

Journal of Organometallic Chemistry 630 (2001) 253-262

www.elsevier.com/locate/jorganchem

New heterometallic copper zinc alkoxides: synthesis, structure properties and pyrolysis to Cu/ZnO composites

Ralf Becker^a, Jurij Weiß^a, Manuela Winter^a, Klaus Merz^b, Roland A. Fischer^{a,*}

^a Lehrstuhl für Anorganische Chemie II, Ruhr-Universität Bochum, Organometallics and Materials Chemistry, Universitätsstrasse 150, D-44780 Bochum, Germany

^b Lehrstuhl für Anorganische Chemie I, Ruhr-Universität Bochum, D-44780 Bochum, Germany

Received 16 March 2001; accepted 18 May 2001

Abstract

The copper compound $[(THF)KCu(O'Bu)_3]_{\infty}$ 1 was obtained by interaction of a 1:1 mixture of $ZnCl_2/CuCl_2$ with KO'Bu. Biand trifunctional aminoalcohols were used to synthesize the intramolecularly donor stabilized Cu(II) alkoxides $Cu(OCH(R)CH_2NMe_2)_2$ (3: R = Me, 4: $= CH_2NMe_2$) where 4 was structurally characterized. Lewis acid-base adduct formation with $(Me_3Si)_3CZnCl$ gave the heterodinuclear compounds $(Me_3Si)_3CZnCl \cdot Cu(OCH(R)CH_2NMe_2)_2$ (5: R = Me, 6: $R = CH_2NMe_2$), which were characterized by X-ray single-crystal structure analysis. The two metal centers Cu and Zn of 5 and 6 are bridged by two oxygen atoms to form a Cu-O-Zn core. Pyrolysis of compounds 5 and 6 in dry argon or a H_2/N_2 mixture at atmospheric pressure forms metallic copper and zinc oxide, whereas pyrolysis under O_2/Ar forms additionally oxidized copper species. Elemental analysis of the pyrolysis products showed carbon and nitrogen contamination. Scanning electron microscopy and energy dispersive X-ray analysis were performed to get information on the morphology and the chemical composition of the pyrolysis products. © 2001 Elsevier Science B.V. All rights reserved.

Keywords: copper; heterometallic alkoxides; oxides; pyrolysis; zinc