Orbis Idearum

Appearance, Reality, and Beyond

edited by

Michel Henri Kowalewicz

Volume 1, Issue 1 (2013)

History of Ideas Research Centre
at Jagiellonian University in Krakow
This issue is funded by the “National Program for the Development of the Humanities” of the Ministry of Science and Higher Education of the Republic of Poland.
TABLE OF CONTENTS

Orbis Idearum. History of Ideas NetMag 7

Michel Henri Kowalewicz
Preamble .. 9

Gunter Scholtz
Die Vernunft als Quelle des Scheins. Kants Vernunftkritik
und ihre Folgen .. 13

Karl Acham
Über Schein und Wirklichkeit Ephemeres und Bedeutsames.
Zur Aktualität alter Unterscheidungen im Lichte neuer Fragen 29

Riccardo Campa
Il futurismo come filosofia del divenire 47

Hermann Lang
Schein und Realität in der Psychoanalyse 73

Pawel Dybel
Der Körper als Spiegel in der Philosophie der Malerei
von Maurice Merleau-Ponty ... 83

Eric S. Nelson
Generativities: Western Philosophy, Chinese Painting, and the Yijing 97

Helmut Pulte
Science and its Demarcation in the Light of the History of Ideas.
A short Outline with apparent and real Implications for
‘Appearance and Reality’ ... 105

Authors ... 119
The idea of ‘science’ (scientia, science, Wissenschaft) changed dramatically in the course of history: While it was understood as an epistemologically privileged endeavor from antiquity to the 19th century, the status of science and its demarcation from other intellectual activities became more and more problematic in the course of the 20th century. This outline sums up findings from ‘Begriffsgeschichte’ of the last 50 years and argues that history of ideas in this sense can contribute to a topical and balanced understanding of science that avoids dull scientism and a postmodernist view, which both result from a lack of determination and demarcation of science.

1. INTRODUCTION

The central questions of the following outline\(^1\) are motivated both by the topic of this conference and by a remarkable revival: ‘History of ideas’ denominates a tradition of viewing and doing history which was founded by A. E. Lovejoy in the 1930ties and soon gained considerable influence. Due to a stronger social and pragmatic coining of history – at least in the sense of historia rerum gestarum – and other, more ’external’ reasons it entered a state of crisis in the 1960ties\(^3\). However, it never disappeared and regained strength during the last decade\(^3\) – though

\(^{1}\) This short article is an extended and slightly modified version of my introductory address ‘Science and its Demarcation in the Light of the History of Ideas’, presented at the founding conference ‘Appearance, Reality and Beyond’ of the History of Ideas Research Centre Krakow in December 2011. Many thanks to Michel Kowalewicz and the other organizers of the conference for the invitation and their kind hospitality.

\(^{3}\) Some scarce hints must do here in order to underpin this claim: first, the publication of New Dictionary of the History of Ideas, 6 vols., ed. by M. C. Horowitz, New York: Charles Scribner’s Sons 2005; second, the foundation of new journals like Ideen in History (Copenhagen: Museum Tusculanum Press 2006 ff.), Partial Answers: Journal of Literature and the History of Ideas (Baltimore: John Hopkins University Press 2003 ff.) and Zeitschrift für Ideengeschichte (Munich: C. H. Beck 2007 ff);
not in the Lovejoyian modular design based on 'unit ideas', but as a more dynamical and amenable historiographical enterprise that tries to integrate social conditions and pragmatic aspects of the respective intellectual areas. Thus, an historically interested philosopher of science asks whether – and if so, how – the history of ideas can contribute to an understanding of what became a widespread conviction that dominated occidental thinking from the renaissance to the late 19th century and faded away in the course of the 20th century, i.e. the belief that science uncovers 'reality' (as it is) while other intellectual and cultural activities like literature, art or philosophy either fail to do so or are (at least) loss-making in comparison to science. The short answer to the first question given in this outline is a qualified 'yes', and the even more truncated answer to the second question is 'Begriffsgeschichte': I understand conceptual history in a special sense – Begriffsgeschichte in the German tradition – both as a method and as a discipline of history of philosophy, of history of science and of intellectual history in general. It is no rival of the history of ideas, but rather a certain mode or shape of doing history of ideas; Begriffsgeschichte aims at understanding structural changes in intellectual history by analyzing the change of concepts in their linguistic context (super- and subordinated concepts, antonyms, similar concepts etc.). Thus, concepts themselves exhibit a certain temporal structure that reveals the changes and interactions of human thinking with respect to 'matters' or 'objects', i.e. to concrete or abstract referents. While Begriffsgeschichte has not yet developed a generally accepted canon of methods, it brought about a couple of fruitful and influential works which exemplify this approach.

A second historiographical fixation is of equal importance: As history of ideas in general, *Begriffsgeschichte*, as I understand it, is no end in itself and therefore should not be misunderstood as a form of mere antiquarianism. As any history, its aim is to shed some light on the presence and help to understand and master current intellectual problems and debates. Therefore, and without running into the pitfalls of teleological reconstructions, the present understanding of science will play a certain role in what follows: While the traditional understanding unduly privileged science as an epistemological enterprise, certain tendencies in contemporary science and ‘science and technological studies’ (STS), as well as certain strands of ‘historical epistemology’ influenced by postmodern constructivism harbor two dangers: either to succumb to a naïve scientism, which is encouraged by the irrefutable success of modern science and technology, or to ‘contextualize’ science in general terms and thereby to downgrade it to a hackneyed enterprise with no special epistemological merits. Between Scylla and Charybdis, a more balanced view is the order of the day.

Begriffsgeschichte may well contribute to such a view: It discriminates between science and scientism and reveals how the latter gained ground. It is also receptive to social contexts and institutional shapings of science. However, it does not follow fashion’s every whim because it brings in a greater staying power of historical grading and avoids shortsightedness as well as antiquated dogmas. History of ideas in general can help to avoid both extremes and contribute to a better understanding of science and its demarcation. The following sketch is meant to illustrate this claim. It rests on various investigations into the *Begriffsgeschichte* of science (scientia, science, Wissenschaft) from antiquity to the 20th century.

2. Classical and Modern Science

What can a *topical history of ideas* – in contrast to other historiographical approaches – contribute to identify and demarcate ‘science’ as a specific intellectual achievement of modern culture from other intellectual adventures? The older history generally followed traditional philosophy of science and took it for granted

that science awards humans with a certain type of privileged knowledge: The general premise was that science generates invariable, true and indisputable knowledge of nature and man himself. *Generality, truth, a certain necessity* (imposed by deductive or inductive logic), *evidence of ‘first principles’* and, in most cases, *independence of scientific theories from heuristic methods and modes of representations are the main characteristics of ‘classical science’*. Obviously, mathematical knowledge, as represented by Euclid’s *Elements*, by example, played an important role for the molding of this ideal. To put it shortly: The ‘idea of science’ from Aristotle via Bacon, Descartes and Kant to the late 19th century was shaped by the conviction that scientific knowledge is *épistémé* in the traditional sense. Though this *idea* has its roots in an *ideal* of ancient epistemology, it unfolded its strong intellectual influence not until the great ‘Scientific Revolution’ during the Renaissance took place – an element of continuity and, so to speak, of retardation hardly noticed by the scientific ‘revolutionists’ involved, but visible both in the claims they laid to scientific knowledge and in the metatheoretical reflections of classical empiricism (like Bacon’s) and rationalism (like Descartes’ or Leibniz’s).

Therefore, one important aspect – probably even the most dominating one – of traditional attempts to demarcate science was to draw a line between *épistémé* in this strong sense and weaker forms of knowledge, which were not conceived as evident and certain, but as less transparent and revisable, perhaps even as fallacious.

and deceiving. *Science*, according to the *classical* understanding, grasps the ‘essence’ of things: It was not meant to stick to mere *appearance*, but to uncover *reality*. Though most scientists and philosophers of science realized that their *idea* of science was a projected *ideal* of science, this demarcation was most often conceived as a clear-cut one.

However, the traditional image of science as an epistemologically *unique* endeavor faded away in the course of the 19th century: Science itself underwent dramatic changes, which were interpreted by many philosophers and historians as epistemological *disruptions* or insurmountable *breaks* in the process of knowledge acquisition. The rise of non-Euclidean geometries was an important driving force of this development, but also — and even earlier — foundational changes in mathematical physics and a general change in the understanding of how (increasingly formal) mathematical knowledge and experience are related. This fundamental change can be traced in detail by an analysis of the semantics of ‘generality’, ‘truth’ and ‘necessity’ in the respective scientific areas, and it can also be traced in individual scientific biographies and *oeuvres*. The case of Helmholtz is exemplary: At the beginning of his long and fruitful scientific career, he defended — along Kantian lines — the claim that scientific knowledge is apodictic. In his later writings, published during the last two decades of the 19th century, however, even the most basic insights of physical geometry and mathematical physics turned out to be *hypothetical* for him.

The indicated developments culminated — from an epistemological point of view — in the early 20th century ‘revolutions’ in physics and a foundational crisis of mathematics. As Imre Lakatos aptly remarked, Karl R. Popper was the first who drew the philosophical consequence of this development: More than any other philosopher of science of the 20th century, Popper criticized and eventually demolished the classical understanding of science which was based on an alleged epistemological privilege of its knowledge. He rather accentuated the opposite pole: “Our science is not knowledge (*epistēma*); it can never claim to have attained truth, or even as substitute for it, such as probability.”

11 See Pulte: *Axiomatik und Empirie*.
Modern science in this sense is not to be understood as a categorical and deductively structured system of absolute truths. Instead, it is a hypothetical-deductive system or propositions which are basically problematic16 — \textit{problematic} in the sense that their validity always rests on disputable conditions (observations, other propositions, or theories). Modern science does no longer accept metaphysical or, to be more general, philosophical foundations, nor does it share the belief of 19th century positivism that ‘mere experience’ yields a \textit{fundamentum incondensum} for theory building. Modern science is \textit{autonomous} from philosophical justification, and especially rejects the idea of ultimate justification. Therefore, its knowledge is basically \textit{fallible} in character. Scientific \textit{method} is understood as a means to gain intersubjective, testable results, but no longer serves as a means to ensure the infallibility of scientific knowledge.

\textit{Method} in this ‘operational’ rather than epistemological sense, however, became the new criterion of demarcation in order to separate scientific and non-scientific knowledge. Many philosophical discussions in the middle of the 20th century focused on methodological issues, and Popper and other protagonists defended the special character of science mainly on this ground: \textit{Method} not as a means to secure truth, but as a means to make scientific knowledge more reliable than ‘general knowledge’ and as a guarantee of scientific progress (in the sense of truth-approximation or \textit{verisimilitude} as a regulative idea of any science).17 Even Thomas S. Kuhn, who rejected the idea of universal method and truth-approximation, subscribed to progress as an essential feature of the scientific endeavor and used this feature in order to demarcate scientific and non-scientific knowledge.18

Subsequently, however, and contrary to this modern but non-relativistic idea of science originated a strong tendency to \textit{deny} that any demarcation of science and scientific knowledge is necessary or at least desirable: Paul K. Feyerabend in his \textit{Against Method} rejected the claim that science is regulated by general methodological principles and characterized by progress: He simply proclaimed that “science is an essentially anarchistic enterprise”.19 Likewise, Bruno Latour’s appeal to “abolish the distinction between science and fiction”20 seemed to make it superfluous and ‘old-fashioned’ to look for criteria which may be appropriate to separate science from other intellectual activities at all. The idea of science was, to a

\begin{footnotesize}
\begin{enumerate}
\end{enumerate}
\end{footnotesize}
certain extent, discharged from any special epistemic virtues. As a consequence of this epistemological deconstruction, science became a subject of historical and social contextualisations of different types – especially of historical investigations which stressed the social and material aspects of science. ‘Science and Technology Studies’ (STS) and ‘Historical Epistemology’ are influential and striking examples in this respect. These new historical trends manifest debits and credits alike, which are most obvious for STS. To the credit side certainly belongs the elaboration of science’s social character and the analysis of the role of institutional, experimental and technical influences on the formation of scientific knowledge. To the debit side, however, belongs the indisputable fact that they relativized and downgraded scientific knowledge in epistemological respect, which neither conforms to a thorough analysis of the reliability of this knowledge nor to man’s experience of the living environment, which today is highly determined by the (perpetually confirmed) belief in the dependability of our technological devices based on this knowledge.

Another severe consequence of these historiographical approaches for the traditional history of ideas is obvious: They undermine not only the epistemological authority of science, but also the idea that science is strongly shaped by overarching conceptual and methodological frameworks, which are the bearers of scientific knowledge and the main subjects of the history of ideas.

3. SCIENTISM AS MODERN OBSCURANTISM

The development sketched until now is a shady side, which – at first glance – seems to point in the opposite direction. The present public understanding of science may be low in general, but the public estimation of scientific knowledge is – consciously or not – great, and sometimes elevates to religious heights. There is a widespread and unconfined trust in the statements and forecasts of science and our technological devices resting on them. Scientists are drawing bold and far-reaching conclusions from their theories, and even anti-scientific movements can count on the overwhelming but threatening success of science. In addition, parts of philosophy are tracking the ‘scientific train’ and would like to become empirical

22 For some alarming findings with respect to the United States see Holton: Science and Anti-Science, pp. 147–148. There is no reason to expect that the scientific illiteracy in the U. S. differs fundamentally from other ‘Western’ countries.
sciences themselves: The growing naturalism in analytic epistemology and the philosophy of mind are very illustrative in this respect. To put it in a nutshell: The present Zeitgeist is not so much dominated by a critical discussion and evaluation of scientific insights, but by a new and pretty dull scientism.

Scientism, as I understand and use the term, is first of all a world view that is shaped by estimation of scientific knowledge and methods. As a general wissenschaftliche Welttauffassung, it has no derogatory meaning – as conceptual history reveals, but describes an integral world conception from the enlightenment onwards. Most often, however, scientism is used in a pejorative manner, i. e. the term is connected with the (implicit or explicit) value judgment that such a world conception is errant, perhaps even dangerous, or at least truncated or one-sided. Such a value judgment may be justified for mainly two reasons: The first one is that one science – take physics as an historical example – is elevated above other scientific achievements in order to establish a monistic form of scientism that is based only on ‘internal’ (and in this sense: uncritical and dogmatic) grounds. The second one – which today is probably more widespread and influential – is that results and methods of science are extended to areas where these results and methods are by no means justified by sufficient explanatory and methodological reasons but where, nevertheless, bold conclusions are drawn from these extensions. In both cases the term ‘scientism’ is used correctly in a derogatory manner and I group them under the label ‘dull scientism’.

Dull scientism seems to me as one of the most influential of all modern forms of obscurantism in the Western hemisphere. Already 80 years ago, A. N. Whitehead analyzed the ongoing development more or less as usual. His comment in The Function of Reason deserves to be quoted in extenso:

Obscurantism is the inertial resistance of the practical Reason […] to the interference with its fixed methods arising from recent habits of speculation. This obscurantism is rooted in human nature more deeply than any particular subject of interest. It is just as strong among the men of science as among the clergy, and among professional men and business men as among the other classes. Obscurantism is the refusal to speculate freely on the limitations of traditional methods. It is more than that: it is the negation of the importance of such speculation, the insistence on incidental dangers. A few generations ago

the clergy, or to speak more accurately, large sections of the clergy were the standing examples of obscurantism. Today their place has been taken by scientists –

By merit raised to that bad eminence.

The obscurantists of any generation are in the main constituted by the greater part of the practitioners of the dominant methodology. Today scientific methods are dominant, and scientists are the obscurantists.

One of the most important dangers of obscurantism is the ‘refusal to speculate freely on the limitations of traditional methods’, and this is what characterizes dull scientism in general. Whitehead further stresses the ‘practitioner’s point of view’ and therefore charges scientists with obscurantism. This charge is, of course, in need of a qualification (as he acknowledges): Fortunately, many (if not most) scientists still understand their endeavor as a critical one and do not propagate obscurantism in the sense of dull scientism. On the other hand, Whitehead’s charge may be extended beyond the limits of scientific practitioners: Today, parts of philosophy are strongly inclined to apply results which were allegedly ‘proven and tested’ by the sciences in order to deal with genuinely philosophical problems and to ‘solve’ them. One topical example for each type of dull scientism must do here:

First, the example stemming from practiced science: Some physicists working on the *string theory* of modern theoretical physics seem to understand this theory as a modern form of mathematical metaphysics: String theory is understood and presented as a ‘unifying theory’ of all physical interactions, and thus as a physical world conception which promises the ‘end of physics’ because no more fundamental unifying theory of physics may be developed at all. Unfortunately, the physical principles of this theory are completely in the dark, and it does not allow for any testable predictions. However, some of its most prominent exponents claim that the theory is true, whether it can be backed by empirical evidence or not and whether it can be falsified by empirical evidence or not. Here, no demarcation verifiable science and traditional metaphysics seems to be available – ‘practitioner’s scientism’ at work.25

Second, an example from science that currently in*philosophy*. Cognitive scientists present colorful pictures of the human brain in order to ‘explain’ where the different intellectual faculties (or even the consciousness) is located or why there is no freewill – while they neither define the concepts of consciousness or will in a way that makes clear why and how these characteristics of humans can be subject of such specific empirical investigation. Unfortunately, many representatives of present philosophy of mind are consumed by this dull scientism and even

25 See R. Hedrich: „The Internal and External Problems of String Theory: A Philosophical View“. In: *Journal for General Philosophy of Science* 38, 2007, pp. 261–278 for a thorough discussion of the present problems of this theory.
try to add ‘philosophical’ grist to its mill. While there can be no doubt that cogni-
tive science and neurosciences can yield important results for philosophy in order
to understand the sensual perception and cognitive abilities of humans, there can
also be no doubt about the conceptual carelessness\(^\text{26}\) and the epistemological and
methodological shortcomings\(^\text{27}\) of many contributions to that debate as well as
about the general shortcomings of philosophical naturalism as a science-based
philosophical doctrine when it comes to the problem how science and non-science
should be demarcated.\(^\text{28}\) The dull ‘philosophical’ scientism which is so common
wide-spread in the present philosophy of mind has (at least) two annoying conse-
quences: In \textit{systematic} respect, it is infertile because the results of empirical inves-
tigations are uncritically \textit{redoubled} rather than analyzed from genuine philosophical
points of view. This redoubling is neither helpful for the empirical sciences nor
for philosophy itself. In \textit{historical} respect, it is to a great deal superfluous because it
redoubles – unwittingly of course, i. e. due to a lack of historical education –
controversies and doctrines of the past history of ideas as, \textit{inter alia}, the \textit{Ignorab-
imus}-discussion illustrates.\(^\text{29}\) This redoubling is irritating for the empirical scientist
and boring for the learned philosopher. The history of ideas might have been help-
ful to avoid detours and blind alleys of recent discussions, but obviously is not
present in the narcissistic discourses which take place in the present philosophy of
mind.

Dull scientism in present science and philosophy is an unconsidered heritage
from \textit{classical}, but not from \textit{modern} science: It shares the (implicit) assumption
that asserted scientific knowledge is privileged or unique (for reasons whatsoever),
and therefore is not in need of epistemological criticism and methodological re-
fection, but deserves benevolent interpretation and speculation about assumed
consequences. As it holds the view that all our knowledge is based on science and

\(^{26}\) For a thoughtful analysis of this I:\(\text{P. Janich: } \textit{Kein neues Menschenbild. Zur Sprache der Hirn-
forchung}, \text{Frankfurt am Main: Suhrkamp 2009.}

\(^{27}\) Especially in the ‘free will-debate’; cf. B. Falkenburg: \textit{Mythus Determinismus. Wieviel erklärt uns die
Hirnforschung?} \text{Heidelberg: Springer 2012.}

\(^{28}\) See, for example, the accurate analysis in G. Keil / H. Schnädelbach: \textit{Naturalismus. Philosophische
Beiträge}, \text{Frankfurt am Main: Suhrkamp 2000, esp. pp. 38–44.}

\(^{29}\) In this controversy of the late 19th century, provoked by Emil Du Bois-Reymond’s \textit{Grenzen der Na-
turwissenschaft} from 1872, Friedrich Albert Lange played a considerable role. It was to a great deal an
epistemological discussion about the problem how mental properties and qualities can be explained.
Michael Pauen sums up a notable analysis of the ‘historical’ discussion and recent developments in
philosophy of mind like this: ‘A diagnosis of the problem that largely anticipates the present discus-
sion can only be found in Lange and Du Bois-Reymond. This holds especially for the demarcation
of the epistemological problem of the explanation of mental properties and the metaphysical problem
of identification of mental and physical properties.’ \text{See M. Pauen: } \textit{„Die Grenzen des Erkennens.
Von Du Bois-Reymond zur aktuellen Philosophie des Geistes“}. \text{In: Weltanschauung, \textit{Philosophie und
/ W. Jaeschke, \text{Hamburg: Meiner 2007, pp. 151–182.}
since it rejects the existence of genuine philosophical problems and methods, it has a simple answer to the problem of how to distinguish between ‘appearance and reality’: Science is the ‘royal road’ to reality, and there is no place for appearance.

Seen from this angle, dull scientism ironically enough shares a characteristic with the postmodernist tradition of epistemologically downgrading science, which was described as a problematic and unwelcome consequence of modern science earlier: The latter tradition, stressing the constructivist (and in so far ‘apparent’) character of all scientific achievements, is neither interested in a reflection and definition of proper limits of science. In so far as both opposed positions fail to determine science – as a central subject of both parties – and its demarcation, both can be described as ‘ideological’ from the point of view of philosophy of science.

4. Conclusion: The Role of History of Ideas

I would like to sum up and to draw some conclusions with respect to the central questions I started with. Science is not the ‘royal road’ to the understanding of reality. Science is neither an arbitrary parlor game of modern civilization, nor is it primarily an instrument to exert power, nor can it be reduced to its material practices and technological applications. In order to enable science to yield an important contribution to an understanding of reality, its epistemological premises, the reliability of its methods, the range of its consequences and the legitimacy of its techniques and operations constantly have to be checked and evaluated. This is partly a business of science itself, but partly also a non-scientific task that involves philosophical, historical, sociological and other epistemological interests and methods. In this sense, science is not ‘autonomous’, and never will be. However, scientific interests, as I understand them, are not alien to such interests, but akin: Science, as the legitimate heritage of traditional philosophy of nature is striving for a theoretical understanding of nature and man’s place in nature. The aim of proper science is to transcend the appearance of things and to gain reliable theoretical insight into reality. In order to achieve this aim, science itself must be interested in the range of its own possibilities and limits. It is the neglect of this character of science which causes many of the confusions about science in modern civilization.

This outline is a plea for integrating the history of ideas into this common project. To be sure: Topical history of ideas cannot turn back the clock and should not try to do so. Neither can we return to Lovejoy’s ‘unit-ideas’ as a historiographical key, nor can we restore the traditional ideal of ‘science’ as epistémé. This would be vain and historically uninformed attempts. What we need is a history of ideas that takes the social and material aspects of science seriously without giving up the
leading idea that science is an intellectual venture that, first of all, does not aim at power. Rather, it is a pursuit for truth, a regulative idea. A history of ideas in this sense has to uncover the leading conceptual frameworks of science, which often originate from metaphysics, and it has to show how they were transformed into empirical, testable and confutable science. It also has to uncover the leading methodological principles and epistemic virtues of science and how they are adapted to specific social and material circumstances.

This business can only be done successfully if the history of ideas itself pays special attention to the demarcation problem. In turn, this problem can successfully dealt with only if some normative requirements are accepted: Whether scientific claims in concrete contexts are accepted as ‘scientific’ or not depends on the existing conceptual framework, the intentions involved in the particular scientific activity, the accepted and applied methodology in relation to these intentions, the regard of contextual obstacles and opportunities, and the testability of the achieved results. Of course, all this can and must be spelled out for the historical contexts in question, but these exercises are neither mysterious nor condemnable.

I think that history of ideas can do more for a better understanding of present science and its demarcation. If it does not dissolve the ‘idea of science’ by unconditional contextualization, and thus put at risk its instructive potential for the presence, it can draw parallels between the present situation of science and former periods with comparable confusions about science. For example, materialism at the end of the 18th century and in the second half of the 19th century as well as the extensive Ignorabimus-debate in the late 19th and early 20th century reveal striking similarities to modern scientism: overdrawn expectations and claims, tendencies to treat philosophical problems with scientific means, and epistemological cul-de-sacs as consequences of the attempt to capture the ‘totality of experience’ by a single science. It would be a triviality to say that history does not repeat itself. But it is plausible to say that the history of science repeats certain patterns of thinking. The history of ideas can and should draw some lessons from this for present discussions about science and in science. Understood in this sense, it is by no means part of a postmodern intellectual movement, as it is presented by some of its contemporary representatives. On the contrary, it is part of a continuing process of enlightenment. Therefore, this short outline will end with Immanuel Kant, whose whole project of Erkenntniskritik implied both the necessity and possibility of demarcation of what he distinguished as the best of our knowledge, i. e. science.30

[...] however, the very same principle, that everything in natural science has to be explained naturally, at the same time designates the limits of science. Be-

Science and its Demarcation

cause one has reached its outmost limit when – under all explanatory reasons – one uses the last one which is still verified by experience. Where this ends, and one tries to do so [i.e. to explain] by powers of matter imagined by oneself, being subject to egregious laws not capable of any evidence, one has already transcended science [...].
Authors

Karl Acham, sociologist, philosopher, and historian of science; professor emeritus at the University of Graz. His research focuses on the history of philosophical and sociological ideas, the history of philosophy, the philosophy of culture, methodology of science, and social anthropology.

Riccardo Campa, sociologist; professor at Jagiellonian University in Krakow. His research focuses mainly on science and technology studies, social theory, philosophy and the sociology of science, bioethics, futurism, and the history of ideas.

Pawel Dybel, philosopher; professor at the University of Warsaw, and the Institute of Philosophy and Sociology of the Polish Academy of Sciences. His research focuses on the history of ideas, hermeneutics, phenomenology, psychoanalytic theories, and political philosophy.

Michel Henri Kowalewicz, historian of ideas and philosophy; professor at Jagiellonian University in Krakow, founder and head of the “History of Ideas Research Centre”. His research focuses on different models of Enlightenment and circulation of ideas and texts in Eighteenth-Century Europe.

Hermann Lang, psychiatrist, and philosopher; professor at the University of Würzburg. His research focuses on psychoanalysis, psychosomatics, psychotherapy, medical psychology, psychiatry, philosophy, and the history of ideas.

Eric S. Nelson, philosopher; professor at the University of Massachusetts, Lowell. His research focuses on ethics, hermeneutics, Chinese philosophy, the history of ideas, and the philosophy of culture, nature, and religion.

Helmut Pulte, philosopher; professor at Ruhr-Universität Bochum. His research focuses on philosophy, the history of ideas, the history of mathematics, philosophical anthropology, and the philosophy and history of science – especially within the fields of physics and biology.

Gunter Scholtz, philosopher; professor emeritus at Ruhr-Universität Bochum. His research focuses on the philosophy of history, religion and art, hermeneutics, Dilthey studies, Schleiermacher's philosophy, the history of ideas, and the history of concepts.