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Abstract

The so-called materially valid inferences have come to new promi-
nence through the work of Robert Brandom. This paper introduces a
fragment of a logic of concepts that does not reduce concepts to their
extensions. Concept logic and its semantics allow us to represent the
conceptual knowledge used in material inferences and thus suggest a
way to deal with them.

1 Making Brandom explicit

Mary is a girl. This is true. And thus, Mary is a female child. That is sound
reasoning, isn’t it? But why? Validity of inference is normally regarded to be
a necessary condition of soundness of inference. Which is the valid inference
scheme underlying the inference from ‘Mary is a girl’ to ‘Mary is a female
child’? What is its logical form? For a guess, we could try:

Gzt FxACx

But, obviously, this is not a valid inference in first order predicate logic.
Recently, Robert Brandom claimed that it is not a valid inference scheme at
all, but the meaning of the concepts girl, female and child that make this
inference correct. Endorsing such inferences ‘is part of grasping or mastering
those concepts, quite apart from any specifically logical competence’ (1994,
98; see also Sellars 1980). But this does not exclude the possibility that such
inferences can be modelled using logical techniques. The aim of this paper
is to present such a technique that allows us both to account for materially
valid inferences and to represent the conceptual knowledge on the basis of
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which we endorse these inferences. These aims can be achieved by developing
a logic of concepts. Concept logic is designed to take concepts as concepts
seriously, that is, not to conflate a concept with its extension. It is not
necessary to be a Platonist with regard to universals in order to use concept
logic. It is sufficient to agree that concepts exist in some way, e.g. as norms
(as would Brandom 1994). Concept logic is not thought to replace, but to
enrich predicate logic. That should be clear from the fact that the fragment
of a language of concept logic studied in this paper is an extension of first
order predicate logic. Over and above the normal apparatus of predicate
logic this fragment features the concept relator imp, representing the relation
of conceptual implication. From the point of view of a normative account of
concepts, conceptual implication can be introduced as follows:

A concept A implies a concept B, iff: If a speaker subsumes
an individual z under B, he is commited (when asked) also to
subsume z under A.

Other concept relators can be employed to represent non-implication, con-
vertibility, incompatibility, and identity of concepts; they will, however, not
be dealt with in this paper. For the sake of simplicity, we will only consider
a predicate logic with one-place predicates and names in this paper.

2 The fragment C*

The fragment C* to be studied here is an extension of monadic predicate
logic. Like predicate logic, the alphabet of C* contains constants for indi-
viduals (a, b, ¢, ...), variables for individuals (z,y, 2, ...) and the usual logical
constants (—,V, (,),V). Instead of names of predicates, C* contains names
of concepts (F,G, H,...), and in addition to predicate logic C* contains the
two-place concept relator imp. The usual definition of well-formed formulae
(wff) in predicate logic is augmented to allow for imp-statements being wifs:

If A and B are concepts, then "(Aimp B)™ is a wif.

Brackets can be suppressed as usual; derived logical signs have the usual
definitions. The axioms of C* have to incorporate predicate logic and to
characterize the imp-relation. Following the normative account suggested
above, we shall conceive conceptual implication both as a reflexive and a



transitive relation, but not as a symmetric relation: if a speaker subsumes an
individual under the concept dog, he is commited to subsume that individual
also under the concept animal, but if a speaker subsumes an individual under
the concept animal, he is not commited to subsume it under the concept dog.
Finally, we add a bridge aziom that connects the conceptual imp-relation with
a statement about extensions, expressed in predicate logic:

(A1) Every C*-instance of a theorem of predicate logic is an axiom of C*.
(A2) Aimp A

(A3) (AimpBABimpC) D AimpC

(A4) Aimp B D Vz(Az D Bux)

Derivation rules of C* are the modus ponens and the generalisation rule. By
these means, e.g. the following theorem can be derived in C*:

—(Aimp B A Jz(Ax) A —3y(By))

Theorems like this are especially interesting, because they express logical
relations between the realm of conceptual intensions (expressed by concept
relators) on the one hand and the realm of extensions on the other hand
(expressed by means of quantification over individuals).

3 Semantics of C*

We construct a semantics for concept logic by modelling concepts as a special
kind of individuals. Thus, besides the usual universe of discourse we use a
second non-empty set B, the set of concepts, members of which are not itself
sets. Certain relations holding between members of B are the conceptual
relations that are expressed by concept relators such as imp:

Def.: (U, B, Ext,IMP) is a C*-frame iff:
(1) U and B are non-empty distinct sets of individuals.

(2) Extis a function that maps every element of B to exactly one
(perhaps empty) subset of U.

(3) IMP is two-place relation on B, such that for all X, Y, Z € B:
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(a) IMP(X, X).
(b) If IMP(X,Y) and IMP(Y, Z), then IMP(X, Z).

In this definition, (3a) matches axiom (A2) while (3b) matches axiom (A3).
In the following definition of a C*-model, clause (2) matches the bridge axiom
(A4):

Def.: (B, U, Ext,IMP, IntY IntB) is a C*model iff:
(1) (B,U,Ext,IMP) is a C*-frame.

(2) IntY is a function mapping every name of an individual ex-
actly to one element of U, and Int® is a function mapping
every name of a concept to exactly one element of B, such
that if IMP(X,Y), then Ext(X) C Ext(Y).

Having thus defined the concept of a C*-model, we can formulate the truth-
definitions. An atomic formula like ‘F'a’ will be considered as true, if the
individual from U designated by ‘a’ is a member of the extension of the
concept designated by ‘F’. A conceptual implication as ‘F'imp G’ should be
considered as true, if the concept designated by ‘F” implies the concept desig-
nated by ‘G’ - i.e., if the relation IMP holds between these two concepts. The
truth-definitions for negation, alternation and the universal quantification
are as usual:

Def.: V), is the evaluation function of C*, iff V3, maps every wif
of C* with respect to a C*-model M to exactly one element
from {0, 1}, such that:

(1) Vir(TAa") = 1iff IntY(a) € Ext(IntB(A)).

(2) Vir(TAimp B7) = 1 iff IMP(IntB(A4), Int®(B)).

(3) Vi (T—a™) =1 iff Viy(a) = 0.

(4) Vu(TaVv ) =1iff Viy(a) =1 or Vi (6) = 1.

(5) Vi ("Vz(afa]™) = 1 iff for all a-alternatives M* of M:
Vi (afa]) = 1.

Equipped with these semantical tools we can now try to get a grip on the
initial problem.



4 How to analyze conceptual inferences with
C*

Normally, we would consider ‘Mary is a girl, thus Mary is a female child’ to
be a good inference. However, if we adopt a formalistic attitude to inference,
we are likely to discard this inference, because it is not based on a valid
inference scheme of first order predicate logic. Alternatively, we can search
for hidden assumptions. As a candidate for a hidden assumption that would
repair the inference, the universal statement ‘All girls are female children’
would do. However, this universal statement is not just an arbitrary further
assumption. Philosophers would say, it is an analytic truth. On the other
hand, that universal statement is of a different standing than, say, the axioms
of the predicate calculus. It would be odd to add a lenghty list of such analytic
universal statements to the set of axioms, because this would imply that we
treat all the concepts as logical constants. Concept logic offers a third way
to deal with this problem. Instead of using the syntactic tool of adding
new axioms, we use the semantic tool of integrating a conceptual relation
in the model. The statement ‘G imp F’ (read: ‘The concept girl implies
the concept female child’) will be true in any model that adequatly mirrors
our use of the words ‘girl’, ‘female’ and ‘child’. And instead of treating ‘All
girls are female children’ as an arbitrary hidden assumption, we can use the
conditional statement ‘If girl implies child, then all girls are female children’
to make the inference — and this conditional statement is an instance of the
bridge axiom (A5) and thus a logical truth in C*. Hence we have: ‘Girl
implies female child, Mary is a girl, thus Mary is a female child.” Therefore,
from the point of view of a logic of concepts, conceptual inferences like the
discussed example can be considered as being instantiations of the following
inference scheme that is valid in C*:

Aimp B, Az + Bx

5 Different Types of Conceptual Relations

In this paper, we have developed a semantical tool to deal with some simple
conceptual inferences. However, our fragment C* of concept logic is not yet
strong enough to deal with just any conceptual inference, as three examples
given by Brandom (1994, 97-98) show. In the remaining, we will shortly



discuss these three examples.

Brandom’s first example is: ‘Pittsburgh is to the West of Philadelphia,
thus Philadelphia is to the East of Pittsburgh.” As C* is only a logic of
monadic predicates, C* is not sufficient to deal with this inference. However,
it is not difficult to extend C* such as to deal with dyadic predicates also.
In addition to this we will need to identify inverse relations, such that the
following will hold good: If a tupel (z,y) satisfies a relation, the tupel (y, )
satisfies the inverse relation.

Such extensions should also cope with Brandom’s second example, which
is: ‘“Today is Wednesday, thus tomorrow will be Thursday.” If the word ‘to-
morrow’ means the same as the phrase ‘the day after today’, and if the name
‘“Thursday’ designates the same day as the description ‘the day after Wednes-
day’, then the original example can be rephrased as: ‘If today is Wednesday,
the day after today will be the day after Wednesday, thus tomorrow will be
Thursday.” This phrasing nicely hints at the relational logic by means of
which the inference can be reconstructed.

Finally, Brandom’s third example: ‘Lightning is seen now, thus thunder
will be heard soon.” Now this inference seems to be no logical inference, hold-
ing a priori. Many will insist that this inference is at best highly probable.
But even if we acknowledge this, there is nothing to prevent our beliefs in
such high probabilities from becoming part of our conceptual understanding.
It is both the job of our everyday experience as well as the task of science
to discover such a posteriori relations between concepts. But to deal with
this sort of conceptual knowledge we have to introduce a second level of
conceptual relations of probability. Such a second level of conceptual rela-
tions promises to be a very interesting tool both for modeling our conceptual
knowledge and for the philosophy of science.
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