Structure and dynamics of CO overlayers on a hydroxylated metal oxide: The polar $ZnO(000\overline{1})$ surface

M. Kunat^a, B. Meyer^b, F. Traeger^a and Ch. Wöll^a

^aLehrstuhl für Physikalische Chemie I,

Ruhr-Universität Bochum, D-44780 Bochum, Germany

^bLehrstuhl für Theoretische Chemie,

Ruhr-Universität Bochum, D-44780 Bochum, Germany

(Dated: January 18, 2006)

Abstract

The adsorption and desorption of CO on the hydroxylated, O-terminated polar ZnO(0001) surface has been studied using He-atom scattering. The experimental results reveal the formation of a physisorbed ordered CO overlayer. In addition to recording angular distributions of elastically scattered He atoms, also the dynamical properties of the CO overlayer have been investigated using inelastic He-atom scattering. With the aid of electronic structure calculations a loss peak with an energy transfer of 7.2 meV is assigned to the frustrated translation of the CO molecule normal to the surface.