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Maintenance of color memoranda
in activity-quiescent working memory
states: Evidence from impulse perturbation

Güven Kandemir,1,2,4,* Sophia A. Wilhelm,1 Nikolai Axmacher,3 and Elkan G. Akyürek1
SUMMARY

In the present study, we used an impulse perturbation method to probe working memory maintenance of
colors in neurally active and activity-quiescent states, focusing on a set of pre-registered analyses. We
analyzed the electroencephalograph (EEG) data of 30 participants who completed a delayed match-to-
sample working memory task, in which one of the two items that were presented was retro-cued as
task relevant. The analyses revealed that both cued and uncued colors were decodable from impulse-
evoked activity, the latter in contrast to previous reports of workingmemory for orientation gratings. De-
coding of colors from oscillations in the alpha band showed that cued items could be decoded therein
whereas uncued items could not. Overall, the outcomes suggest that subtle differences exist between
the representation of colors, and that of stimuli with spatial properties, but the present results also
demonstrate that regardless of their specific neural state, both are accessible through visual impulse
perturbation

INTRODUCTION

Working memory is a system of components that enables the maintenance of information in an accessible state in the absence of sensory

stimulation.1 The neural basis of working memory has been of increasing interest in recent years. One particularly striking outcome has

been that although working memory maintenance has been traditionally associated with sustained neural activity during the memory delay

period,2–4 a number of studies failed to observe such sustained activity.5–8 It was proposed that during this period without an observable neu-

ral correlate, memoranda could be retained in activity-silent states,9–11 whichmay rely on synaptic plasticity facilitated by elevated post-excit-

atory calcium and neurotransmitter levels.12–17

Wolff and colleagues11 have previously shown that the presentation of a high-contrast, standardized, but task-irrelevant stimulus during

thememory delaymay allow decoding of such activity-silent, or at least activity-quiescent, memory items that could not be detected from raw

ongoing electroencephalography (EEG). While it is not yet exactly clear how this so-called impulse signal reveals the memory trace at a phys-

iological level, Wolff and colleagues11 explained this using the analogy of sonar: the impulse allowsmeasuring a ‘‘hidden’’ state by attributing

differences in the response to a stable stimulus to underlying differences in the network.11 In our case, the sensory processing of an impulse

signal is thought to perturb the initially ‘‘hidden’’ memory network, generating activity that can bemeasured with EEG, fromwhich the state of

this network can be inferred.9,11,18–20 Studies using the impulse perturbation approach have reported successful results for memories of ori-

entations,11,18–20 numerosity,21 and auditory tone frequencies and sequences.19,22,23

Although impulse perturbation has thus been usedwith different stimuli, it is yet uncertain whether the representational patterns observed

to date will hold universally for different kinds of content that are maintained in working memory. In particular, one crucial similarity between

previously tested memoranda is that they allow a transformation of the task-relevant information into spatial coordinates (which may also aid

memory). For example, eachmember of a set of orientations can be represented as different points on the edge of an imaginary circle around

a fixed point on a plane surface. In a similar fashion, higher or lower numerosity and tone frequency can be easily converted to different eleva-

tion levels laid out on a similar surface (e.g., a high tonemay be visualized high on the vertical axis). This possibility of representing information

with spatial position leaves open the question of whether the neural signature of the maintenance of this kind of information also applies to

that of non-spatial stimulus attributes.

The reliance on spatial properties in previous studies also brings confounding risks with it. For example, it might involve the deployment of

spatial attention, whichmight affect the alpha bandof the EEG in particular.24 Bae and Luck25 investigated the contribution of spatial attention

to the decoding of orientation items in working memory. They found that while alpha band activity only conveyed information about the
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(attended) location of their stimuli (but see also Barbosa et al.26), andwhile decoding of ongoing EEGduring the delay periodmainly provided

significant information about the item-specific orientation, it also reflected its location. Furthermore, differences that exist between stimuli or

conditions in terms of spatial attention come with the risk that (voluntary or involuntary) eye movements may follow suit. Neural data can be

confounded by correlating eye movements and gaze fixations, especially under active viewing conditions.27–29 Activity in the brain, particu-

larly in earlier visual regions, may reflect viewpoint-specific, retinotopically organized information that will vary considerably when the eyes

move around. Such activity cannot be easily discerned from other aspects of sensory and cognitive processing, including memory

maintenance.30,31

Additionally, a number of studies suggest that spatial properties may be treated differently by working memory.32–34 For example, evi-

dence suggests that task-irrelevant features, such as color or orientation, may not be encoded in memory,35,36 even when the task relevant

and irrelevant features spatially overlap. However, the location of a memory item, even when this feature is irrelevant for the task, can still be

traced from the EEG data.37 Likewise, the spatial position of all memoranda was reflected in persistent activity in alpha band, even when only

one of the items was prioritized retrospectively to drive the response.37,38 Thus, the privileged position of spatial information in workingmem-

ory might also account for impulse-driven decoding.

Considering the theoretical limitations and potential confounding issues with regard to the exclusive reliance on spatial properties in pre-

vious impulse-based experiments on working memory maintenance, we set out in the current study to overcome these by using intrinsically

non-spatial stimuli, namely colors. Colors can be decoded successfully from fMRI,39,40 MEG (magnetoencephalography),41–43 and EEG

data.35,43,44 Thus, colors seem a suitable non-spatial substitute to extend earlier orientation-based pinging studies.11,18–20 Apart from thus

changing thememory items, we also presented them serially, at the same location, rather than lateralized, as was originally done, and rotated

the color wheel that served as the response probe on each trial, thereby removing all spatial aspects from the original task.

We collected EEG data in each trial of our experiment, as the participants viewed two colored discs (200 ms each), a numerical retro-cue

(200 ms), a white disc (100 ms) that served as the impulse, each with 900 ms delay in-between, and finally a response screen, after another

500 ms delay. We then conducted a set of pre-registered analyses, based on those reported in the original paper by Wolff and colleagues,11

and added decoding analyses of alpha band activity. Our results show that trial-specific color information could be successfully predicted

from the activity evoked by the visual impulse, similar to orientation gratings in earlier studies.11,18–20 In addition to the task-relevant cued

color, dynamic impulse-driven activity also revealed the uncued color. Conversely, while alpha power decoding yielded a sustained trace

of the cuedmemory item, this was not the case for the uncued color. These findings extend previous work on orientation decoding, and sug-

gest that different features might elicit (slightly) different maintenancemechanisms. The present outcomes also highlight that impulse-driven

decoding can reveal memoranda in distinct memory states, independent of the allocation of spatial attention.

RESULTS

Behavioral results

The overall behavioral performance in the experiment was good; the mean error was 18.3� with a standard deviation of 32.5� (Figure 1A),

relative to the center of the bin to which the cued item belonged (adjusted error). Figure 1B presents the behavioral reports of the cued

item, with the uniform color bins overlaid. This plot reveals that despite the uniform distribution of the colors presented during the experi-

ment, the reported colors seemed clustered around the primary hues, supporting earlier evidence that memory performance varies for

different colors.45

The influence of the uncued memory item on the report of the cued item was also investigated. Since only the cued item was reported in

each trial, the presence of the uncued item was assessed as the effect of the similarity between the cued and the uncued color on the degree

of error. To take into consideration possible individual differences in color perception,46 errors were first median-normalized within each color

bin. The normalized error values were then binned again as a function of the difference between the task-relevant cued item and the task-

irrelevant uncued item (binwidth = 22.5�, moving window in steps of 7.5�), and the mean error was calculated within each bin. A permutation

test was appliedwith cluster correction to assess the deviation of themean from zero at each unit of angular difference between the items. The

report error was significantly different from zero for three difference ranges (Figure 1C, MAdjusted error s 0, for cued – uncued difference,

ranging from�161� to�3.75�, p < 0.001, from 3.75� to 116�, p < 0.001, and from 124� to 161�, p = 0.024). The cued item report errors deviated

away from the uncued item, reflecting a repulsion away from the task-irrelevant color.

Decoding the time window of interest

Both the trial-specific color of item 1 (Figure 2A, left, red, p < 0.001, one-tailed) and of item 2 (Figure 2A, left, blue, p < 0.001, one-tailed), could

be successfully decoded after presentation. Interestingly, item 1 was also decodable within the critical period following the presentation of

item 2 (Figure 2A, left, item 1 (2), red, p < 0.001, one-tailed). Decoding of item 1 after the onset of item 2 was nevertheless significantly lower

than stimulus-driven decoding (difference item 1 – item1 (2), p < 0.001, one-tailed). The associated tuning curves (Figure 2A, right) reflected a

parametric-looking relationship between colors, in line with earlier reports.44

After impulse presentation, not only the task-relevant, cued color was decodable (Figure 2B, left, green, p < 0.001, one-tailed) but also the

task-irrelevant uncued item (Figure 2B, left, gray, p = 0.008, one-tailed), in contrast to earlier studies that used orientation stimuli (e.g., Wolf

et al.11). Although both cued and uncued memories could be traced, there was a clear difference in the strength of their representations (dif-

ference cued – uncued, p < 0.001, one-tailed). Both the cued and uncued item showed parametric-looking pattern similarity, as expected (Fig-

ure 2B, right).
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Figure 1. Behavioral plots

(A) Histogram of report errors relative to the task-relevant memory item.

(B) Distribution of the cued color bins (shaded, dashed line) and the reported color bins, as a function of the angular values of the color space.

(C) Normalized error as a function of the difference between the cued and the uncued item. The moving mean of the report error is calculated for 22.5� wide bins

in steps of 7.5�. The shaded area and the solid bars at the top mark the color differences for which the adjusted error differed from 0�, according to the cluster-

corrected permutation test (p < 0.05).
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Time-course decoding

In addition to classic time-course decoding of colors, we additionally applied this analysis to alpha power. Motivating this addition was the

recent suggestion that ongoing activity in the alpha band could reflect memory content in a sustained fashion, which questions the need to

use the impulse perturbation method.26 The analyses were focused on the cue and impulse epochs, where the selection between task-rele-

vant (cued) and task-irrelevant (uncued) items hadbeenmade. Furthermore, wewere able to confirm that eyemovements, attentionally driven

or otherwise, did not affect decoding of thememory items by applying the same analysis to the electrooculography (EOG) data (supplemental

information).

The memory items could not be decoded from the voltage data following the presentation of the cue (Figures 3A and 3B). Conversely,

both the cued and the uncued items were successfully decoded from alpha power in an earlier phase after the presentation of the cue (Fig-

ure 3C, green, 396 ms–588 ms, pcued = 0.015, two-tailed, corrected; Figure 3C, black, 364 ms–516 ms, puncued = 0.014, two-tailed, corrected).
iScience 27, 109565, April 19, 2024 3
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Figure 2. Decoding accuracy and pattern similarity

Boxplots and tuning curves showing decoding accuracy and pattern similarity (in arbitrary units) for memory items within the 100–400 ms time window of interest

relative to the onset of item 1 and 2 presentation (A), as well as impulse onset (B). The mean decoding accuracy is marked by the dot at the center, with the bar

represent 95% CI. The boxes border the 25th and 75th percentiles, with the whiskers around the box stretching to 1.5 interquartile range. Asterisks indicate beta

values that were significantly above zero (*, p < 0.05; **, p < 0.01; ***, p < 0.001). (See Figure S1 for the topographical distribution of the most contributing

electrodes).
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Subsequently, in a later phase, only the task-relevant, cued color was decodable in the alpha band without interruption for the remainder of

the epoch until the onset of the impulse signal (Figure 3C, green, 700 ms–1050 ms, pcued < 0.001, two-tailed, corrected). The difference in

decoding accuracy between cued and uncued items was also statistically significant for some time within this period, from 892 ms to

1,028 ms relative to impulse onset (pcued - uncued = 0.037, one-tailed, corrected). Across these phases, the pattern similarity appeared to

be parametrical in nature for both items (Figure 3D).

At impulse presentation, voltage decoding revealed both the cued (Figure 4A, green, 28 ms–514ms, pcued < 0.001, two-tailed, corrected),

and the uncued item (Figure 4A, black, 164ms–236ms, puncued= 0.036, two-tailed, corrected). The difference between the states of these two

items was reflected by a significant difference in decoding accuracy (118 ms–356 ms, pcued - uncued = 0.005, one-tailed, corrected). Pattern

similarity reflected this difference also, but was qualitatively similar for both items (Figure 4B). These results confirmed the outcomes of

the analysis of the time window of interest reported above. The cued item was also decodable from alpha power (Figure 4C, green,

68 ms–550 ms, p < 0.001, two-tailed, corrected), but the uncued item was not (difference; 92 ms–548 ms, pcued - uncued < 0.001, one-tailed,

corrected). The pattern similarity matrix of the cued item showed high similarity near the tested values, with a steep drop-off further away

(Figure 4D). These results suggest that while alpha power may reflect the sustained maintenance of, or the attention allocated to, the

task-relevant memory item, the task-irrelevant item only emerged from the activity evoked by the impulse. Given that the uncued item

also biased the eventual behavioral response, the present findings provide evidence that the impulse signal can revealmemory items retained

in different activity states.9,47
4 iScience 27, 109565, April 19, 2024
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Figure 3. Time-course decoding in cue epoch

The mean decoding accuracy of the cued (green) and the uncued (black) item relative to the onset of the cue from the raw voltages (A and B), and from alpha

power (C and D).

(A and C) The black rectangular bar marks the presentation of the cue. Solid lines show the mean decoding accuracy (A.U.) over all trials and participants as a

function of time. The shaded area around the mean marks the 95% CI. Solid bars at the top and the shaded zones indicate statistically significant decoding

periods (p < 0.05, one-sided).

(B and D) Pattern similarity matrices for cued and uncued items show reverse-signed, mean-centered Mahalanobis distances between the target item and all

other possible memory items, averaged over trials as a function of time. (See Figure S2A for an analysis of the same epoch from the eye electrodes).
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RSA of color representations

Finally, we investigated the color-space with a parametric method, representational similarity analyses.19,48 Two models were tested to

explain pairwise differences between color bins. The first model was based on a uniform color space that reflected the angular differences

between 16 color bins on the color wheel (Figure 5A, left). This model tested whether colors adhered to a circular, parametric space. The

second model was based on the behavioral reports (Figure 5A, right), in which reported colors were found to cluster around three primary

colors, despite the uniform distribution of memory items (Figure 1B). In the model, these three colors were thus used to explain the variation

in the data. The average representational dissimilarity matrices (RDMs) presented in Figure 5B reflect the pairwise differences between the 16

color bins within the time window of 100–400 ms, relative to the onset of the memory items (left), and relative to impulse onset (right).

Bothmodels fit the data during stimulus encoding (Figure 5C, left, pUniform colors< 0.001, one-tailed; pPrimary colors< 0.001, one-tailed). Thus,

the results provided evidence for a parametric relationship between color representations during sensory encoding, as well as a degree of

primary-color categorization. The uniform color spacemodel also fit the neural response associatedwith the cued item that was evokedby the

impulse (Figure 5C, right, pUniform colors < 0.001, one-tailed), in line with earlier reports.44 Conversely, although there was a trend, the primary

colors model failed to reach statistical significance (Figure 5C, right, pPrimary colors = 0.054, one-tailed).

DISCUSSION

We aimed to decode colors maintained in working memory by means of visual impulse perturbation. In a pre-registered experiment, we

tested the maintenance of a retro-actively cued target item, and of the item that was not cued, in a delayed match-to-sample task. To further

avoid possible spatial confounds that might have affected previous impulse perturbation experiments, we presented our two memory items

serially in the center of the screen, and randomized the appearance of the color circle shown at the probe on each trial. We were able to

decode stimulus identity from the recorded EEG signal during perceptual encoding, replicating earlier studies.35,39–44 Importantly, we could
iScience 27, 109565, April 19, 2024 5



-180°

-90°

0°

90°

-180°

-90°

0°

90°

-180°

-90°

0°

90°

0 200 400

-180°

-90°

0°

90°

0 200 400

4002000 0 200 400

3

-3

0

x10
-3

An
gu

la
r d

is
ta

nc
e

cued

uncued

An
gu

la
r d

is
ta

nc
e 3

-3

0

x10
-3

B cued

uncued

D

CA

Pa
tte

rn
 s

im
ila

rit
y

Pa
tte

rn
 s

im
ila

rit
y

x10
-3

D
ec

od
in

g 
ac

cu
ra

cy
 (A

lp
ha

 p
ow

er
)

D
ec

od
in

g 
ac

cu
ra

cy
 (V

ol
ta

ge
)

0

1

2

0

1

x10
-3

Figure 4. Time-course decoding in impulse epoch

The mean decoding accuracy of the cued (green) and the uncued (black) item relative to impulse onset from the raw voltages (A and B), and from alpha power (C

and D).

(A and C) The black rectangular bar marks the presentation of the impulse. Solid lines show themean decoding accuracy (A.U.) over all trials and participants as a

function of time. The shaded area around the mean marks the 95% CI. Solid bars at the top and the shaded zones indicate statistically significant decoding

periods (p < 0.05, one-sided).

(B and D) Pattern similarity matrices for cued and uncued items show reverse-signed, mean-centered Mahalanobis distances between the target item and all

other possible memory items, averaged over trials as a function of time. (See Figure S2B for an analysis of the same epoch from the eye electrodes).
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also decode stimulus identity post-impulse. This result extended earlier studies that decoded the bottom-up activity induced by the sensory

processing of a visual impulse signal to reveal representations of orientation gratings in working memory that were otherwise not traceable

from raw EEG (e.g., Wolff et al.11,18,20). The present result was the first demonstration of impulse-driven decoding of non-spatial features,

specifically color memories, thereby generalizing the findings across feature dimensions.

In contrast to previous studies,5,6,11,19,20,49 the impulse effect was not restricted to the task-relevant cued item. This suggests that after its

original encoding, and after the cue designating it as task-irrelevant, the uncued item was also maintained in memory, albeit to a lesser de-

gree. One trivial reason for this might be that participants simply selected the wrong item on some trials, but there is reason to doubt this

explanation. First, in alpha power decoding (discussed in the following text), the signal associated with the uncued item behaved completely

different from the cued item, both duringmaintenance and following the impulse. Second, behavioral response errors on the cued item were

biased by the uncued item (cf. previous studies50–52), but they were biased away from it, rather than toward it—the latter would be expected

when the uncued item was erroneously reported. The presence of this bias also suggests that the uncued item did not elicit an impulse

response simply because it was previously presented and perceived (i.e., without being committed to memory).

The emergence of the uncued item after impulse onset casts doubt on the idea that information in working memory that is no longer

needed is actively purged. Memory might alternatively ‘‘let go of’’ task-irrelevant items, for instance by no longer periodically refreshing

them, such that their representations fade relatively quickly, but might nevertheless still linger for some time. This idea is compatible also

with a recent model of working memory based on calcium-mediated short-term synaptic plasticity.53 The absence of task-irrelevant items

in neural measures obtained in previous studies might be a consequence of the inherent weakness of their representations, which makes

them harder to detect than task-relevant items in the first place. The high number of trials in the current study may have helped to overcome

this difficulty.

Alternatively, colorsmay be represented differently inmemory. It is possible that they aremore strongly represented in long-termmemory,

and/or with more distributed connections, as they are well-known entities, in comparison to orientations that are derived from relatively novel
6 iScience 27, 109565, April 19, 2024
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Figure 5. Representational similarity analysis

Analysis results for the average of item 1 and 2 (left) and the cued item at impulse (right).

(A) Model for a uniform, continuous color space for 16 color bins (left), and model for a discrete color space based on primary colors extracted from behavioral

errors (right).

(B) The representational dissimilarity matrices (RDM) for item presentation (left) and impulse (right) epochs.

(C) Boxplots showing the mean fit (beta values) following the linear regression of individual RDMs on themodels for each participant. The dot in the center marks

the mean standardized slope (beta), and the whiskers on both ends of the mean indicate the 95% CI. The boxes border the 25th and 75th percentiles, with the

whiskers around the box stretching to 1.5 interquartile range. Asterisks indicate beta values that were significantly above zero (*, p < 0.05; **, p < 0.01; ***,

p < 0.001).
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Gabor stimuli used in other studies (e.g., Wolff et al.11,19). This difference may also cause the uncued item to be reflected in the impulse

response in this study, but this remains speculative. From the present data, it cannot be excluded either that the presence of the uncued

item during memory maintenance might be related specifically to the metathetic nature of color. This awaits further experimentation.

The decoding analyses showed that alpha band decoding and dynamic voltage decoding clearly reflected different states of the

memoranda. After cue onset, item selection following the processing of the cue was only observable in alpha power. Both the task-relevant

and irrelevant colors could initially be decoded, followed by a sustained signal for the cued item only. With regard to the cued item, the

presentation of the cue would be hypothesized to require an active process of prioritizing one item over the other or potentially even

removing the uncued item from memory storage (but see the argument aforementioned). Even theories of activity-silent working memory

have so far proposed connectivity-based, synaptic storage only as a mechanism of maintenance, and updating of synaptic weights would

still require neuronal firing.9,10,14,53–55 Based on the analyses of our current dataset it appears that this attentional selection happens in the

alpha band, which subsequently then also holds the prioritized item in a sustained manner for the rest of the trial. With regard to the

uncued item, the absence of a sustained signal both in the raw EEG and in the alpha band suggests that it was truly activity quiescent,

if not altogether silent, as previous work has identified the alpha band as the frequency band that is most likely to carry sustained main-

tenance signals.26,56

Once the impulse was presented, the voltage decoding revealed both the cued and uncued item, contrary to the alpha band decoding.

Additionally, the reactivation of the signal in the voltage decoding was time limited and returned to zero well before the presentation of the

probe. This provides further evidence that the alpha band and voltage decoding track functionally different states of working memory. We

speculate that the alpha band may serve to keep memoranda in an elevated state, ready for direct access when necessary.57,58 It seems likely

that attentionmediates this.25 Following the cue, the uncued item was apparently removed from this elevated state, but it was not altogether

lost, as dynamic voltage decoding still revealed it from the EEG response to the impulse. Although the functional states of items in memory

need not necessarily map directly onto corresponding neural states,47,59 the task-irrelevant uncued item was clearly in a different, more silent,

neural state than the task-relevant cued item in our data. The fact that we can trace these differences and differentiate them provides further

support for the utility of the impulse-driven decoding technique.

Finally, we found that the neural representations of colors were parametrically arranged during encoding.39,44 The signal evoked by the

impulse also showed a parametric arrangement of colors during the delay period. Nevertheless, behavioral responses reflected a bias in re-

ports, as the errors were grouped around three primary colors. This observation was in line with earlier reports that not all colors are equally

memorable.45 A discrete color model derived from the behavioral output was indeed also supported during the encoding of the memory

items (i.e., directly after their onset), suggesting that participants formed a categorical representation for colors even during perception or

shortly thereafter. Crucially, the evidence for this discrete model was no longer reliable during memory maintenance (i.e., after the impulse),

while the continuousmodel was still well supported. Itmay appear paradoxical that the categorical representation observedduring encoding,

and in the eventual response, was not clearly represented during memory maintenance. One possible explanation for this could be the dif-

ferential impact of the activity induced by the sensory processing of the impulse signal on the different networks that might retain continuous

color representations and discrete categorical representations. Onemight suppose thatmore discrete color groupings could be represented

by a semantic network,42 whereas more low-level hue differences could be retained in earlier visual areas.39 The latter might be more acces-

sible to impulse perturbation.

Conclusion

The results of our study highlighted both commonalities and potential differences between spatial and non-spatial (color) items main-

tained in working memory. First, we observed that the visual impulse response contained information not only about the task-relevant,

cued item but also the task-irrelevant, uncued item, contrary to previous studies of orientation gratings. This finding casts doubt on

the idea that uncued items are actively purged from memory. Second, we found evidence for a sustained signal corresponding to the

cued, but not the uncued, item during the delay period. This suggests that the alpha band may trace the attended item that is in the focus

of attention. Furthering the debate on the relationship between the functional role of an item and its activity state,26,47,55 the current results

provided evidence for the utility of the impulse technique by revealing silent memories that were not only hidden in ongoing EEG but also

untraceable by alpha power.

Limitations of the study

The experiment was conducted in a well-lit room, using an old uncalibrated cathode ray tube (CRT) monitor. Room light andmonitor settings

can influence perceived colors and therefore impact decoding accuracy as well. Although these factors would not influence the reported dif-

ferences in alpha band power and voltage decoding, they could reduce generalizability. Furthermore, the sample of participants mostly con-

sisted of young adult European females studying at the university, which could impact color labeling and strategies used to remember

different colors. This factor could also hamper the generalizability of our results in samples from other cultures and genders.
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STAR+METHODS

KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

Filtered and epoched EEG data and

behavioural response data

This paper https://osf.io/bxmt8

Software and algorithms

Experiment script This paper https://osf.io/bxmt8

Colour wheel Mem toolbox, Suchow et al.60 https://visionlab.github.io/MemToolbox/

Analysis and plotting scripts This paper https://osf.io/bxmt8

Other

Preregistration This paper https://osf.io/uvxe7
RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Güven Kandemir

(g.kandemir@vu.nl). Any additional information required to reanalyse the data reported in this paper is available from the lead contact upon

request.

Materials availability

The experiment script used for data collection is publicly available at https://osf.io/bxmt8. Any additional information required to reanalyse

the data reported in this paper is available from the lead contact upon request.

Data and code availability

� Filtered and epoched EEG data and the associated behavioural data reported in this study have been deposited at the Open Science

Framework (OSF) repository. The links to the data and pre-registration documents are listed in the key resources table.

� All original code has been deposited at OSF repository and is publicly available as of the date of publication. The link is listed in the key

resources table.
� Any additional information required to reanalyse the data reported in this paper is available from the lead contact upon request.

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Participants

Thirty volunteers (23 female, Mage = 24.2, Rangeage = 20-36) that were recruited via social media adverts participated in this study in return for

monetary rewards. No race, ancestry or ethnicity information was collected for this study. This was justified on the basis that racial differences

do not influence colour perception.61 Participant selection relied on the successful completion of a pre-screening test, which was a shortened

version of themain experiment (288 trials). The preselection cut-off criterion was%30� of error in at least 70 % of trials. None of the volunteers

were eliminated by the pre-screening. The sample size was based on earlier studies with similar designs (e.g., Wolff et al.11). All participants

were informed about the experimental procedures as well as the data sharing procedures, and written consent was obtained. The study was

conducted in accordance with the Declaration of Helsinki (2008), and it was approved by the Ethical Committee of the Behavioural and Social

Sciences Faculty of the University of Groningen (Study ID = PSY-1920-S-0385).

Apparatus and stimuli

The experiment took place in a well-lit chamber where participants were seated 60 cm away from a 17’’ Samsung 797DF CRT monitor. The

refresh rate was set to 100 Hz and the resolution was 1024 by 768 pixels. All stimuli were created and presented with the freely available Psy-

chtoolbox 362,60 extension for Matlab .

Thememory items and the probe consisted of coloured disks with a visual angle of 6.69�, which were presented in the centre of the screen.

Their colours were randomly drawn from RGB conversions of 48 equiluminant colours equally distanced on the CIELAB colour wheel, which

were extracted from the freely available Matlab extension MemToolbox.63 A grey background (RGB = 128, 128, 128) was maintained
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throughout the experiment. A black fixation dot with a white outline (0.25� of visual angle) was displayed in the centre of the screen at all times

except during the presentation of the cue. The cue was a number, ‘‘1’’ or ‘‘2’’, indicating the serial position of the task-relevant (‘‘cued’’) item in

that trial, presented in Arial font in the centre of the screen (0.5� visual angle). The impulse was a large white disk, displayed in the centre of the

screen with a visual angle of 13.38�. The response screen contained the probe in the centre of the screen and a colour wheel surrounding the

probe, which had a diameter of 10.05� and a width of 0.55� visual angle. A white line reaching from the centre to the edge of the colour circle

indicated the momentary probe colour on the colour wheel. In each trial, the colour wheel was randomly rotated and a random colour was

assigned to the probe disk. Responses were collected with an Xbox controller. Following a response, a happy or a sad smiley face was pre-

sented at the centre in Arial font, indicating accuracy (i.e., whether the absolute error was less or more than 30�).

METHOD DETAILS

The overview of a trial is depicted in Figure S1. The experiment consisted of 1536 trials, which were completed in four consecutive sessions

that were separated by breaks. Participants determined the duration of the breaks. In each session participants completed 24 blocks, and

after each block an average score per block was presented as feedback. Participants could start each block by pressing the SPACE bar, after

which trials continued automatically until all the trials in the blockwere completed. At the beginning of each block, a ‘‘Get Ready’’ warningwas

presented first, after which the trials commenced.

Each trial started with the presentation of a fixation dot, which was shown for 700 ms on a grey background. This was followed by the

serial presentation of two colours for 200 ms duration, each followed by a 900 ms delay. The cue was presented next for 200 ms, and a

delay of 900 ms followed it. Next, the impulse signal was presented for 100 ms, and a consecutive delay was on display for 500 ms. The

response screen was displayed next and stayed on the screen until a response was submitted. When the response screen was on display,

participants could move the left stick on the controller to rotate the black bar presented on the probe, and change the colour of the probe

circle. Once the desired colour was selected, the response was submitted by pressing X on the controller. The response was followed by a

delay of 150 ms after which feedback was presented for 300 ms. The next trial began automatically after a random jitter with a range of 500

to 800 ms.

QUANTIFICATION AND STATISTICAL ANALYSIS

EEG Acquisition and pre-processing

The EEG was recorded with Brainvision Recorder software, and a TMSI Refa 8-64/72 amplifier using 62 Ag/AgCl sintered electrodes, which

were placed according to the international 10-20 system. The data were recorded in reference to the average of all electrodes at a sampling

rate of 1000 Hz. The ground electrode was placed on the sternum, and eye movements were tracked via bipolar electrooculography with

vertical electrodes above and below the left eye, and two horizontal electrodes on the ipsilateral sides of both eyes. The resistance at all elec-

trodes was kept below 7 kU throughout the experiment.

Filtering and preprocessing were handled via the Matlab extensions Fieldtrip64 and EEGLAB.65 The data were re-referenced offline to the

average of both mastoids. For the multivariate analyses on voltage values, the data were downsampled to 500 Hz, and filtered at 0.1 Hz high-

pass and 40 Hz low-pass. Alpha power amplitudes were acquired by bandpass filtering the EEG signal with a 8 Hz high-pass and 12 Hz low-

pass, by applying the Matlab function presented below to the data on each channel:

abs(hilbert(eegfilt(data, sample_rate, low_pass, high_pass)));

where low_pass and high_pass corresponded to the 8 and 12 Hz filters applied to our EEG data, and sample_rate corresponded to the 500 Hz

sampling rate. The filter output was Hilbert transformed and the absolute of the product was calculated to get the real values of the

transformation.

The voltage data and alpha power amplitudes were separately epoched to the onset of the memory items, the cue, and the impulse,

covering a range starting from -150 ms relative to their onset until the onset of the next stimulus, thus forming distinct epochs for item 1,

item 2, cue and impulse. Semi-automatic artefact rejection was completed by marking trials with high voltage variations and then inspecting

all trials visually for channel drifts, muscle and eye artefacts. Drifting channels were interpolated using the spherical head model, whereas

epochs with other artefacts and blinks were excluded from the analyses. In total 13.24% of the Item 1 epochs, 10.7% of the Item 2 epochs,

10.76% of the Cue epochs, and 9.99% of the impulse epochs were excluded.

Multivariate analyses

Unless stated otherwise, all analyses were pre-registered at https://osf.io/uvxe7/. The decoding analyses were restricted to the 17 posterior

channels (P7, P5, P3, P1, Pz, P2, P4, P6, P8, PO7, PO3, POz, PO4, PO8, O1, Oz andO2), replicating earlier studies that investigated visual work-

ing memory by means of impulse perturbation.11,19,20

Analysing the time window of interest

The primary analysis aimed to investigate the accuracy of trial-specific colour decoding, which was calculated using the data within a time

window of interest. This time window of interest covered 100-400ms relative to the presentation of a stimulus (e.g., memory item or impulse).
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This window was based on earlier studies, in which it was applied to capture the bulk of the EEG response to the eliciting stimulus, and in

particular the dynamic response to the impulse.11,18–20 First, the data were baselined by subtracting the average activity within the aforemen-

tioned period, which was done separately for each trial and electrode. Next, the data were downsampled by calculating the moving average

over a 10 ms window. These downsampled values were then pooled over all 17 posterior electrodes, which yielded a single spatio-temporal

pattern for each trial.

The trials were assigned to the closest one of 16 equidistant bins that covered the pre-determined colour-space, and were re-labelled with

the centre value of that bin. This was repeated three times to cover the pre-determined colour-space (from 0� to 337.5�, 7.5� to 345�, and 15�

to 352�, each in steps of 22.5�), thus providing 16 different colour conditions in each of the three runs. Next, the trials were partitioned into 8

folds with seven folds serving as the training set. Within the training set, the number of trials in each colour condition were equalized by sub-

sampling the data. Subsequently, the data within each colour condition were averaged, forming 16 condition-specific spatio-temporal

patterns. These spatio-temporal patterns of colour conditions were then convolved with a half cosine basis set raised to the 15th power to

reduce noise and pool information across similar colours.20 The similarity between test trials and the averaged training data was quantified

in Mahalanobis distances,66 yielding 16 distance values for each test trial. The covariance matrix was estimated from the entire training set by

using a shrinkage estimator.67 The distance values were mean-centred and sign-reversed, so that positive values indicated higher similarity.

Finally, the values were convolved with a cosine-similarity function of the colour space (i.e., on the colour wheel). The product was the trial-

specific decoding accuracy. The procedure was repeated 100 times with random folds and random sub-sampling, in order to avoid sampling

biases. The reported decoding accuracy for each participant was calculated by averaging all the products of all repetitions and all trials to get

a single value per participant.

Time-course analyses

The time-course of the memory-related dynamic signal was investigated by sliding a 100 ms time-window across the epoch.20 In each step,

data within the windowwere baselined by subtracting themean activity within, and then the residual activity was downsampled to 100 Hz. The

data were then pooled over electrode space, yielding the spatio-temporal pattern at that time point. The time-course analysis was highly

similar to the analysis of the time window of interest. The trials were first re-labelled in accordance to the colour-space. The trials were divided

into 8 folds with stratified sampling so that all conditions had an approximately equal representation in each fold. The training was set formed

by 7 folds and the trials in these folds were distributed across 16 bins. The number of trials in each bin was equalizedwith random subsampling

in order to avoid bias, and the data in each bin was averaged to form temporal patterns for each colour bin at each time point. These patterns

were smoothed by convolving it with a half cosine basis set raised to the 15th power.20 Themeasure of similarity between the test trials and the

16 averaged colour patterns was calculated at each time point in Mahalanobis distances. A shrinkage estimator67 was used to estimate the

covariancematrix from the training set. The distancemeasures at each time point were reverse-signed andmean-centred, and then scaled by

cosine convolution of the modelled colour space. The output was the decoding accuracy at each time point. The procedure was performed 3

times, once for each colour-space, and repeated 100 times to avoid sampling bias. The output was averaged over colour spaces, repetitions

and trials for each participant.

Post-hoc, we conducted another time-course analysis on (absolute change in) alpha power, which was not included in the preregistration.

The analysis was identical to the above, but applied to filtered 8-12 Hz EEG data, which was baselined over -200 to 0 ms relative to cue and

impulse onset. The data were also downsampled to 125 Hz to save computational time. Finally, we also conducted the same time-course

analysis on the EOG data to ensure the absence of any spatial correlation.

Representational similarity analyses

Representational similarity analyses48 (RSA) was used to parametrically assess the relationship between colours during memory encoding

and during the memory delay following the impulse (using a similar method as Wolff et al.19). For the RSA, the EEG data from the same

pre-determined 17 posterior electrodes within the time window (100 to 400 ms relative to a stimulus or an impulse signal onset) were pre-

pared as in the decoding analysis of the time window of interest. The trials were re-labelled according to the first colour-space (0� – 337.5�

on the colour wheel) and grouped into 16 bins. The number of trials in each bin were equalized and 16 spatio-temporal patterns were

generated by averaging trials in each bin. The pairwise differences between all bins were calculated in Mahalanobis distances to form

the representational dissimilarity matrix (RDM). The covariance matrix was estimated from the training set with the use of a shrinkage esti-

mator.67 The entire procedure was repeated 100 times to account for selection biases and the final RDM was averaged over all repetitions

for each participant.

The RDMwas tested by the linear regression of twomodels. The firstmodel covered the circular nature of 16 colour bins centred according

to the first colour space. In other words, thismodel specifically assessed the hue differences in terms of angular space on the colour wheel. The

second model was based on the behavioural output, which showed that the responses clustered around three primary colours. The second

model thus assessed if the differences in neural space for the 16 colour bins could be explained by the differences between the three

frequently reported discrete colours (green-blue, red and yellow). Both models were first converted to z-scores. Next, the RDM of each

participant was regressed against each model separately. The diagonal segment for the RDM and models was excluded from analyses.

The standardized slopes (beta values) were taken as an indication of the fit. The mean beta values were contrasted against zero by using

a group permutation test.
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Statistical assessment

Trial-wise decoding accuracy was averaged for each participant, yielding a single output (at each time point) per participant. The average

decoding accuracy over all participants was contrasted against a null distribution (one-sided). In order to form this null distribution, the

sign of the mean decoding accuracy (per participant) was flipped 100,000 times with 50 % probability, and the resultant mean was taken.

The proportion of the null distribution larger than the observedmean accuracy was calculated as the p value, which was labelled as significant

if it was smaller than 5% (p < 0.05). For the time-course analysis, an additional cluster correction was applied to control for multiple compar-

isons, where the cut-off was set to 0.05 (p < 0.05). Confidence intervals were built by bootstrapping themean (nperm = 100,000). When decod-

ing accuracies for two conditions were contrasted, the difference of these two conditions was calculated for each participant, and this group

vector was tested against zero by using the same sort of permutation test as explained above. The RSA was similarly assessed by means of a

group permutation test (nperm = 100,000), which was applied on the beta values of the participants, reflecting the model fit to the pairwise

differences reported in the RDMs.
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