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N E U R O S C I E N C E

Reinstatement and transformation of memory traces 
for recognition
Elias M. B. Rau1*, Marie-Christin Fellner1, Rebekka Heinen1, Hui Zhang1, Qin Yin2, Parisa Vahidi3,4, 
Malte Kobelt1, Eishi Asano5, Olivia Kim-McManus6,7, Shifteh Sattar7, Jack J. Lin8,  
Kurtis I. Auguste9,10, Edward F. Chang10, David King-Stephens11,12, Peter B. Weber11,  
Kenneth D. Laxer11, Robert T. Knight13, Elizabeth L. Johnson14,15†,  
Noa Ofen2,3,16†, Nikolai Axmacher1†

Episodic memory relies on the formation and retrieval of content-specific memory traces. In addition to their 
veridical reactivation, previous studies have indicated that traces may undergo substantial transformations. How-
ever, the exact time course and regional distribution of reinstatement and transformation during recognition 
memory have remained unclear. We applied representational similarity analysis to human intracranial electroen-
cephalography to track the spatiotemporal dynamics underlying the reinstatement and transformation of memo-
ry traces. Specifically, we examined how reinstatement and transformation of item-specific representations across 
occipital, ventral visual, and lateral parietal cortices contribute to successful memory formation and recognition. 
Our findings suggest that reinstatement in temporal cortex and transformation in parietal cortex coexist and pro-
vide complementary strategies for recognition. Further, we find that generalization and differentiation of neural 
representations contribute to memory and probe memory-specific correspondence with deep neural network 
(DNN) model features. Our results suggest that memory formation is particularly supported by generalized and 
mnemonic representational formats beyond the visual features of a DNN.

INTRODUCTION
Episodic memories are the sediments of previous experiences—
they allow us to recall specific details of our lives and to recognize 
familiar events or items. This crucial cognitive function depends 
on the formation of memory traces or engrams (1, 2) that can be 
tracked via the coordinated activity of single cells and neural popu-
lations (3, 4). Although the formation of engrams relies critically on 
the hippocampus (5, 6), retrieving their full information content 
requires interactions with distributed neocortical networks that 
represent the various facets of an episode (7). In contrast to rodents, 
in whom engrams can be directly measured using optogenetics (8) 
and cellular imaging methods (9), cognitive neuroscience studies 
in humans have applied multivariate analysis methods such as 

representational similarity analysis (RSA) (10) to track item-specific 
activity patterns (11, 12). These methods allow for a comparison of 
the neural features, for example, time-frequency features in electro-
physiological recordings, which represent item-specific contents 
during encoding with those during retrieval (encoding-retrieval 
similarity, ERS) (13, 14).

The cortical reinstatement hypothesis (15, 16) states that memory 
retrieval requires the reinstatement of neural activity patterns that 
were present during encoding—i.e., that levels of ERS are higher for 
remembered than for forgotten items. Previous studies demonstrated 
that retrieval depends on reinstatement of encoding-related activity 
patterns in medial temporal lobe (MTL) (11, 17) and neocortex 
(13, 18–20) that are specific to individual items. Whereas neuroim-
aging studies using functional magnetic resonance imaging (fMRI) 
combine relatively high spatial resolution with full-brain coverage, 
human intracranial electroencephalography (iEEG) recordings have 
provided deeper insights into the temporal dynamics of the neural 
patterns that constitute reinstatement such as the contribution of 
neural oscillations at specific frequencies (21–23). These studies 
showed that increased power of gamma-band activity (>30 Hz) in 
the first second of encoding correlates with higher levels of reinstate-
ment in hippocampus (11) and in regions of the lateral temporal 
cortex (19). Reinstatement has been observed during both recall and 
recognition memory (24) and is related to both recollection and 
familiarity (16).

However, in addition to results showing reinstatement, memory 
traces have also been found to undergo considerable representation-
al transformations between encoding and retrieval (25–27). More 
specifically, it has been shown that regions of lateral parietal cortex 
(LPC) represent event-specific information during retrieval but not 
during encoding (28). This suggests that LPC supports retrieval not 
through reinstatement of encoding-related activity patterns but 
through activation of transformed mnemonic representations (29), 
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i.e., reflecting a dissociation of neuronal networks involved in sen-
sory and mnemonic functions. The LPC has both direct and indirect 
connections to temporal lobe structures (30) and may thus be 
recruited during attempts to retrieve item-specific representations 
from memory (31). Thus, complement to reinstatement of sensory 
representations, brain regions such as the LPC are associated with 
the retrieval of mnemonic representations that result from transfor-
mations of encoded information.

ERS quantifies the similarity of item-specific neurophysiological 
features between encoding and retrieval and, therefore, does not inform 
about how a given item is represented relative to other items. Hence, 
observing transformation at the level of ERS is insufficient to indicate 
changes in the underlying representational geometry (32). We never-
theless hypothesized that successful memory may also depend on mea-
sures of between-item similarity during encoding (encoding-encoding 
similarity, EES) or retrieval (retrieval-retrieval similarity, RRS), reflect-
ing representational distances. While ERS and EES/RRS do not directly 
relate to each other because of different underlying cross-correlation 
matrices, they may still both be associated with successful memory 
(33, 34). Specifically, the magnitude of similarity across items during 
encoding (EES) may relate to the magnitude of ERS in regions showing 
reinstatement, i.e., where items during encoding are represented in a 
way that benefits subsequent recognition. Accordingly, the magnitude 
of similarity between items during recognition (RRS) may relate to the 
magnitude of ERS in regions showing transformation, i.e., where item-
specific representations need to acquire a format which differs from the 
one during encoding, to be recognized as old.

More specifically, the translation from sensory information to the 
formation of durable memory traces presumably affects the informa-
tion that is available during retrieval, which may relate to semantiza-
tion (35), i.e., the preferential retention of conceptual information at 
the expense of perceptual details. This process appears to start already 
during brief offline periods following encoding (36). Here, we con-
ceptualize the different features that are available in a memory trace 
as different representational formats (37). For visual stimuli, these 
representational formats reflect the sensory processing hierarchy 
along the ventral visual stream (VVS) (38, 39). Along the posterior-
to-anterior extent of the VVS, neural assemblies represent increas-
ingly complex information: Whereas posterior VVS regions represent 
low-level perceptual features such as edges or colors, anterior regions 
represent more complex and categorical features including faces (40) 
and places (41). Previous studies showed that the VVS can be broadly 
divided into early (occipital, Occ), mid-level (posterior ventral tem-
poral cortex, pTC), and high-level (anterior ventral temporal cortex, 
aTC) regions of interest (ROIs), which carry distinct representational 
formats of increasing complexity (42). Analytically, these distinctions 
can be captured via deep neural networks (DNNs): DNNs trained to 
classify visual stimuli have become powerful tools to study the neural 
representations underlying visual perception (38, 43, 44) and have 
more recently been applied to assess the representational formats of 
mnemonic representations (36, 37, 45). Thus, the potential to investi-
gate content-based representational changes following mnemonic 
transformation using DNNs and the high spatiotemporal resolution 
of iEEG are a promising combination to study how correspondences 
between neural and DNN representational formats along the VVS 
unfold during the first few hundred milliseconds after stimulus pre-
sentation (39, 46).

Although reinstatement and transformation were primarily in-
vestigated in free or cued recall paradigms (22), they may also be 

relevant during recognition (47). While both types of memory tests 
involve the retrieval of mnemonic information, they differ in the 
types of cues that initiate the reactivation of previous experience. 
Whereas retrieval during free or cued recall is initiated via internal, 
partial, or associative cues, recognition involves the comparison of 
sensory inputs (identical to those during encoding) to mnemonic 
representations built during encoding, which allow recognizing that 
these sensory inputs had already been presented before. Hence, the 
concepts of representational reinstatement and transformation dif-
fer in that during recognition, reinstatement does not concern the 
active reproduction of individual sensory stimuli from memory but 
of information about the prior presentation of these stimuli. This 
information does not necessarily rely on item-specific sensory 
features but may rather reflect mnemonic information shared across 
multiple items. Vice versa, transformation during free or cued recall 
likely reflects deviations of mnemonic representations (during re-
call) from sensory-driven representations (during encoding); trans-
formation during recognition presumably involves the change in 
processing of a previously seen item (during recognition) from the 
processing during the first encounter with that item (during encod-
ing). During recognition, sensory input is identical between trials of 
successful and unsuccessful recognition, allowing the attribution of 
memory-specific differences to mnemonic effects. Both reinstate-
ment and transformation may contribute to successful recognition, 
with differential functional relevance of representational formats of 
memory traces.

The functional compartmentalization of visual representational 
formats across the VVS exists already in children but continues to be 
refined through adolescence (48). Developmental changes in the rep-
resentational format of a memory trace may affect the strategic usage 
of encoded information: Whereas encoding of event-specific percep-
tual formats may enhance the differentiation of memory traces and 
allow for a separation from memories of similar episodes (49), pre-
dominant retention of conceptual formats facilitates inferences to 
novel experiences with shared commonalities (50,  51). These two 
memory functions, i.e., to represent either specific or generalized 
information, have been ascribed to complementary processes and 
brain regions (52, 53) that undergo differential maturational trajecto-
ries (54–56), leading to an infantile bias toward generalization (57). 
Capitalizing on iEEG recordings, previous studies showed that while 
memory formation in children and adolescents depends on the same 
brain regions as in adults, there are developmental differences in the 
magnitude (56, 58–61) and intricate temporal dynamics of memory 
processing (62–64) that mediate age-related gains during adoles-
cence (65). Hence, we would not expect that the levels of perfor-
mance, although generally lower as compared to adults, are due to 
the recruitment of qualitatively different neural processes. More 
likely, the age-related variability in performance may be partially 
explained by the interplay and functional relevance of the involved 
mechanisms. Thus, the study of recognition memory during devel-
opment is well suited to identify possible age- or performance-related 
differences in brain-behavior relationships.

How the reinstatement and transformation of representations 
supports recognition memory, whether they relate to differentiated 
versus generalized representations and on which representational 
formats they rely is not well understood. In addition, it is unclear 
whether these effects vary across development. Therefore, we sought 
to identify brain regions exhibiting reinstatement or transformation 
that are associated with successful recognition memory. Further, we 



Rau et al., Sci. Adv. 11, eadp9336 (2025)     19 February 2025

S c i e n c e  A d v a n c e s  |  R e s e ar  c h  A r t i c l e

3 of 16

aimed to relate these processes to generalized versus differentiated 
representations during encoding and retrieval. Last, using a convo-
lutional DNN (cDNN) trained on a similar task as the participants 
performed during encoding (i.e., classify scenes into semantic cate-
gories), we aimed to characterize the relevance of specific visual rep-
resentational formats in memory representations for reinstatement 
or transformation. To address these questions, we analyzed direct 
brain recordings in a sample of children, adolescents, and young 
adults (age range 6 to 32 years) with pharmaco-resistant epilepsy 
(N = 46) engaging in a simple scene encoding and recognition para-
digm. Electrode coverage across the brain spanned large propor-
tions of neocortex including early, middle, and late regions of the 
VVS and areas in the LPC putatively related to retrieval. Using RSA, 
we computed item-specific similarity estimates across electrophysi-
ological features between pairs of items within (EES and RRS) and 
across (ERS) experimental phases and related these measures to 
memory success. ERS values were always calculated as the differ-
ence in similarity of same items during encoding and retrieval 
(ERSSame) and different items during encoding and retrieval 
(ERSDiff): ERSItem = ERSSame − ERSDiff. These ERSItem values were 
calculated separately for remembered and forgotten scenes and 
then subtracted: ERSItem(remembered) − ERSItem(forgotten). Higher 
values of ERSItem(remembered) than ERSItem(forgotten) values 
reflected a memory benefit of reinstatement, while higher values of 
ERSItem(forgotten) than ERSItem(remembered) values reflected a 
memory benefit of transformation.

Because of this operationalization, reinstatement and transforma-
tion may either rely on memory differences of ERSSame and/or of 
ERSDiff values, which were therefore compared separately in post 
hoc analyses: ERSSame(remembered) values were compared to 
ERSSame(forgotten) values, and ERSDiff(remembered) values were 
compared to ERSDiff(forgotten) values. Since ERSDiff correlations 
reflect item-unspecific correlations between encoding and retrieval, 
we hypothesized that item-specific reinstatement and transformation 
effects are primarily reflected in differences of ERSSame values of 
remembered versus forgotten items. Specifically, we hypothesized that 
reinstatement of item-specific representations would involve positive 
ERSSame correlations of remembered trials, which should be absent 
for forgotten trials, and one may expect these memory effects not to 
occur for ERSDiff correlations. In turn, a transformation of item-
specific representations would lead to near-zero ERSSame correlations 
of remembered trials but positive correlations of forgotten trials. 
Equivalently, we operationalized the generalization and differentia-
tion of memory representations within experimental phases (encod-
ing, EES; recognition, RRS) as the relative difference in pairwise 
similarity between (different) remembered and forgotten trials in 
each phase.

We hypothesized that regions of the VVS implicated in sensory 
processing of visual stimuli would engage in reinstatement, whereas 
parietal regions implicated in mnemonic functions would exhibit 
transformation. Therefore, we tested whether item-specific similarity 
between encoding and retrieval (ERSItem) differed between remem-
bered and forgotten items. We used time-frequency patterns across 
electrodes within predefined ROIs as features for the computation of 
representational similarities and investigated conditional differences 
in these features. Specifically, we expected effects of reinstatement 
and transformation to be located in ventral visual and parietal 
regions, respectively (13, 29). Similarly, we conducted planned analy-
ses on memory-specific generalization and differentiation of neural 

representations, as well as statistical tests for the matching of neural 
and cDNN model predictions, without concrete expectations con-
cerning the direction of memory-related effects. Further, given the 
subtle differences across childhood development described in earlier 
studies (56, 61–64, 66), we did not have strong expectations concern-
ing age- or performance-dependent differences in the recruitment of 
reinstatement and transformation processes. We considered both the 
presence and absence of differential contributions across develop-
ment informative about the neural mechanisms underlying memory 
in children and adolescents.

We found that both reinstatement in aTC and transformation 
in LPC contribute to successful recognition memory. Further, we 
present evidence suggesting that reinstatement concerns mnemonic 
rather than purely visual representational formats and is related to 
generalized representational patterns during encoding. Our results 
provide evidence for the contribution of reinstatement and trans-
formation of distinct representational formats to recognition 
memory in a sample of children, adolescents, and young adults.

RESULTS
Behavioral performance
During encoding, participants were instructed to memorize visual 
scenes while completing an indoor/outdoor classification task (Fig. 
1A). Scene classification performance was overall high [accuracy, 
93.67 ± 8.07% (mean ± SD)], with response times of 1590 ± 533 ms. 
All subsequent analyses were restricted to trials with correct classi-
fication responses. During retrieval, participants classified old and 
new (foil) scenes as old/new. We used corrected recognition scores 
Pr (hits-false alarms) as a measure of recognition performance. Two 
participants with negative Pr scores were excluded from further 
analyses. In the remaining sample (N = 46), Pr was reliably above 
zero (0.41 ± 0.19; Fig. 1B). Corrected recognition scores were larger 
for indoor (Pr  =  0.462  ±  0.207) as compared to outdoor scenes 
(Pr = 0.358 ± 0.224; T45 = 3.742, P < 0.001). Response times during 
recognition were lower for hits (2116  ±  759 ms) as compared to 
misses (2552  ±  1.003 ms; T45  =  −5.108, P  <  0.001). Recognition 
memory performance was numerically higher in older participants 
(Fig. 1C). This effect did not reach statistical significance (ρ = 0.234, 
P  =  0.117); however, we additionally compared levels of perfor-
mance in this scene memory task with data from a larger nonclinical 
population of healthy individuals reported earlier (56, 61, 66) who 
engaged in an fMRI version of the paradigm. We observed compa-
rable trajectories across age despite substantial variability during 
adolescence (fig. S1) [see also (58–61, 64)]. This suggests that our 
data reflect typical memory development, allowing us to identify 
differences in the neuronal signatures of memory functions during 
childhood and adolescence.

Reinstatement of item-specific representations in anterior 
temporal cortex supports memory
Following the reinstatement hypothesis of episodic memory, we 
computed ERS across regions in Occ, ventral temporal and parietal 
ROIs (Fig. 1, D and E) and tested for a larger magnitude of item-level 
ERS (ERSItem) between remembered versus forgotten scenes (Fig. 
2A). We extracted the distribution of power values across a broad 
frequency range (1 to 150 Hz) in individual time windows (300-ms 
width and 50-ms step) and correlated these item-specific features 
across electrodes of each ROI both within and between encoding 
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and retrieval (Fig. 2, B to D). Using the same time-frequency fea-
tures in each ROI and experimental phase, we also tested for condi-
tional differences associated with successful memory and their 
interaction with age and performance, which may influence trial-
level ERS (for details, see the Supplementary Materials; fig. S2). In 
the aTC (Fig. 3A), we found higher ERSItem for remembered versus 
forgotten scenes (Fig. 3B; Tsum = 263.51, Nbin = 110, Pcluster = 0.018). 

This reinstatement cluster extended from 500 to 1000 ms during 
encoding and from 250 to 1150 ms during recognition. Follow-up 
analyses on the distinct contributions of ERSSame and ERSDiff to 
ERSItem values showed that memory effects were selectively found 
for ERSSame (T33 = 2.508, P = 0.017) but not ERSDiff (T33 = −0.412, 
P = 0.682; Fig. 3C). Further, ERSSame correlations were significantly 
larger than zero for remembered items (T33 = 3.687, P < 0.001) but 

Fig. 1. Task, sample, behavioral performance, and electrode coverage. (A) Behavioral paradigm. Participants completed a visual scene memory recognition task with 
distinct encoding and retrieval blocks. (B) Sample distribution of age (15.61 ± 5.92 years; left) and recognition memory performance Pr (Hit – false alarm; 0.41 ± 0.19; 
right). (C) Corrected recognition memory performance (Hits – false alarms) across development. (D) Regions of interest (ROIs) based on Brodmann areas (BAs): Occ (BA17-
19); pTC (BA37); aTC (BA20); LPC (BA39 + 40). (E) Heatmap of contributing electrodes in these ROIs. Coordinate axes labels: A, anterior; S, superior; L, lateral; P, posterior; V, 
ventral; ECoG, electrocorticography.

Fig. 2. Representational similarity analyses. (A) RSA. We computed pairwise similarities between different scenes within the same experimental phase (EES; RRS), and 
between the same and different scenes across experimental phases (ERS). (B) Time-frequency features used for RSA. We extracted item-specific distributions of power 
values across frequencies and electrodes within a given ROI in various time windows. (C) Schematic ERS matrix. Similarities during encoding and retrieval of the same 
scenes (ERSSame) are depicted on the diagonal (blue) of this matrix, while similarities between different scenes (ERSDiff) are depicted on the off-diagonal (orange). Item-
specific ERS scores were computed by subtracting the average off-diagonal ERS score per row from its on-diagonal value: ERSItem = ERSSame – avg. (ERSDiff). We compared 
ERSItem values between remembered and forgotten trials, testing for a memory benefit of either reinstatement (remembered > forgotten) or transformation (forgotten > 
remembered). (D) Schematic pairwise similarity matrix during encoding (EES) or retrieval (RRS) reflecting pairwise representational similarities between different items. 
During both encoding and retrieval, we compared between-item similarities of remembered versus forgotten scenes. We compared the pairwise similarities between 
remembered and forgotten scenes, testing for memory benefits of generalization (remembered > forgotten) or differentiation (forgotten > remembered).
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not for forgotten items (T33 = −0.454, P =  0.652), indicating that 
reinstatement was indeed specific to same-item similarities during 
encoding and retrieval and not due to similarities between different 
items. ERSDiff correlations were significantly larger than zero for 
both remembered (T33 = 5.101, P < 0.001) and forgotten (T33 = 3.463, 
P = 0.002) items.

Next, we tested whether reinstatement varied by age and whether 
it depended on the participants’ performance (Fig. 3D). We found no 
relationship between memory-specific ERS effects and age (ρ = 0.037, 
P = 0.832) or performance (ρ = 0.042, P = 0.810), indicating similar 
magnitudes of reinstatement effects on memory across development. 
To address influences of shared variance between our developmental 
measures, we also conducted partial correlation analyses between 
memory-specific ERS effects by controlling for mutual effects be-
tween age and performance. We found that neither age (ρ = 0.024, 
P = 0.891) nor performance (ρ = 0.032, P = 0.858) correlated with 
reinstatement. No significant memory effects of reinstatement 
were found in earlier VVS regions (i.e., Occ or pTC; all P values 
>0.187; fig. S3), suggesting that reinstatement of rather conceptual 
but not purely sensory representations is associated with recognition 
memory success.

Transformation of neural representations in LPC
We also investigated reinstatement or transformation effects in lateral 
parietal cortex (LPC) (Fig. 4A). In notable contrast to our results in 

aTC, we found that ERSItem was reduced for remembered as com-
pared to forgotten items in LPC (Tsum = −685, Nbin = 257, Pcluster = 
0.003; Fig. 4B), suggesting transformation. This effect occurred from 
0 to 1500 ms during encoding and from 0 to 900 ms during recogni-
tion. Notably, early onsets are most likely due to data smoothing, 
where the first time bin contains averaged data from a sliding win-
dow from 0 to 300 ms after stimulus onset. Again, we investigated the 
influence of same-item and different-item correlations and found 
memory differences in ERSSame (T37 = −2.488, P = 0.017) but not 
ERSDiff scores (T37  =  1.127, P  =  0.266; Fig. 4C). Furthermore, 
ERSSame scores were significantly larger than zero for forgotten 
(T37 = 2.566, P = 0.015) but not for remembered items (T37 = 1.252, 
P = 0.218). ERSDiff correlations were significantly larger than zero 
for remembered items (T37 = 3.499, P = 0.001) but not forgotten 
(T37 = 1.900, P = 0.065) items.

We next tested whether subject-specific levels of transformation 
depended on age (Fig. 4D) or performance (Fig. 4E). While the rela-
tionship with age did not reach significance (ρ = 0.237, P = 0.151), we 
found a significant association between transformation and perfor-
mance (ρ = 0.372, P = 0.022), indicating more pronounced transfor-
mation in low-performing participants. Partial correlation analyses 
confirmed our initial finding that when controlling for performance, 
the correlation of age and transformation remained nonsignificant 
(ρ  =  0.144, P  =  0.396), while the correlation of performance and 
transformation was significant when controlling for age (ρ = 0.325, 

Fig. 3. Reinstatement of item-specific representations in anterior temporal cortex. (A) Contributing electrodes in the aTC region of interest (ROI) (34 participants, 107 
channels). (B) Left, higher ERSItem scores for remembered versus forgotten scenes. Color reflects T values across subjects for each time point. Black contour indicates clus-
ter of time points during which ERSItem values were significantly larger for remembered versus forgotten scenes after cluster-based correction for multiple comparisons 
across time points. Right, illustrative plot of ERSItem similarities (Spearman’s ρ) per subject for remembered (amaranth) versus forgotten (blue) scenes, averaged across time 
points of significant cluster. (C) ERSSame (blue, diagonal) and ERSDiff (orange, off-diagonal) values of remembered and forgotten items showing a memory effect of ERSSame 
but not ERSDiff scores. (D) No relationship between reinstatement effects on memory with either age (left) or performance (right). Circled * indicates P < 0.05 for one-
sample T test. Line * indicates P < 0.05 for paired-sample T test.
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P = 0.049). A similar result was obtained when we applied a median 
split of corrected recognition performance rates Pr (MD  =  0.403; 
transformation effect in low-performing participants: T18 = −6.308, 
P < 0.001; in high-performing participants: T18 = −0.688, P = 0.499; 
Fig. 4E and fig. S4).

Relationships between aTC reinstatement and 
LPC transformation
Given the observed dichotomy of aTC reinstatement and LPC trans-
formation effects, we asked whether the two effects were related on 

a trial-by-trial level rather than both being associated with recogni-
tion memory success (Fig. 4F). We focused our analysis on the sub-
group of N = 28 participants with electrodes in both ROIs (N = 90 
aTC electrodes; N  =  362 LPC electrodes). We extracted ERSItem 
values averaged across time windows in which the ERS effects in aTC 
and LPC overlapped (see Materials and Methods) and compared 
these values across trials using mixed linear models with trial-wise 
aTC ERSItem as criterion; LPC ERSItem, memory success, stimulus 
category, and the interaction of LPC ERSItem, and memory as pre-
dictors; and participants as random slopes. We found a significant 

Fig. 4. Transformation of item-specific representations in lateral parietal cortex (LPC). (A) Contributing electrodes in LPC region of interest (ROI) (38 participants, 466 
channels). D, dorsal. (B) Left, lower ERSItem scores for remembered versus forgotten scenes. Color reflects T values across subjects for each time point. Black contour indi-
cates cluster of time points during which ERSItem values were significantly lower for remembered versus forgotten scenes after cluster-based correction for multiple 
comparisons across time points. Right, illustrative plot of ERSItem similarities (Spearman’s ρ) per subject for remembered (red) versus forgotten (blue) scenes, averaged 
across time points of significant cluster. (C) ERSSame (blue, diagonal) and ERSDiff (orange, off-diagonal) values of remembered and forgotten items showing a memory effect 
of ERSSame but not ERSDiff scores. (D) No significant relationship between transformation benefit for memory and participants’ age. (E) Left, significant relationship between 
transformation benefit for memory and participants’ performance. Colors indicate grouping following median split. Right, transformation effects in low- and high-
performing participants (median split). (F) Relationship between ERSItem magnitude in aTC and LPC: The magnitude of ERSItem values in aTC is associated with ERSItem 
magnitude in LPC. Circled * indicates P < 0.05 for one-sample T test. Line * indicates P < 0.05 for paired-sample T test. * indicates uncorrected P < 0.05 for main effect of 
LPC ERSItem predicting aTC ERSItem.
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main effect of memory (F1354 = 5. 569, P = 0.018), no main effect of 
LPC ERSItem (F1354 = 0.042, P = 0.837), but a significant interaction 
of LPC ERSItem with memory (F1354 = 5.658, P = 0.017). Follow-up 
analyses revealed a significant effect of LPC ERSItem on aTC ERSItem 
for remembered (F872 = 14.795, P < 0.001) but not forgotten items 
(F482 = 0.044, P = 0.833). This relationship indicates that the magni-
tude of ERSItem values in LPC is associated with lower values of 
ERSItem in aTC, suggesting that the two processes are related across 
individual trials.

Generalization and differentiation of memory 
representations during encoding and retrieval
Next, we sought to test the relevance of generalized versus differen-
tiated representations for memory. First, we estimated the similarity 
of scene representations to all other scenes within the same experi-
mental phase, i.e., the between-scene similarity during encoding 
and retrieval (EES and RRS; Fig. 2D) and tested whether similarities 
between remembered scenes differed from similarities between for-
gotten scenes, indicating differences in representational similarity. 
We found memory effects of EES in all VVS ROIs (Fig. 5), indicating 
more similar representations of subsequently remembered com-
pared to forgotten scenes (Occ: Tsum  =  63.05, Nbin  =  22, Pcluster  < 
0.001, onset 300 ms, EESrem = 0.235, EESforg = 0.205; pTC: Tsum = 
53.32, Nbin = 18, Pcluster < 0.001, onset at 500 ms, EESrem = 0.104, 
EESforg = 0.086; aTC: Tsum = 7.14, Nbin = 3, Pcluster < 0.001, onset at 
600 ms, EESrem = 0.028, EESforg = 0.013). EES in the LPC was not 
related to memory.

During recognition, between-item similarities (RRS) showed 
memory-specific generalization in pTC (Tsum = 13.08, Nbin = 5, Pcluster < 
0.001) but not in Occ or aTC (Fig. 5). Effects in pTC during retrieval 
occurred from 300 to 500 ms after scene onset and thus during an 
earlier period as compared to encoding. LPC representations 
showed an opposite effect between 500 and 600 ms (Tsum = −6.999, 
Nbin = 3, Pcluster < 0.001, RRSrem = 0.026, RRSforg = 0.037): Pairwise 

similarities of remembered items were lower compared to forgotten 
items, indicating that differentiation but not generalization of LPC 
representations is associated with successful recognition. Further, we 
found no association of generalization or differentiation effects with 
development but with trial-level magnitudes of ERSItem (for details, 
see the Supplementary Materials; fig. S5).

Representational formats during reinstatement 
and transformation
Last, we sought to quantify the occurrence of visual representa-
tional formats and their association with memory in aTC and LPC 
during timepoints where we previously reported reinstatement 
and transformation effects. For this, we used the neural represen-
tations between items encountered during encoding and retrieval. 
We capitalized on the representations in individual layers of the 
PlacesNet DNN (Fig. 6A and fig. S6) and compared them to the 
representations observed in the neural data (Fig. 6B). We specifi-
cally tested whether the correspondence between DNN and neural 
representations during encoding and retrieval was related to 
memory success.

To do so, we compared neural-DNN correspondences of re-
membered and forgotten items for all time points separately and 
performed cluster-based correction for multiple comparisons 
across time points. During encoding in aTC, we found higher 
correspondence for remembered versus forgotten items between 
850 and 1000 ms with representations of layer fc7 (Tsum = 9.472, 
Nbin = 4, Pcluster = 0.032) and between 750 and 1000 ms with repre-
sentations of layer fc8 (Tsum  =  14.702, Nbin  =  6, Pcluster  =  0.008) 
(Fig. 6C, left). Both clusters fell into the encoding time periods 
showing reinstatement effects on memory. During retrieval, we did 
not observe any memory effects in neural-DNN correspondence 
(fig. S7). To better understand the memory-specific differences in 
neural-DNN correspondence in aTC, we repeated the analysis sep-
arately for remembered and forgotten items. For remembered 
items, we did not observe a significant correspondence between 
neural and cDNN representations across the entire encoding time 
period (Fig. 6C, middle, no time points with P < 0.05). In contrast, 
for forgotten items, most cDNN layers showed a significant nega-
tive correspondence (Fig. 6C, right): conv3 (Tsum  =  −27.893, 
Nbin = 10, Pcluster < 0.001), conv4 (Tsum = −26.657, Nbin = 10, Pcluster = 
0.005), conv5 (Tsum = −29.464, Nbin = 11, Pcluster = 0.010), fc6 (Tsum = 
−16.321, Nbin = 6, Pcluster = 0.048), fc7 (Tsum = −18.209, Nbin = 7, 
Pcluster = 0.008), and fc8 (Tsum = −18.925, Nbin = 7, Pcluster = 0.012). 
These results indicate that correspondence of aTC representations 
to sensory representational formats as captured by the cDNN are 
associated with recognition memory failure, suggesting that other 
formats in this region are required for successful memory forma-
tion (for details, see the Supplementary Materials; fig. S8). Further, 
analyses in the other VVS regions showed that correspondence of 
DNN representations to pTC representations related to subsequent 
memory as well, while correspondence of DNN representations to 
Occ cortex representations were not related to memory (fig. S7). In 
LPC, we found no significant difference in the neural-DNN corre-
spondence of remembered and forgotten trials during encoding 
(fig. S7). During recognition, we found that neural-DNN corre-
spondence was significantly larger for forgotten as compared to 
remembered trials in layer conv5 (Tsum  =  −11.689, Nbin  =  5, 
Pcluster = 0.022) between 400 and 600 ms (for details, see the Sup-
plementary Materials).

Fig. 5. Generalization and differentiation of memory representations. Memory 
effects of generalization (i.e., EES/RRS remembered > forgotten) or differentiation 
(i.e., EES/RRS remembered < forgotten) during encoding (EES, top) and retrieval 
(RRS, bottom). Colored horizontal lines indicate time points of significant memory 
effects after cluster-based correction for multiple comparisons across time points, 
separately for each region of interest (ROI).
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Similar findings of neural-DNN correspondence in aTC during 
encoding and LPC during recognition were obtained when perform-
ing post hoc tests specifically on those time points showing reinstate-
ment and transformation effects (fig. S9). In addition, we tested 
whether the negative neural-DNN correspondence of subsequently 
forgotten trials in aTC was associated with the magnitude of ERSSame 
correlations in the ERS analysis. We found that the negative neural-
DNN correspondence was more pronounced in the subgroup of for-
gotten trials that yielded low ERSSame correlations, pointing toward 
shared influences across analyses (for details, see the Supplementary 
Materials; fig. S10). Notably, given the exploratory nature of these 
analyses, interpretation of effects based on individual layers should 
not be overemphasized. Nevertheless, the overall pattern of results of 
memory-specific alignment of separable visual formats during en-
coding and retrieval may provide additional insights into the nature 
of the underlying memories and how they unfold during encoding 
and recognition.

DISCUSSION
The formation and retrieval of memory traces is at the heart of adap-
tive behavior and involves the recruitment of multiple distinct neu-
ral mechanisms acting upon specific item-related feature formats 
(67, 68). Here, we used direct electrophysiological recordings to in-
vestigate the functional roles of reinstatement and transformation 
for recognition memory, the relevance of distinct representational 
formats, and the unfolding of these processes in a sample of chil-
dren, adolescents, and young adults.

We tested whether item-specific representations between encod-
ing and retrieval (ERS) indicated whether memory is supported by 
reinstatement or transformation, reflected in higher or lower levels of 
ERS between remembered and forgotten trials. In line with previous 
findings, we found beneficial effects of reinstatement for memory but 
also showed that these effects were specific to the aTC. Reinstatement 
related to temporally restricted encoding activity patterns (500 to 
1000 ms), pointing toward the relevance of specific representational 
formats (36). Consistent with findings in previous studies (69), we 
found that reinstatement occurred during earlier time windows dur-
ing retrieval as compared to encoding, in line with a reversed process-
ing hierarchy in the VVS between perception (posterior-to-anterior) 
and memory (anterior-to-posterior) (70, 71). We did not observe any 
memory effects of reinstatement in early- and mid-level VVS regions, 
suggesting that only the reinstatement of mnemonic representations 
is associated with successful recognition memory. Further analyses 
on representational formats in aTC using a cDNN indicated a dimin-
ished relevance of sensory formats compared to pTC and that recog-
nition memory decisions may be associated with the reinstatement of 
rather mnemonic but not purely sensory representations, whereas 
regions presumably carrying low-level sensory content were not as-
sociated with memory-specific reinstatement.

Further, reinstatement of item-specific representations in aTC as 
reflected in higher ERSItem correlations of remembered as compared 
to forgotten scenes could potentially relate to recollection-based pro-
cesses of recognition that have been shown in temporal cortex re-
gions before (11, 16) and that presumably reflect the reactivation of 
contextual or item-specific information. Notably, the reinstatement 

Fig. 6. Deep neural networks (DNNs) reveal memory-relevant representational formats. (A) Top, schematic of cDNN architecture trained to classify scenes (PlacesNet). 
Bottom, multidimensional scaling (MDS) plots for scene stimuli used in the experiment showing more pronounced categorical (indoor/outdoor) clustering of representa-
tions in higher versus lower DNN layers. (B) RSA comparing neural representational similarity matrices (RSMs) during encoding (EES) and retrieval (RRS) with RSMs from 
the individual DNN layers. During both encoding and retrieval, we correlated trial-wise RSMs observed in neural data with RSMs in each DNN layer and then conducted a 
follow-up test for differences of neural-DNN similarities depending on memory (i.e., remembered versus forgotten trials). (C) Time-resolved analysis of encoding-DNN 
correspondence for remembered versus forgotten items (left) and separately for only remembered (middle) or forgotten (right) items. Dashed vertical lines indicate on- 
and offset of encoding and retrieval time periods relevant for reinstatement in aTC. Horizontal colored bars indicate time points of cluster-corrected effects across time 
points, separately for each layer of the DNN.
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effect appeared to be driven predominantly by a drop of ERSSame cor-
relations of forgotten items rather than particularly high ERSSame 
correlations of remembered items—although the former did not dif-
fer from zero while the latter did, ERSDiff correlations of both remem-
bered and forgotten items were larger than zero as well, suggesting 
that the ERS of remembered items was at least partially due to reoc-
currence of unspecific processes. In addition, follow-up analyses of 
the forgotten items suggest that the low ERSSame values were related 
to their negative match with DNN representational formats, suggest-
ing that they were ambiguously processed in the aTC. However, 
ERSDiff correlations did not differ between remembered and forgotten 
items, and, indeed, the initial finding of reinstatement was defined by 
a significant interaction between ERSSame versus ERSDiff correlations 
of remembered versus forgotten items, pointing toward the specific-
ity of memory effects to activity patterns elicited by specific items. 
Thus, while reinstatement appeared to be related to a peculiar drop in 
ERSSame values of some forgotten items that showed negative correla-
tions with DNN representational formats, these effects did not occur 
for remembered items, preserving the similarity of the activity pat-
terns of these remembered items during encoding with their patterns 
during retrieval. In other words, while the successful engagement of 
memory processes for the remembered items is not associated with 
prominent item-specific representations in the aTC that reoccur dur-
ing retrieval, the putative “mnemonic” representational formats of 
these items correspond to similar activity patterns during encoding 
and retrieval of individual items that are absent for forgotten items. 
Future studies should aim to further characterize the putative mne-
monic representational formats of remembered items and to clarify 
the representational mechanisms underlying the unexpected nega-
tive alignment of forgotten items to visual representational formats 
captured by DNNs.

In contrast to the memory effects of reinstatement in aTC, we 
found evidence for a transformation of item-specific representations 
in LPC (28, 29). Stimulus-related activity patterns during retrieval 
resembled those during encoding if participants did not remember 
having seen the scene before, while successful remembering elicited 
activity patterns that were unrelated to those during encoding. LPC 
has emerged as a prominent region implicated in retrieval-related ac-
counts of episodic memory, reflecting retrieval success (30, 72, 73). 
Accordingly, some studies reported negative subsequent memory ef-
fects in this area (74). Being centrally located at the temporo-parietal 
junction, the LPC receives inputs from various sources including the 
dorsal and ventral visual processing streams as well as prefrontal and 
MTL structures (30). Two theoretical frameworks on LPC function, 
the AtoM (attention-to-memory) (75) and the CoBRA (cortical 
binding of relational representations) (73) models, both emphasize 
its close link with MTL structures but diverge in their interpretation 
concerning its underlying function. The AtoM model focuses on the 
relevance of bottom-up versus top-down attentional accounts (76) 
and ascribes bottom-up–driven orientation toward mnemonic rep-
resentations to the ventral posterior parietal cortex. However, this 
model does not assume that the parietal cortex represents specific 
contents itself, which has been challenged by recent findings of 
content-based information decoding (28, 77) and the representation 
of engrams (78) in this region.

The CoBRA model argues for an integrative role of LPC serving 
the binding of object-based, semantic, and contextual information 
into multimodal formats. This may fit to our findings since the 
higher difference between encoding and retrieval activity patterns of 

remembered items may reflect the integration of multimodal stimulus 
features that ultimately results in transformed representations during 
retrieval, which may be selectively recruited to aid recognition memory 
decisions. Following earlier regard that reinstatement in aTC may 
relate to recollection-based processes during recognition, transfor-
mation in LPC may possibly reflect familiarity-based decisions of 
recognition memory, which reflect a modified response to an item 
upon its repeated encounter in a signal-detection process (79). 
Presumably, familiarity would reflect low- or near-zero similarities 
between encoding and retrieval, a pattern that we observe for ERSSame 
correlations. Further, earlier studies have already described LPC 
to be involved in familiarity-based decisions of recognition memory 
(80, 81) as well as post-retrieval mechanisms of cognitive control 
through interactions with temporal cortices (82).

Transformation of item-specific representations in LPC also con-
tradicts previous ERS findings: Using fMRI to test emotional and 
neutral scene recognition memory, a previous study found that pari-
etal reactivation rather than transformation predicted successful rec-
ognition memory (18). Nevertheless, meta-analytic results on parietal 
involvement in episodic memory suggest that inferior lateral parietal 
cortices are more strongly involved in retrieval- versus encoding-
related processes (83) in line with distinct involvement during encod-
ing and retrieval, suggesting transformation. On a more general level, 
an alternative account on the pattern of results in LPC (i.e., a lack of 
ERSSame correlations for remembered items, positive ERSSame correla-
tions for forgotten items, and no link to DNN representational for-
mats for either items) may be that activity patterns in this region do 
not reflect stimulus-specific memory traces in the first place but are 
rather due to item-unspecific cognitive processes that only show 
overall differences between remembered and forgotten items. For ex-
ample, all forgotten items may induce similar activity patterns during 
encoding and retrieval that reflect, e.g., lack of attentional engage-
ment or mind-wandering to unspecific associative contents, resulting 
in positive ERSSame correlations. By contrast, activity patterns of re-
membered items may reflect successful engagement of encoding and 
retrieval modes during the respective experimental phases; these 
modes are associated with different activities in LPC (28), which may 
explain the low and nonsignificant ERSSame correlations. However, 
while we cannot entirely rule out this interpretation, we believe that it 
is less likely to fully account for our data for several reasons. First, we 
did not observe memory-related differences in overall spectral power 
in the LPC, and, thus, the engagement of unspecific processes would 
need to manifest selectively in the distribution of power across elec-
trodes, which may appear unlikely (though not impossible) given 
that different patients were implanted in different subregions of 
LPC. Second, although activity patterns of forgotten items did not 
match DNN representational formats, we only considered trials with 
correct category classification during encoding, ensuring allocation 
of at least some attentional resources toward the stimulus. Third, if 
encoding and retrieval processes were indeed entirely unspecific to 
individual items, one would expect similar differences between re-
membered and forgotten items for ERSDiff correlations as well, which 
we did not find—our main finding was based on a significant inter-
action between ERSSame and ERSDiff correlations of remembered ver-
sus forgotten items.

Our findings show that both reinstatement and transformation 
promote successful recognition but are supported by distinct brain 
regions, suggesting the involvement of dissociable neural mecha-
nisms. The aTC is located at the apex of the VVS and represents 
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sensory information at a conceptual level, whose reinstatement has 
previously been shown to benefit memory (36, 45). By contrast, the 
integrated multimodal representations in LPC may be primarily ac-
cessible during retrieval rather than encoding, in line with our finding 
that this region contains information about scenes in a transformed 
representational format. Evidence for item-specific representations 
(ERSItem) in LPC occurred particularly when the magnitude of rein-
statement in aTC was low, indicating interrelated processes between 
the two regions. Further, comparisons of trial-level ERSItem values in 
aTC and LPC revealed an association between the magnitudes of 
item-specific information specifically for remembered items: The 
magnitude of item-specific representations (ERSItem) in LPC depend-
ed on aTC, suggesting interrelated processes between the two regions. 
Thus, temporal and parietal cortices may represent distinct types of 
information with unique contributions to successful recognition, 
which may flexibly and distinctly influence memory decisions. We 
did not find memory-related differences in spectral power in these 
two regions. This likely reflects content-specific representations of 
individual items within the distribution of power across frequencies 
quantifiable using RSA rather than conditional differences in pre-
defined frequency bands. In addition, the lack of a memory effect 
in spectral power analyses suggest minor effects of differences in re-
sponse times, which would equally affect memory-specific findings at 
all levels of analysis.

Are reinstatement and transformation processes necessary for 
memory? Of course, our study does not provide direct information on 
the causal role of any of the observed processes. Our findings suggest 
that reinstatement is a general and beneficial mechanism for memory 
retrieval independent of developmental gains in memory, while recog-
nition memory may depend on transformation. Although we find that 
transformation of item-specific representations is associated with 
successful recognition on the trial-level, this does not necessarily im-
ply that this association exists in every participant. We found this effect 
specifically in a subgroup of participants with low recognition memory 
performance. This suggests that recruitment of memory transforma-
tion in the LPC is a less effective and possibly compensatory strategy 
compared to reinstatement in aTC. Recognition memory can rely 
on different processes of recollection and familiarity (31, 79, 82, 84), 
which may be differently associated with VVS reinstatement and LPC 
transformation effects (11, 16) and differently recruited by high versus 
low-performing participants. Nevertheless, given the relationship be-
tween the two effects, we speculate that neither of them may be suf-
ficient for memory retrieval alone but that they may flexibly aid 
retrieval by task-relevant recruitment of distinct representational 
formats. Here, the characteristics of the memory trace determine 
how and by which features a familiar scene may be recognized. Alter-
natively, both reinstatement and transformation enable the repre-
sentation of information in complementary formats that contribute 
differently to memory decisions depending on performance. Accord-
ing to this perspective, transformation processes may, in principle, oc-
cur in high-performing participants as well but are less relevant for 
them to conduct the relatively simple recognition memory task in our 
study. Notably, performance in our sample is likely influenced by a 
diverse set of factors, such as age-related differences in metacognitive 
capacities, the utilization of mnemonic strategies, or demands on 
compensatory mechanisms to overcome limited memory capacity. 
Although structural or functional deficits due to epilepsy cannot be 
ruled out, previous findings point toward comparable memory pro-
cesses in epilepsy and healthy control groups (64, 85, 86).

We hypothesized that because of reinstatement and transforma-
tion processes, aTC and LPC contain distinct representational for-
mats that differ between the two regions. Although we found a 
subsequent memory effect in Occ high-frequency broadband activ-
ity, and previous research links Occ gamma to early visual DNN for-
mats (39), correspondence of representations in the Occ lobe and in 
the DNN was functionally irrelevant to memory in our study. How-
ever, our DNN results show a contribution of intermediate DNN 
formats to memory traces in pTC and more abstract formats in 
aTC. These results suggest a dissociation between the role of overall 
processing in early visual cortex (that may, e.g., reflect selective at-
tention and thereby support memory indirectly) and the formation 
of the memory trace itself (which appears to rely on representational 
formats of higher-level visual areas). Further, similar to our findings 
in aTC, a previous study applied DNNs to investigate perirhinal cor-
tex, an MTL region situated at the apex of the VVS, and found that it 
enables perceptual behaviors beyond VVS contributions, arguing for 
more abstract and potentially mnemonic representations (87) in this 
region. During retrieval, we found no memory-specific DNN cor-
respondence with representations in aTC or upstream VVS regions. 
One may speculate that this is due to a diminished comparability 
between behavioral and network representations due to different 
task demands in encoding (scene classification) and retrieval (recog-
nition). However, the correspondence between neural and DNN 
representations in the LPC during recognition tentatively suggested 
a memory effect that was influenced by a negative matching of neu-
ral and cDNN representations. We are currently unable to provide a 
full explanation to this effect. While negative correlations between 
related items have previously been described as “repulsion” of mne-
monic representations (14, 88–90), these effects were associated with 
a functional benefit for memory, different from our data. Alternative 
explanations should thus be considered, e.g., that later forgetting is 
associated with processing of noninformative features during en-
coding. Notably, from our aTC ERS and EES-DNN analyses, we can-
not directly infer that the described representational formats were 
also relevant for ERS because both types of analyses consider differ-
ent cross-correlation matrices: Whereas ERS compared neural fea-
tures of same versus different items, EES reflects representational 
distances between different items. Nevertheless, we observe a tem-
poral (latency) and spatial (ROI) overlap in memory-specific differ-
ences in both types of analyses, which suggest that both effects are 
supported by overlapping representational and neurophysiological 
features. In the future, it may be promising to compare neural rep-
resentations during retrieval to representations in generative DNNs 
such as variational autoencoders (91) or in recurrent networks trained 
on memory tasks (92).

How are reinstatement and transformation related to the general-
ization or differentiation of memory representations? We find that 
regions in the VVS showed memory-specific generalization during 
encoding. Further, we additionally found a reinstatement of memory 
representations in aTC. In LPC, we observed memory-specific differ-
entiation during recognition and a transformation of representations 
between encoding and retrieval. According to theoretical accounts, 
both generalization and differentiation could be beneficial: While 
generalized representations allow inferences to novel experiences 
(33), distinct representations improve their separation from the repre-
sentations of similar events (93). We found that generalization but 
not differentiation of VVS representations during encoding related 
to memory success. This effect may be explained by pronounced 
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extraction of conceptual information that overlaps across multiple 
items, in line with pronounced correspondence to visual representa-
tional formats of subsequently forgotten but not remembered trials. 
Alternatively, generalization of representations may happen either 
because of the integration of all subsequently remembered items into 
a unified episodic context, i.e., reflecting episodic binding (94–97), or 
because of increased similarity of memory representations between 
all studies items, reflecting global matching (33). Accordingly, it has 
been shown that increased between-item similarity in high-, but not 
low-level, sensory areas during encoding is associated with successful 
memory and vividness during recall and levels of cortical reinstate-
ment (34). By contrast, during retrieval, we found that representa-
tions of remembered items in the LPC were more differentiated than 
those of forgotten items. Notably, we observe generalization and 
differentiation effects in regions and during task phases not showing 
conditional differences in spectral power (i.e., in aTC and pTC 
during encoding and in LPC during recognition), suggesting 
memory-specific differences at the level of item representations 
beyond domain-general effects.

There are a few limitations to our study that require mentioning 
and that could be addressed in future research. First, although we 
have described the functional relevance of distinct representational 
formats during successful memory formation and recognition, our 
paradigm did not involve the experimental manipulation of low- and 
high-level sensory formats. Explicit manipulation of such formats 
could deliver more direct evidence for which formats are necessary 
for reinstatement or transformation and where they are represented 
in the brain. Second, although recordings from grid electrodes offer 
extensive sampling from cortical surface structures, our dataset did 
not allow fine-grained analyses of deeper brain structures in MTLs 
such as the hippocampus. More extensive MTL recordings would 
provide valuable insights into the involvement of hippocampal activ-
ity and its mechanistic function in the coordination of reinstatement 
and transformation-related processes in neocortical areas. This would 
especially be interesting to further characterize the differential contri-
bution of sensory and mnemonic effects during recognition memory. 
Third, sensory and mnemonic effects could be addressed in future 
studies using only partial cues, item-based, and source memory tests 
during recognition, more detailed behavioral responses in the form of 
continuous memory ratings or recollection/familiarity ratings.

To conclude, we demonstrate that successful recognition memory 
is associated with both the reinstatement and transformation of 
item-specific representations, which are located in the ventral temporal 
and lateral parietal cortices, respectively. Our findings further sug-
gest that the generalization and differentiation of item representa-
tions across these regions contribute to successful memory formation 
and retrieval, likely due to the relevance of distinct representational 
formats. Our study sheds light on the multifaceted nature of recogni-
tion memory and shows that this seemingly simple cognitive func-
tion involves multiple operations acting on different aspects of the 
memory trace.

MATERIALS AND METHODS
Patient sample
In total, N = 48 patients participated in the experiment. All patients 
suffered from pharmacoresistant epilepsy and were implanted with 
invasive electrocorticography (ECoG) or stereo-EEG (sEEG) elec-
trodes for presurgical localization of epileptic foci. Implantations 

were conducted at the Children’s Hospital of Michigan, hospitals of 
the University of California (UC) San Diego, UC Irvine, UC San 
Francisco, and the California Pacific Medical Center. Sites of im-
plantation were chosen by medical staff and based solely on clinical 
needs of the patient. Two participants were excluded from all analy-
ses because of poor memory performance. The final sample con-
sisted of N = 46 patients (20 female, 26 male) aged 5.9 to 32 years 
(15.61 ± 5.92 years; for details, see Fig. 1). The institutional review 
boards of the Wayne State University (no. 048404MP2E), UC Irvine 
and UC San Diego (no. HS# 2014-1522), UC San Francisco (no. 10-
03842), and the California Pacific Medical Center (no. 666687-17) 
approved the study in accordance with the Declaration of Helsinki. 
Written informed consent was obtained from patients aged ≥18 years 
and from the guardians of patients <18 years; written assent was 
obtained from patients aged 13 to 17 years; oral assent was obtained 
from younger children.

Behavioral task
Participants completed a scene recognition memory paradigm that 
has been used to study memory with pediatric samples (58–65). 
During encoding, the participants were presented with equal 
numbers of indoor/outdoor scenes (each scene presented for 3 s) 
and instructed to verbally indicate indoor/outdoor as well as to try 
and memorize the scenes for a later memory test.

Each trial started with a fixation cross of 500 ms, followed by 3 s of 
scene presentation. For all subsequent analyses, we only considered 
trials with correct indoor/outdoor classification responses during en-
coding. During the subsequent recognition memory test, the partici-
pants were presented with old and new (foil) scenes and instructed to 
verbally indicate their memory judgement (i.e., “old” or “new”). Each 
trial started with a fixation cross of 500 ms, followed by self-paced 
duration of scene presentation.

Each encoding block consisted of N = 40 trials and was followed 
by a recognition memory test in which the participants saw all 40 old 
scenes intermixed with 20 new (foil) scenes. Forty-three percent 
(N = 20) of the participants completed one block, and 57% (N = 26) 
completed two encoding-recognition blocks. As a measure of mem-
ory performance, we computed corrected recognition scores Pr (98), 
i.e., rate of hits – rate of false alarms. N = 2 participants with negative 
recognition scores were excluded from further analyses. For all anal-
yses, we only considered trials with artifact-free neural data during 
both encoding and recognition (49 ± 18 trials per participant).

Data acquisition and preprocessing
ECoG and sEEG data were acquired using a Nihon Kohden, Natus, 
or Tucker-Davis Technologies system at a minimum sampling rate 
of 1 kHz, and data acquired at higher sampling rates were resam-
pled to 1 kHz after filtering. Data were filtered offline using a finite 
impulse response filter (0.1-Hz high-pass and 300-Hz low-pass). 
Line noise (60 Hz) and its harmonics (120, 180, and 240 Hz) were 
removed by applying a narrow-band notch filter to a discrete 
Fourier transform as implemented in fieldtrip (99). We excluded 
electrode contacts that showed pronounced epileptiform activity, 
overlapped with clinically defined seizure onset zones, or contained 
distinct artefactual signals such as poor contact. Trial-level artefact 
rejection was done manually by trained experts. Continuous data 
were then epoched into individual trials from −1 to +3 s around 
scene onset, or longer if response times exceeded the duration of 
scene presentation.
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Electrode implantation, localization, and bipolar referencing
ECoG patients (N  =  34) were implanted with subdural platinum 
electrodes (10-mm inter-contact distance; 4-mm diameter) placed 
directly onto the surface of the cortex. Here, individual electrode 
contacts were contained in larger grids (e.g., 8 by 8 or 2 by 5) or 
in one-dimensional (1D) strips of various length (4 to 12 contacts). 
SEEG patients (N = 12) were implanted with stereotactic depth elec-
trodes (5-mm inter-contact distance) of various lengths (4 to 16 
contacts). Implantation sites varied between patients based on clinical 
considerations. Implantations were performed in left (N = 17), right 
(N = 18), or both (N = 11) hemispheres. In all analyses reported 
here, we collapsed across ROIs of both hemispheres and treated 
ECoG/subdural and sEEG/depth electrodes in all preprocessing and 
analysis steps equally.

For localization of electrode positions, 3D reconstructions were 
created by coregistering postimplantation planar CT images of the 
cortical surface with preoperative T1 MR images (100). After recon-
struction of implantation schemes, we created patient-specific tem-
plates for bipolar referencing. To do so, we interpolated locations of 
virtual electrodes from pairs of adjacent electrodes lying on the same 
depth electrode or on the same strip of grid electrodes. For 2D-grid 
electrodes, we sampled across both rows and columns of the grid. 
Only virtual electrodes based on two artefact-free neighbors were 
included into further analyses. We excluded bipolar electrodes where 
both neighbors were in white matter or ventricles. Montreal Neuro-
logical Institute (MNI) coordinates of all virtual electrodes were used 
to derive labels of Brodmann’s areas using BioImage Suite MNI2TAL 
toolbox (101). The final coverage contained N = 3691 bipolar refer-
enced, artefact-free virtual electrodes, distributed over 32 unique 
Brodmann areas. Whole sample coverage for all ROIs analyzed 
throughout this work is displayed in Fig. 1E.

We grouped Brodmann areas into distinct ROIs for further analy-
sis: Occ cortex (Occ; Brodmann areas 17, 18, and 19) including cal-
carine sulcus with area striata (BA17; V1), as well as secondary 
(BA18; V2) and tertiary (BA19; V3-5) association cortices; pTC 
(Brodmann area 37), which corresponds to posterior parts of the fu-
siform gyrus; aTC (Brodmann area 20) posited rostral to pTC cover-
ing large parts of the ventral temporal cortex and bound medially 
but excluding hippocampus, peri-, entorhinal, and parahippocampal 
cortices (BA34, 35, 36); LPC (Brodmann areas 39, 40) corresponding 
to gyrus angularis (BA39) and gyrus supramarginalis (BA40). Note 
that our selection of ROIs was relatively broad to allow sufficient 
sampling of electrodes across participants. Similar divisions of 
VVS into functionally distinct subregions have been used in earlier 
studies (39, 46).

Spectral decomposition and time-frequency 
features for RSA
First, we applied a band-pass filter (0.1-Hz high-pass, 150-Hz low-
pass) to raw and artefact-free trial segments to restrict the data to 
the frequency range of interest. To avoid edge artefacts in spectral 
decomposition, we mirrored individual time-series data segments 
by appending flipped trial-data to the beginning (from −5 to −1 s) 
and end (from 3 to 7 s) of each segment. For time-frequency decom-
position, we applied a Morlet wavelet transformation to data seg-
ments from −500 to 1500 ms. We used wavelets from 1:1:150 Hz 
with a linear increase from 3 to 6 cycles for frequencies 1 to 30 Hz, 
and 6 to 12 cycles for frequencies 31 to 150 Hz. We normalized post-
stimulus periods by their relative change to a prestimulus baseline 

from −500 to −200 ms before stimulus onset. We then extracted the 
power of frequencies from 1 to 30 Hz in 1 Hz steps and averaged 
subsequent frequencies in 5 Hz bins from 31 to 150 Hz (31 to 35 Hz, 
36 to 40 Hz, etc.), resulting in 54 distinct frequencies. We then aver-
aged data in temporal windows of 300-ms length, sliding in 50-ms 
steps from 0 to 1500 ms. For all reports, each window is assigned to 
its middle time point (e.g., the first window expands from 0 to 300 ms 
and is indicated as 150 ms). For the range of 0 to 1500 ms, this re-
sulted in 25 distinct windows. Electrode-specific time-frequency 
representations of individual trials resulted in n (channels) × 54 
(frequencies) × 25 (time steps) values that were entered into sub-
sequent RSA.

Representational similarity analysis
Here, we report results from two different sets of RSA (10), which are 
computed with the same neural features derived from preprocessed 
electrophysiological data. We estimated the pairwise similarity of trials 
either within the same experimental phase (EES; RRS) or between 
experimental phases (ERS) using Spearman correlation (Fig. 2, A to 
D). As features for similarity estimation, we used the distribution of 
power values across frequencies and electrodes in each ROI. If, for 
example, a participant contributed three (bipolar) electrodes to a 
certain Brodmann area, the trial-specific spectral power across fre-
quencies of all three channels (3 electrodes × 54 frequencies) from 
encoding were concatenated into a 1D vector of 3 × 54 = 162 data 
points and correlated with the neural data of the same and of all 
different scenes in either the same or a different experimental phase. 
This analysis was done for various time windows (see above).

Cluster-based permutation statistic
To correct for multiple comparisons in all RSA, we applied cluster-
based permutation statistics (102). We repeated each first-level com-
putation during RSA (e.g., for a specific time bin of RSA feature data) 
after shuffling the trial-specific labels (remembered/forgotten trials) 
while keeping the amount of data per category intact. For example, 
when performing a first-level independent-samples T test of ERSItem 
between remembered and forgotten trials, in each permutation, we 
randomly assigned the same ERSItem values to each memory type 
while keeping the original number of trials per category intact. This 
procedure was conducted for 1000 iterations. We then corrected for 
multiple comparisons across time by extracting clusters of adjacent 
time points with uncorrected group-level P values <0.05 within the 
time (1D) or time × time (2D) maps. Depending on the type of anal-
ysis, we looked for temporally contiguous clusters in 1D temporal 
progression (EES, RRS, and DNN-EES) or in 2D temporally general-
ized data (ERS). For each identified empirical or surrogate cluster, 
we summed all T values contributing to it. Last, we computed the 
probability of observing the empirical cluster by extracting its rank 
from the distribution of all clusters in the same direction (positive or 
negative) in the surrogate data (P = rank/1000). Permutation statis-
tics for memory-dependent differences in time-frequency spectra 
was conducted using fieldtrip toolbox. RSA analyses used custom 
MATLAB scripts.

Between-item similarity (EES/RRS)
For the between-item similarity analysis (see Fig. 3D), we computed 
the pairwise similarity of scenes within the same experimental phase 
(EES/RRS). Separately for each time point of the sliding window, we 
extracted trial-specific time-frequency features across electrodes and 
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estimated their similarity using Spearman correlation. This yielded a 
symmetric identity stimulus × stimulus matrix where the diagonal is 
the similarity of a scene to itself. Obtained matrices were Fisher-Z 
transformed before further analysis. All analyses were performed on 
the lower-diagonal values of the symmetric similarity matrices. For 
each matrix and time point, we tested whether pairwise similarities of 
remembered versus forgotten scenes differed. To do so, we computed 
an independent-samples T test of pairwise similarities of scenes 
from the same memory category (all remembered-remembered and 
forgotten-forgotten scene pairs) for each participant. On the second 
level, we tested whether subject-specific first-level T values consis-
tently deviated from zero. In the time series of group-level effects, we 
then looked for adjacent time points forming temporal clusters and 
estimated their statistical significance using cluster-based permuta-
tions statistics. Surrogate first-level data were obtained by shuffling 
the labels of trials (remembered versus forgotten) and repeating the 
analysis with shuffled data 1000 times.

Encoding-retrieval similarity
In the second line of RSA, we investigated memory-specific repre-
sentational reinstatement or transformation. Specifically, we estimated 
the neural similarity between the representation of a specific scene 
during encoding and recognition (ERS). This analysis yielded a 
cross-correlation matrix of scenes (dimension: stimulus × stimulus). 
Matrices were Fisher-Z transformed before further analyses. In this 
matrix, the diagonal elements denote similarities between the same 
scene during encoding and recognition, while the off-diagonal ele-
ments denote similarities between different scenes. Since we applied 
a temporal sliding-window approach, the stimulus × stimulus matrix 
was calculated for all possible combinations of time points, yielding 
a 4D matrix of ERS values (dimensions: stimulus × stimulus × 
encoding time × recognition time). This time-resolved approach 
allowed us to investigate whether neural representations occurring at 
a specific time point during encoding correlated with representations 
at a specific—possibly different—time point during recognition.

Next, we quantified the item-specific neural similarity between 
encoding and recognition by taking the similarity score of the same 
scene during encoding and recognition (same item, diagonal ele-
ment) and subtracting the average similarity of this scene during 
encoding with all other scenes during recognition (different item, row-
wise off-diagonal elements), i.e. ERSItem = ERSSame – avg.(ERSDiff). 
Crucially, ERSDiff considered values from the same scene type (in-
door/outdoor) and memory category (remembered/forgotten). We 
replicated ERS results for aTC and LPC when considering only 
column-wise off-diagonal elements, as well as row and column-
wise off-diagonal elements (fig. S11).

Does the degree of scene-specific similarity between encoding and 
recognition support memory performance? To answer this question, 
we performed an independent-samples T test of ERSItem scores, com-
paring their magnitude across all remembered and forgotten trials 
within each participant. This yielded one map of T values for each 
participant across the 25 encoding time points and the 25 recognition 
time points, which was used for subsequent group level analysis. On 
the group level, we performed a one-sample T test across the T values 
of all participants against zero. This analysis was conducted for all 25 × 
25 encoding/recognition time points. We then extracted all T values 
corresponding to P values <0.05 and summed them across all 
adjacent time points for estimation of statistical significance (empirical 
cluster value).

Item specificity in aTC and LPC (ERS – ERS)
We tested the relationship of the magnitude of ERSItem between aTC 
and LPC using hierarchical linear mixed models. This analysis was 
conducted on the subset of participants (N = 28) contributing elec-
trodes to both regions. We averaged ERSItem values across overlap-
ping time points, i.e., encoding-retrieval time bins with significant 
ERS effects in aTC (Fig. 3B) and LPC (Fig. 4B), Nbins = 33, encoding 
time range 500 to 1000 ms, retrieval time range 400 to 900 ms) of 
reinstatement and transformation effects and then predicted the 
magnitude of aTC ERSItem by LPC ERSItem, included a main effect of 
memory and modeled subject-specific slopes [aTC ~ LPC * memory + 
(1|subject)].

DNN model
To classify scene images shown throughout the experiment, we used 
a pretrained convolutional neural network “PlacesNet (103).” PlacesNet 
was trained on the Places database (104), incorporating 2.5 million 
scene images of 205 category labels. cDNNs with the same network 
architecture [e.g., AlexNet (105)] trained on a variety of object classes 
have been found to exhibit representational geometries corre-
sponding to neural representations observed throughout the VVS 
(38, 39, 43, 106). PlacesNet consists of five convolutional and three 
fully connected layers (Fig. 6A). Information is initially processed on 
pixel-by-pixel level in convolutional layer 1 and is then unidirection-
ally transformed to downstream layers, ultimately leading to the 
assignment of semantic labels in the output layer (softmax). We aver-
aged the values in each convolutional layer for each image over the 
spatial dimension (107) (retinotopic units) resulting in one value per 
feature (images × features). Extracted pairwise Spearman’s ρ esti-
mates based on internal feature activations yielded symmetric layer-
specific representational similarity matrices (RSMs) of all 120 by 120 
scene images, resulting in 8 RSMs of 120 by 120 images (see fig. S6C). 
RSMs were Fisher Z transformed for further analyses.

Item-specific alignment of neural and DNN model features
RSMs with corresponding structure to RSMs from DNN layers were 
obtained from EES and RRS analyses (scene*scene), thus allowing for 
a direct comparison of representational structure between iEEG ROIs 
and PlacesNet. EES/RRS matrices were obtained for each individual 
time point during encoding and retrieval, resulting in 25 scene*scene 
matrices per participant, ROI, and experimental phase. Since internal 
features of feed-forward models are insensitive to temporal dimen-
sions, we obtained one RSM for each layer of the network, resulting in 
eight model matrices equally used for encoding- and retrieval related 
neural data.

To match the item-specific approach in the previous ERS analy-
sis, we computed scene-specific alignment of neural features with 
each of the network layers [see (36, 45) for a similar approach]. For 
each scene, we extracted the vector of similarity values with all other 
scenes (vector of length Nscenes-1, e.g., one row in matrix) from neu-
ral and DNN matrices. These vectors describe the representational 
geometry of the current scene to all other scenes. We then computed 
the Spearman correlation of neural and model vectors separately for 
each time point and network layer, yielding a score describing the 
item-specific similarity of neural and network representations. The 
subsequent statistical procedure was similar to ERS analysis: First, 
we computed independent-samples T tests between the alignment 
scores of remembered and forgotten items to test whether shared 
similarities differed depending on memory at any time point. On 
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the second level, we tested across participants whether these T 
values differed significantly from zero. Then, we identified adjacent 
time points with group-level T values corresponding to P values 
<0.05 and performed correction for multiple comparisons across 
adjacent time points by comparing the clusters in the empirical data 
with clusters from surrogate data, where the order of scene-specific 
similarity vectors from the neural data was randomly shuffled 
before comparison with scene-specific vectors from individual DNN 
layer matrices.
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