A Toolchain for Generating Transit Maps from
Schedule Data

Patrick Brosi
University of Freiburg
Freiburg, Germany
brosi@cs.uni-freiburg.de

Abstract—We give a quick overview over LOOM, a software
toolchain which aims to render transit maps from raw schedule
data fully automatically. The maps can either be geographically
correct or schematic (using e.g. octilinear, orthoradial, or hex-
alinear layouts). To ensure extensibility, the toolchain is imple-
mented as a Unix pipeline, with individual tools performing well-
defined subtasks (e.g. extracting the network graph from schedule
data, avoiding overlapping segments, finding a schematic layout,
finding the optimal line ordering on the network segments, and
rendering the map as an SVG file). An auxiliary tool to add
missing geographical line courses to schedule data (pfaedle) is
also presented.

Index Terms—transit maps, schedule data, graph drawing

I. OVERVIEW AND OBJECTIVES

The problem of automatically drawing transit maps (or
metro maps) following various layouts has been extensively
studied in the past two decades (see [1] for a recent survey).
However, a full toolchain to generate such maps automatically
has been missing so far. The tools presented here aim to fill
this gap. We demonstrate tools to (1) enrich schedule-data with
geographical line courses (if missing), (2) extract a line-labeled
network graph from this schedule data, (3) generate a network
graph without segment overlaps, (4) find schematic drawings
of the network graph, following ortholinear, octilinear, hexa-
linear, or orthoradial layouts, (5) find segment line-orderings
which optimize the (weighted) number of line crossings and/or
separations, and (6) render the map as an SVG graphic which
can be directly used in print or as a map overlay. Each step
in this toolchain is optional, allowing e.g. for geographically
accurate transit maps if step 4 is omitted.

II. METHODOLOGY

To generate missing geographical line courses for schedule
data, we use pfaedle, a tool for map-matching schedule data
first published in [2]. LOOM, the software toolchain for
generating transit maps from schedule data, consists of the
tools gtfs2graph, topo, loom, octi, and transitmap. The tools
gtfs2graph, loom, and transitmap are based on methods first
published in [3] and [4]. octi is based on methods published
in [5] and [6].

All tools have been made publicly available on Github'? and
expect the schedule data to be given in the GTFS format [7].

Thttps://github.com/ad-freiburg/pfaedle
Zhttps://github.com/ad-freiburg/loom

Fig. 1. Geographically correct, octilinear, hexalinear, and orthoradial transit
maps rendered from schedule data using our toolchain.

The individual tools and their usage will be briefly described
in the following sections. For details on their inner workings,
we refer to the publications given above. For installation
instructions, we refer to the respective README files.

A. pfaedle - Map-Matching GTFS Data

A problem with real-world schedule data is that the geo-
graphical line courses (shapes) are often missing. This is not
only a problem when geographically accurate transit maps are
generated, but may also impede the bundling of lines sharing
a common course in schematic maps. pfaedle map-matches
GTFS data to OpenStreetMap (OSM) map data and outputs
a new schedule dataset with shapes Once pfaedle is installed,
shapes for an example GTFS feed of Freiburg in folder freib
can be extracted from an OSM file freib.osm (holding the
OSM data for the Freiburg region) as follows:

pfaedle -x freib.osm freib

https://github.com/ad-freiburg/pfaedle
https://github.com/ad-freiburg/loom

B. gtfs2graph - Extracting Network Graphs from GTFS Data

To extract a network graph from the schedule data, LOOM
offers the tool gtfs2graph. Given a GTFES feed freib, the fol-
lowing command extracts a graph for the contained tram net-
work and writes it as a GeoJSON file to freib.raw. json.

gtfs2graph -m tram freib > freib.raw. json

G. Full Pipeline

Given a GTFS feed in some folder freib, an octilinear
map of the contained tram network can thus be generated with
the following command:

gtfs2graph -m tram freib | topo | loom | octi

| transitmap > freib.svg

C. topo - Extract Free Network Graphs

Graphs generated by gtfs2graph have edge segments for
every trip contained in the schedule data. These segments
typically show great overlap. Making this graph overlap-free
can be considered a map-construction problem. LOOM offers
the tool fopo for this. The following command generates an
overlapping-free graph freib. json from the input graph
given in freib.raw. json.

topo < freib.raw.json > freib.json

D. loom - Line-Ordering Optimization

A key aspect of the readability of a transit map are the
line orderings on the network segments. The tool loom can be
used to optimize these orderings for a giving input network as
follows:

loom < freib.json > freib.opt.json

E. octi - Schematization of Network Graphs

Maps used in print are typically schematic. The tool octi
reads a network graph and outputs a schematic version:

octi < freib.opt.json > freib.octi.json

The default layout is octilinear, but octi can also follow
ortholinear, hexalinear, or orthoradial layout. Layouts can be
selected via the —b (base graph) parameter:

octi -b orthoradial < freib.opt.json

octi may also approximate the geographical line courses in
the schematic drawing by setting the parameter ——geo—pen
to a valuate greater than zero. It can also consider obstacles
given as polylines or polygons in a GeoJSON files specified
via the ——obstacles parameter:

octi —--obstacles obst.json < freib.opt.json

Example maps generated by octi using various different
layouts can be found online’.
F. transitmap - Transit Map Rendering Engine

The network graphs can be rendered into an SVG map with
the transitmap tool:

transitmap < freib.octi.json > freib.svg

It is possible to manually add CSS styling to individual lines
in the GeoJSON file. The line width and line spacing may
be specified via ——line-width and ——line-spacing.
Labeling (still preliminary) can be added via the —1 option.

3https://octi.cs.uni-freiburg.de/

H. Web Maps

The SVG maps can be directly used as overlays in web map
libraries like Leaflet*. Because of the SVG format, it is also
very easy to make them interactive (for example, to add hover
effects or add click listeners to individual lines and stations).
We provide examples under https://loom.cs.uni-freiburg.de.
The code of this website is also publicly available?.

III. OUTCOMES AND BENEFITS

We hope that the toolchain briefly introduced above might
provide a basis for further research and implementation work.
It would for example be easy to add a tool to locally enlarge
network graphs before schematization to arrive at a more
uniform map density. For professional end-users and designers
of transit maps, we hope that the tools will be useful for
fast map-prototyping, or for the generation of geographically
correct web maps. The generated SVG graphics can be edited
easily and might thus also form the basis for further polished
manually designed maps.

REFERENCES

[1] H. Wu, B. Niedermann, S. Takahashi, M. J. Roberts, and M. Nollenburg,
“A survey on transit map layout - from design, machine, and human
perspectives,” Comput. Graph. Forum, vol. 39, no. 3, pp. 619-646, 2020.
[Online]. Available: https://doi.org/10.1111/cgf.14030

[2] H. Bast and P. Brosi, “Sparse map-matching in public transit

networks with turn restrictions,” in Proceedings of the 26th ACM

SIGSPATIAL International Conference on Advances in Geographic

Information Systems, SIGSPATIAL 2018, Seattle, WA, USA, November

06-09, 2018. ACM, 2018, pp. 480—483. [Online]. Available: https:

//doi.org/10.1145/3274895.3274957

H. Bast, P. Brosi, and S. Storandt, “Efficient generation of geographically

accurate transit maps,” in Proceedings of the 26th ACM SIGSPATIAL

International Conference on Advances in Geographic Information

Systems, SIGSPATIAL 2018, Seattle, WA, USA, November 06-09, 2018.

ACM, 2018, pp. 13-22. [Online]. Available: https://doi.org/10.1145/

3274895.3274955

, “Efficient generation of geographically accurate transit maps,’

ACM Trans. Spatial Algorithms Syst., vol. 5, no. 4, pp. 25:1-25:36,

2019. [Online]. Available: https://doi.org/10.1145/3337790

“Metro maps on octilinear grid graphs,” Comput. Graph.

Forum, vol. 39, no. 3, pp. 357-367, 2020. [Online]. Available:

https://doi.org/10.1111/cgf.13986

, “Metro maps on flexible base grids,” in Proceedings of the 17th

International Symposium on Spatial and Temporal Databases, SSTD

2021, Virtual Event, USA, August 23-25, 2021. ACM, 2021, pp. 12-22.

[Online]. Available: https://doi.org/10.1145/3469830.3470899

“GTFS Reference,” https://developers.google.com/transit/gtfs/reference,

accessed: 2022-04-12.

—
W
—_

[4]

(51

(6]

[7

—

“https://leafletjs.com
Shttps://github.com/ad-freiburg/loom-eval

https://octi.cs.uni-freiburg.de/
https://loom.cs.uni-freiburg.de
https://doi.org/10.1111/cgf.14030
https://doi.org/10.1145/3274895.3274957
https://doi.org/10.1145/3274895.3274957
https://doi.org/10.1145/3274895.3274955
https://doi.org/10.1145/3274895.3274955
https://doi.org/10.1145/3337790
https://doi.org/10.1111/cgf.13986
https://doi.org/10.1145/3469830.3470899
https://developers.google.com/transit/gtfs/reference
https://leafletjs.com
https://github.com/ad-freiburg/loom-eval

	Overview and Objectives
	Methodology
	pfaedle - Map-Matching GTFS Data
	gtfs2graph - Extracting Network Graphs from GTFS Data
	topo - Extract Free Network Graphs
	loom - Line-Ordering Optimization
	octi - Schematization of Network Graphs
	transitmap - Transit Map Rendering Engine
	Full Pipeline
	Web Maps

	Outcomes and Benefits
	References

