will use zoi = zi+2 mod 4 for the coordinate in
the orthogonal direction to zi and we consider all indices for
zi, z

o
i to be modulo 4.

C. Hard Constraints

Following the ILP model, there are three hard constraints
any valid schematic map has to fulfill, namely (I) guaranteeing
octolinearity and proper spacing between connected stations,
(II) preserving the radial order of outgoing connections at
every stations from the input and (III) planarity and proper
spacing between edges.

Note that parts of these constraints are covered, via the
integer coordinate restriction, i.e., two stations on different
grid points and two non-crossing edges have (some) minimum
distance. We will now illustrate the nuances necessary to adapt
the constraints, exemplary for constraint (I) below.

Edge directions and minimum length: Following [9], [10],
we introduce for each edge (u, v) ∈ E a set of Boolean vari-
ables αi(u, v) (per i ∈ S(u, v)) and the following constraints.∨

i∈S(u,v) αi(u, v) (5)

¬αi(u, v) ∨ ¬αj(u, v) ∀i < j ∈ S(u, v)
(6)

¬αi(u, v) ∨ (dir(u, v) = i) ∀i ∈ S(u, v) (7)
¬αi(u, v) ∨ (dir(v, u) = i+ 4 mod 8) ∀i ∈ S(u, v) (8)
¬αi(u, v) ∨ (zoi (u) = zoi (v)) ∀i ∈ S(u, v) (9)
¬αi(u, v) ∨ (zi(v) + Lmin ≤ zi(u)) ∀i ∈ S(u, v) (10)

Equations (5) and (6) enforce exactly one αi to be true, (7)
and (8) ensure that αi(u, v) is true iff dir(u, v) = (dir(v, u)+
4) mod 8 = i, (9) ensures that (u, v) is drawn in the correct
octolinear direction, by forcing their coordinates in orthogonal
direction to be equal and (10) gives a minimal distance of Lmin.

Setting αi = 0 trivially satisfies clauses (6)–(10). For some
j ∈ S(u, v), however, we need to set αj = 1 to satisfy (5); this
j corresponds to the actual direction of (u, v) in a solution.
While this behaviour is easily expressed in Boolean logic, an
ILP is must usually use big-M constraints (see [10]), which
is computationally expensive. Constraints (II) and (III) can be
similarly transformed from the original ILP model.

D. Optimization

To achieve the desired properties of a high-quality metro
map, we encode the minimization of (i) line bends along lines
in L, (ii) deviation of the direction dir(u, v) to the desired
original direction secu(v) of all edges (u, v) in E and (iii) total
length over all edges in E into our MaxSAT instance. For this
we will use additional hard clauses and weighted soft clauses.
Again we showcase the translation of the constraints as they
are used in the ILP model with the example of minimizing the
deviation of dir(u, v). Other contraints are translated similarly.

Relative positions: For each edge (u, v) we introduce an
integer variable ξ(u, v), that measures the difference between
dir(u, v) and secu(v), the two binary correction variables
η1(u, v) and η2(u, v) and the following constraints. Addition-
ally this set of constraints is added for every 1 ≤ i ≤ dev.

η2(u, v) ∨ ξ(u, v)i ∨ (secu(v)− dir(u, v) < i) (11)

η1(u, v) ∨ ξ(u, v)i ∨ (dir(u, v)− secu(v) < i) (12)

¬η1(u, v) ∨ ξ(u, v)i ∨ (secu(v)− dir(u, v) + 8 < i) (13)

¬η2(u, v) ∨ ξ(u, v)i ∨ (dir(u, v)− secu(v) + 8 < i) (14)

For any 1 ≤ i ≤ dev and any 0 ≤ secu(v),dir(u, v) ≤
7, exactly two of these constraints are satisfied regardless
of η1(u, v), η2(u, v) or ξ(u, v)i, if and only if |secu(v) −
dir(u, v)| or 8 − |secu(v) − dir(u, v)| is strictly smaller
than i and the other two constraints can be satisfied using
η1(u, v), η2(u, v). If this is not the case, we have to set ξ(u, v)i

to true, which is equivalent to ξ(u, v) = min{|dir(u, v) −
secu(v)|, 8− | dir(u, v)− secu(v)|} (see Section II-A).

Since secu(v) is a scalar value, which is known at the time
of instance creation, we use that dir(u, v) > c and dir(u, v) <
c′ can be modelled as dir(u, v)c+1 and ¬dir(u, v)c

′
respec-

tively and arrive at a simplified set of constraints.

η2(u, v) ∨ ξ(u, v)i ∨ dir(u, v)secu(v)−i+1 (15)

η1(u, v) ∨ ξ(u, v)i ∨ ¬ dir(u, v)secu(v)+i (16)

¬η1(u, v) ∨ ξ(u, v)i ∨ dir(u, v)secu(v)−i+9 (17)

¬η2(u, v) ∨ ξ(u, v)i ∨ ¬ dir(u, v)secu(v)+i−8 (18)

Minimizing the sum of all integer variables ξ(e) for all e ∈
E minimizes the total number of direction deviations in the
final layout. To do this in MaxSAT, we add the following soft
clauses with weight f1 for every edge (u, v).

ξ(u, v) < i ∀1 ≤ i ≤ dev (19)

In particular this means, we simply add the negated vari-
ables ¬ξ(u, v)i for all edges (u, v) and all 1 ≤ i ≤ dev as soft
clauses and set their weight to f1. In a very similar fashion,
we can define corresponding minimization variables θ and λ,
with weights f2 and f3 to minimize the total number of line
bends and the total edge length, respectively.

III. SMT MODEL

Our second model uses a different SAT-based optimiza-
tion technique called SAT modulo Theory (SMT). Intuitively
speaking, an SMT formula Φ also consists of a set of clauses
and is true if every single clause is true; the concept of a
clause, however, is broadened to allow expressions of integer
linear arithmetic in place of literals. A truth assignment for
Φ will assign every such expression either true or false and
the set of all expressions, which are assigned true can be
checked for consistency using a dedicated solver for integer
linear arithmetic. If there exists a variable assignment, which
is consistent for both the Boolean variables in Φ and the
expressions, which are assigned true, Φ is satisfiable. For a
more detailed introduction and definition of SMT, we refer to

Griggio [7]. Note that we can formulate soft clauses in the
exact same fashion as in MaxSAT.

A benefit of an SMT solver over SAT solvers is that we can
use data types, like (unbounded) integers directly, instead of
using a unary encoding. With these integer variables we can
use the hard constraints (e.g. Equations (5)–(10)) as they are,
since the theory of linear integer arithmetic supports the use
of inequalities and equations in SMT.

Soft constraints are handled in a very similar manner
as in our MaxSAT approach. However, we instantiate the
inequalities ξ(u, v) < i for every 1 ≤ i ≤ dev (and the
corresponding inequalities for θ and λ) directly as weighted
soft constraints.

IV. EXPERIMENTAL RESULTS

Both models were implemented and tested. In this section,
we first describe some implementation details and optimiza-
tions, then compare our experimental run-time results with
the existing ILP implementation and finally we showcase the
schematic maps created using the MaxSAT and SMT models.

A. Implementation
Our entire implementation uses python 3.7. We used the

python package PySAT as a modeling interface to create
the MaxSAT model. This package also provides a choice of
MaxSAT solvers to find optimal variable assignments for the
created formulas; we used the solver RC2.

While SMT solvers are readily available and competitions
between existing solvers are held, which can be consulted
to find a suitable solver for a given formulation, support
for optimizing a given objective expression, while finding a
satisfying variable assignment is often lacking. In fact, the
concept of optimization is not integrated into the SMT-LIB
Standard [1]. However the SMT solver Z3 provides the module
νZ [4], [5], which allows the maximization over expressions in
the used theory (in our case integer linear arithmetic) as well
as support for weighted soft clauses. We used νZ to model
and solve our SMT formulation.

For comparison, we used the ILP formulation of Nöllenburg
and Wolff [10], implemented using Gurobi 9.5.0 as a solver
and the gurobipy package to model the ILP formulation.

Further we used the following optimizations for all three
formulations. If crossings were present in the input, we
planarized it, i.e., we removed the crossing segments, placed
a dummy vertex at the crossing point, which is connected
to the endpoints of the crossing segments and removed the
vertex again, before rendering. Additionally, we used the well-
established DEG-2 heuristic. If an input graph contains paths
of k degree-2 vertices between two vertices of degree not
equal to two (either interchanges or terminals), we replace the
entire path by a 3-edge path (modeling two bend points) whose
middle edge has minimum length k − 1 to reserve sufficient
space for re-inserting the degree-2 vertices later. When re-
inserting, we distribute all stations on these compressed paths
equally over their entire length in the final schematization.
Note that the last two steps emphasize equal distance between
stations over integer coordinates of such stations.

https://pysathq.github.io/
https://pysathq.github.io/docs/html/api/examples/rc2.html
https://smt-comp.github.io/2021/
https://github.com/Z3Prover/z3
https://support.gurobi.com/hc/en-us
https://pypi.org/project/gurobipy/

(a) Geographical input layout
of Vienna metro network.

(b) Schematic MaxSAT and
SMT layouts for Vienna.

(c) Geographical input layout of
Karlsruhe tram network.

(d) Schematic MaxSAT and SMT
layouts for Karlsruhe.

Fig. 2: Side by side view of the metro networks with stations at their geographical input locations (a), (c) and the their
respective schematization (b), (d). Both the MaxSAT and SMT model produced the same layout.

TABLE I: Model parameters and running (wall clock) times in
seconds. Times marked with ? exceeded the limit of 10 hours.

Vienna Karlsruhe
f = (3, 2, 1) (6, 4, 2) (5, 2, 1) (3, 2, 1) (6, 4, 2) (5, 2, 1)

SAT 1,172 531 102 9,895 5,904 20,176
SMT 5,803 5,232 347 10,027 9,882 6,801
ILP 272 220 4,035 ?36,000 ?36,000 ?36,000

B. Runtime Comparison

For our experiments we used a computation cluster outfitted
with a Intel Xeon E5-2640 v4, 2.40GHz 10-core processor
(note that all solvers used only a single thread). We used
two standard benchmarks, the metro networks of Vienna
(90 vertices and 96 edges) and Karlsruhe (127 vertices and
135 edges). The sizes of the underlying grids for the SAT
formulation were determined experimentally and are X ×X
and Y × Y , respectively; recall that the SMT formulation
does not require a bounded grid. All MaxSAT and SMT
instances had a maximum available memory of 8GB, while
ILP instances were run with 16GB and 100GB for Vienna
and Karlsruhe, respectively. Three weight vectors (f1, f2, f3)
were used, namely F1 = (3, 2, 1), F2 = (6, 4, 2) (which
has the same relative weighting) and the more pronounced
F3 = (5, 2, 1). The observed runtimes are presented in Table I.
The resulting MaxSAT and SMT layouts for F1 are shown in
Fig. 2. Note that both produced the same layout, however this
is not necessarily the case, as multiple layouts can have the
same objective function value.

Comparing F1 and F2, we see that the SAT and SMT
models decrease in solving time when multiplying the weights
of F1 by 2. Using F3 results in an even shorter time on the
Vienna map (significantly so for SMT), but we see diverging
behavior for the Karlsruhe network, where SMT is yet again
faster than F1 and F2, but MaxSAT has a spike in running
time. On repeated executions of the solver, we found a solving
time of 12387 seconds, indicating a possibly high variance in
computation times for these approaches.

Comparing running times to the ILP model, we note that
the ILP outperforms our approaches on the smaller Vienna
map, but optimal solutions for the larger map were found by
MaxSAT and SMT, while the ILP exceeded our set time limit
of ten hours. This could indicate a better scalability of our
logic-based approach. Here it should also be noted that the
ILP solver ended with a reported optimality gap between 13
and 16 percent, but reported intermediate solutions during its
runtime. Such functionality is possible, when using MaxSAT
and SMT solvers, as they maintain intermediate solutions,
however neither neither of our models currently supports this
without interrupting the solution process.

V. CONCLUSION

Our exploratory experiments show that MaxSAT and SMT
solvers can be used to competitively compute schematic
metro network layouts and are similarly versatile as ILP
solvers; additional constraints like minimization or prevention
of line bends in interchange stations [11] can easily be
added to the models. Various avenues of further research
present themselves. First, SMT supports a variety of theories.
It is worth investigating if a change in theory (e.g., using
rational linear arithmetic, rather than integer linear arithmetic)
can speed up computation. Second, a big positive of using
logical methods is not only that they produce high-quality
layouts, but that usually such high-quality (but not necessarily
optimal) intermediate solutions can be found quickly. It has
to be verified if this property still holds for MaxSAT and
SMT solvers. Third, runtimes of MaxSAT and SMT can be
dependent on the specific model formulation, possibly even
up to the order in which clauses are added. Best practices
of MaxSAT and SMT model creation should be consulted to
optimize the formulation of the particular constraints of the
metro map layout problem to be as suitable as possible to their
respective solvers. And fourth, we expected the runtimes for
F1 and F2 to be equal, due to their equal relative weighting.
We currently lack an explanation, why doubling the weight
vector decreases runtime, outside of the previously mentioned
variance in runtime.

REFERENCES

[1] C. Barrett, A. Stump, and C. Tinelli. The smt-lib standard: Version
2.0. In Satisfiability Modulo Theories (SMT 2010), volume 13, page 14,
2010.

[2] H. Bast, P. Brosi, and S. Storandt. Metro maps on octilinear grid graphs.
Computer Graphics Forum (CGF), 39(3):357–367, 2020.

[3] H. Bast, P. Brosi, and S. Storandt. Metro maps on flexible base grids.
In Spatial and Temporal Databases (SSTD 2021), pages 12–22. ACM,
2021.

[4] N. Bjørner and A.-D. Phan. νZ-Maximal Satisfaction with Z3. Symbolic
Computation in Software Science (SCSS 2014), 30:1–9, 2014.

[5] N. Bjørner, A.-D. Phan, and L. Fleckenstein. νZ-an optimizing SMT
solver. In Tools and Algorithms for the Construction and Analysis of
Systems (TACAS 2015), volume 9035 of LNCS, pages 194–199. Springer,
2015.

[6] D. Chivers and P. Rodgers. Octilinear force-directed layout with mental
map preservation for schematic diagrams. In Theory and Application
of Diagrams (DIAGRAMS 2014), volume 8578 of LNCS, pages 1–8.
Springer, 2014.

[7] A. Griggio. A Practical Approach to Satisfiability Modulo Linear Integer
Arithmetic. Satisfiability, Boolean Modeling and Computation (JSAT),
8(1-2):1–27, 2012.

[8] B. Luteberget and C. Johansen. Drawing with SAT: four methods and
A tool for producing railway infrastructure schematics. Formal Aspects
Comput., 33(6):829–854, 2021.

[9] S. Nickel and M. Nöllenburg. Towards Data-Driven Multilinear Metro
Maps. In Theory and Application of Diagrams (DIAGRAMS 2020),
volume 12169 of LNCS, pages 153–161. Springer, 2020.

[10] M. Nöllenburg and A. Wolff. Drawing and Labeling High-Quality Metro
Maps by Mixed-Integer Programming. IEEE Trans. Vis. Comput. Graph.
(TVCG), 17(5):626–641, May 2011.

[11] M. J. Roberts. What? s your theory of effective schematic map design?
2014.

[12] J. Stott, P. Rodgers, J. C. Martinez-Ovando, and S. G. Walker. Automatic
metro map layout using multicriteria optimization. IEEE Trans. Vis.
Comput. Graph. (TVCG), 17(1):101–114, 2010.

[13] J. M. Stott and P. Rodgers. Automatic metro map design techniques. In
International Cartographic Conference (ICC 2005), 2005.

[14] T. C. van Dijk and D. Lutz. Realtime linear cartograms and metro maps.
In Advances in Geographic Information Systems (SIGSPATIAL/GIS
2018), pages 488–491. ACM, 2018.

[15] H.-Y. Wu, B. Niedermann, S. Takahashi, M. J. Roberts, and
M. Nöllenburg. A Survey on Transit Map Layout – from Design,
Machine, and Human Perspectives. Computer Graphics Forum (CGF),
39(3):619–646, 2020.

[16] V. Yoghourdjian, T. Dwyer, G. Gange, S. Kieffer, K. Klein, and K. Mar-
riott. High-quality ultra-compact grid layout of grouped networks. IEEE
Trans. Vis. Comput. Graph. (TVCG), 22(1):339–348, 2015.

	Introduction
	SAT Model
	Unary Encoding
	Coordinates
	Hard Constraints
	Optimization

	SMT Model
	Experimental Results
	Implementation
	Runtime Comparison

	Conclusion
	References

