Structure and surface termination of ZnO films

grown on (0001)- and $(11\overline{2}0)$ -oriented Al₂O₃

M. Ay^{1,*}, A. Nefedov², S. Gil Girol³, Ch. Wöll³ and H. Zabel²

¹Paul Scherrer Institut, 5232 Villigen PSI, Switzerland

²Institut für Experimentalphysik/Festkörperphysik, Ruhr-Universität Bochum,

44780 Bochum, Germany

³Institut für Physikalische Chemie, Ruhr-Universität Bochum, 44780 Bochum,

Germany

Abstract

We have studied the surface termination of $ZnO(000\overline{1})$ films grown on Al_2O_3 substrates with high epitaxial quality. The structural properties of the ZnO films were investigated by x-ray scattering, revealing a predominant $(000\overline{1})ZnO$ outof-plane texture with the $[11\overline{2}0]_{ZnO}||[0001]_{Al_2O_3}$ and $[11\overline{2}0]_{ZnO}||[10\overline{1}0]_{Al_2O_3}$ azimuthal orientations for $(11\overline{2}0)Al_2O_3$ and $(0001)Al_2O_3$ substrates, respectively. The surface termination was determined by x-ray photoemission spectroscopy (XPS) via pyridine (C₅H₅N) adsorption at the ZnO surface. XPS data recorded at different temperatures after exposure to pyridine revealed that for both orientations of the Al₂O₃ substrates the deposited ZnO films were terminated by oxygen atoms, i.e. corresponding to a ZnO(000\overline{1}) surface.