Photocatalytic Activity of Bulk TiO₂ Anatase and Rutile Single Crystals Using Infrared Absorption Spectroscopy

Mingchun Xu,¹ Youkun Gao,¹ Elias Martinez Moreno,² Marinus Kunst,² Martin Muhler,³ Yuemin Wang,^{1,3} Hicham Idriss,⁴ and Christof Wöll⁵

¹Department of Physical Chemistry I, Ruhr-Universität Bochum, 44780, Germany ²Hahn-Meitner-Institut, Glienicker Strasse 100, D-1000 Berlin 39, Germany

³Laboratory of Industrial Chemistry, Ruhr-Universität Bochum, 44780, Germany

⁴Department of Chemistry, University of Aberdeen and School of Engineering, Robert Gordon University, AB24 3EU Aberdeen, Scotland, United Kingdom

⁵Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), 76021 Karlsruhe, Germany (Received 8 October 2010; published 29 March 2011)

A systematic study on the photocatalytic activity of well-defined, macroscopic bulk single-crystal TiO_2 anatase and rutile samples has been carried out, which allows us to link photoreactions at surfaces of well-defined oxide semiconductors to an important bulk property with regard to photochemistry, the life time of *e*-*h* pairs generated in the bulk of the oxides by photon absorption. The anatase (101) surface shows a substantially higher activity, by an order of magnitude, for CO photo-oxidation to CO_2 than the rutile (110) surface. This surprisingly large difference in activity tracks the bulk *e*-*h* pair lifetime difference for the two TiO_2 modifications as determined by contactless transient photoconductance measurements on the corresponding bulk materials.

DOI: 10.1103/PhysRevLett.106.138302

PACS numbers: 82.50.-m