Organometallic Synthesis of Colloidal α -/ β -NiAl Nanoparticles and Selective Aluminum Oxidation in α -Ni_{1-x}Al_x Nanoalloys

Mirza Cokoja,[†] Harish Parala,[†] Alexander Birkner,[‡] Osama Shekhah,[‡] Maurits W. E. van den Berg,[§] and Roland A. Fischer^{*,†}

Lehrstuhl für Anorganische Chemie II–Organometallics and Materials, Lehrstuhl für Physikalische Chemie I, and Lehrstuhl für Technische Chemie, Ruhr-Universität Bochum, Universitätsstrasse 150, D-44780 Bochum, Germany

Received May 24, 2007. Revised Manuscript Received September 4, 2007

A novel soft chemical synthesis of Ni_{1-x}Al_x nanoparticles (0.09 $\leq x \leq$ 0.50) by cohydrogenolysis of [Ni(cod)₂] (1) with [(AlCp*)₄] (2) or with [(Me₃N)AlH₃] (3) in nonaqueous solution is presented (cod = 1,5-cyclooctadiene, Cp* = 1,2,3,4,5-cyclopentadienyl). The treatment of equimolar amounts of 1 and 2 in mesitylene solution under 3 bar of H₂ at 150 °C gave a brown-black colloidal solution of intermetallic β -NiAl particles, characterized by transmission electron microscopy/energy dispersive X-ray analysis (TEM/EDX) and powder X-ray diffraction (XRD). The solution was stable under 3 bar of H₂ at 150 °C for up to 8 h. The β -NiAl colloids were treated postsynthesis with ¹⁷O-enriched 1-adamantanecarboxylic acid (ACA) as a surface capping group, giving nearly monodisperse α -NiAl colloids that were stable under argon at room temperature for weeks. The coordination of ACA at the α -NiAl surface was studied by ¹⁷O NMR and IR spectroscopy. A series of α -Ni_{1-x}Al_x samples with a variety of compositions (x = 0.50, 0.33, 0.25, 0.17, 0.09) were prepared analogously, and the samples were characterized by means of elemental analysis (ICP), XRD, and TEM/EDX. Air oxidation of α -Ni_{1-x}Al_x nanoparticles leads to core—shell particles of the type (Al₂O₃)_{\delta/2}@Ni_{1-x}Al_{x-\delta} (0.09 $\leq x \leq 0.50$; $x > \delta$). XRD, X-ray photoelectron spectroscopy (XPS), and X-ray absorption spectroscopy (XAS) analyses showed that the Ni core is protected against oxidation down to an Al content of about 10 atom %.