

Solid State Sciences 2 (2000) 473-488

Solid State Sciences

www.elsevier.com/locate/ss

Preparation of nanocrystalline metal oxides and intermetallic phases by controlled thermolysis of organometallic coordination polymers

Marcus Rehbein, Matthias Epple *, R. Dieter Fischer¹

Institute of Inorganic and Applied Chemistry, University of Hamburg, Martin-Luther-King-Platz 6, D-20146 Hamburg, Germany

Received 10 January 2000; accepted 31 January 2000

Abstract

Organometallic coordination polymers of the *super*-Prussian blue type $[(Me_3Sn)_nM(CN)_6]$ (Me = CH₃; n = 3, 4; M = Fe, Co, Ru) were subjected to thermolysis in different atmospheres (air, argon, hydrogen/nitrogen). In air, oxides were found: Fe₂O₃/SnO₂ (crystalline and nanocrystalline), Co₂SnO₄ and RuO₂. In argon and in hydrogen, the intermetallic phases FeSn₂, CoSn₂, Ru₃Sn₇ and Fe₃SnC were obtained. A detailed mechanistic study was carried out using thermogravimetry (TG), X-ray diffraction (XRD), X-ray absorption spectroscopy (EXAFS) at Fe, Co, Ru and Sn K-edges, infrared spectroscopy (IR) and elemental analysis. Below 250°C, Me₃SnCN and (CN)₂ are released, whereas above 250°C oxidation or pyrolysis leads to the corresponding oxides or intermetallic phases. Polymeric cyanides containing at least two metals have turned out to be suitable precursors to prepare well-defined oxides and intermetallic phases at comparatively low temperature. © 2000 Éditions scientifiques et médicales Elsevier SAS. All rights reserved.

Keywords: Thermolysis; Polymeric metal cyanides; Metal oxides; Intermetallic phases; Thermal analysis; Solid state reactions; EXAFS