Decreased CO production in methanol steam reforming over Cu/ZrO₂ catalysts prepared by the microemulsion technique

Inga Ritzkopf,^a Sascha Vukojević,^a Claudia Weidenthaler,^a Jan-Dierk Grunwaldt,^b Ferdi Schüth^{a,*}

^a Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany

^b Swiss Federal Institute of Technology, Department of Chemistry and Applied Biosciences, ETH Zürich, CH-8093 Zürich, Switzerland

*Corresponding Author:

Prof. F. Schüth, Max-Planck-Institut für Kohlenforschung, P. O. Box 101353, D-45466 Mülheim an der Ruhr, Germany

Tel. +49 208 306 2372, Fax +49 208 306 2995

E-mail address: schueth@mpi-muelheim.mpg.de

Keywords: Zirconium oxide, microemulsion, in situ EXAFS, XPS, TPR, methanol steam reforming, CO formation, copper.

Abstract

Production of hydrogen by methanol steam reforming has been studied over a series of Cu/ZrO₂ catalysts prepared by the microemulsion technique. Catalytic activity was compared to that of a commercial Cu/ZnO catalyst. The synthesized catalysts have been characterized and investigated with respect to methanol conversion, CO formation, and long term stability. Both TPR and XANES/EXAFS indicate that two different Cu species are present in the as-prepared samples. The materials have BET surface areas of up to 165 m²/g. Characterization by XRD and TEM revealed that the Cu/ZrO₂ catalysts consist of tetragonal zirconia particles with a homogenous distribution of copper and zirconium in the material. Methanol steam reforming over these Cu/ZrO₂ materials results in substantially reduced CO formation at high methanol conversions compared to the commercial Cu/ZnO catalyst.