Catalytic activity of copper oxide/zinc oxide composites prepared by thermolysis of crystallographically defined bimetallic coordination compounds

Rainer Weiss¹, Yanzhi Guo¹, Sascha Vukojević², Lamma Khodeir³, Roland Boese¹, Ferdi Schüth², Martin Muhler³, and Matthias Epple^{1,*}

¹ Inorganic Chemistry, University of Duisburg-Essen, Universitaetsstrasse 5-7, D-45117 Essen, Germany, Fax: +49 201 183-2621; Tel: +49 201 183-2413, E-mail: matthias.epple@uni-due.de
² Max-Planck-Institute for Coal Research, Kaiser-Wilhelm-Platz 1, D-45470 Muelheim an der Ruhr, Germany

³ Industrial Chemistry, Ruhr University of Bochum, Universitaetsstrasse 150, D-44801 Bochum, Germany

Keywords: Heterogeneous Catalysis / Copper / Zinc / Thermochemistry / Structural chemistry

Abstract

The suitability of bimetallic coordination compounds in the systems Cu/Zn/CN and Cu/Zn/CN/ethylenediamine as precursors for CuO/ZnO was explored. The kinetic and thermodynamic equilibria in these systems are discussed. The introduction of ethylenediamine led compounds, bimetallic coordination crystalline precursor and the compounds to $[Zn(en)]_2[Cu_2(CN)_6]$ and $[Zn(en)_3]_6[Cu_2(CN)_7]_2[Cu(CN)_3]\cdot 8.4$ H₂O were structurally characterized. The oxide mixtures of CuO/ZnO, prepared by mild thermolysis of the precursor compounds, were tested for their catalytic activity in the formation of methanol from synthesis gas, i.e. CO/CO₂/H₂. While the oxide mixtures from Zn[Cu(CN)₃] were not catalytically active, the oxide mixtures derived from the crystalline compounds with ethylenediamine as ligand had about 20-30 % of the activity of an industrial methanol catalyst. This underscores the importance of the origin of the catalyst, i.e. the dependence of its activity from the structure of its precursor.