From Neutral Zn4O4 Cluster to a Cationic ZnO Dimer in Solution

M. Driess, K. Merz, R. Schoenen Organomatallics 26 (2007) 2133-2136

The suitability of the tetrameric ZnO aggregates $[(iPrO)ZnMe]_4$ (1a) and $[(Me_3SiO)ZnMe]_4$ (1b) as potential sources for molecular models of low-coordinated zinc centers and active sites on zinc oxide catalysts is reported. The formation and fate of the resulting cationic Zn_4O_4 degradation products by reaction of 1a and 1b with $B(C_6F_5)_3$ in the presence of different organic donor substrates have been studied by means of ESI mass spectrometry. While 1a affords the cationic monozinc complexes $[MeZn(L)]^+$ (2a: L = THF, 2b: 15-c-5, 2c: DMAP), the cluster 1b furnishes in the presence of DMAP $[MeZn(OSiMe_3)_2Zn(DMAP)_2]^+$ (3), the first dimeric ZnO aggregate cation in solution, and the $[MeB(C_6F_5)_3]$ anion. Additionally, the neutral dinuclear ZnO aggregate $[(Me_3SiO)Zn(C_6F_5)thf]_2$ (4) results from Me/C_6F_5 exchange reactions as the final product, which has been characterized by NMR spectroscopy and a single-crystal X-ray diffraction analysis.