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SUMMARY

The continuous flow of experience that characterizes real-life events is not re-
corded as such in episodic memory but is condensed as a succession of event seg-
ments separated by temporal discontinuities. To unravel the neural basis of this
representational structure, we recorded real-life events using wearable camera
technology and used fMRI to investigate brain activity during their temporal un-
folding in memory. We found that, compared to the representation of static
scenes in memory, dynamically unfolding memory representations were associ-
ated with greater activation of the posterior medial episodic network. Strikingly,
by analyzing the autocorrelation of brain activity patterns at successive time
points throughout the retrieval period, we found that this network showed
higher temporal dynamics when recalling events that included a higher density
of event segments. These results reveal the key role of the posterior medial
network in representing the dynamic unfolding of the event segments that consti-
tute real-world memories.

INTRODUCTION

Decades of cognitive, neuropsychological, and neuroimaging research on episodic memory have deep-

ened our understanding of the neurocognitive processes supporting the ability to remember past

events.1–5 However, most studies have focused on memory for static stimuli (e.g., lists of words or pictures),

so important questions remain about how the dynamic unfolding of events is represented. People make

sense of the continuous stream of experience by segmenting it into meaningful units (i.e., events and

sub-events), with this segmentation process playing a key role in the temporal structure of memory repre-

sentations.6–8 Memories are composed of a succession of event segments (i.e., moments or slices of prior

experience) that are organized in chronological order9,10 and usually include temporal discontinuities in the

unfolding of events: Parts of the continuous flow of information that characterized the previous experience

are omitted during event recall.11–13 This structure of memories allows one tomentally represent events in a

temporally compressed form, such that it usually takes less time to remember an event than it took for this

event to occur in the past.14–18 To date, however, the neural basis of this temporal structure of real-world

memories remains unclear.

The neural basis of memories of real-life events has beenmainly investigated in studies of autobiographical

memory (Note that we refer to thememories of real-life events that we investigated in this study as episodic

rather than autobiographical because the events recalled were very recent and, according to the influential

view of autobiographical memory proposed by Conway,19 these memories only become truly autobio-

graphical when they are integrated with autobiographical knowledge structures (i.e., general knowledge

about the self and one’s personal life), so that they are retained in a durable form. However, this termino-

logical distinction between episodic and autobiographical memories is not central to the main purpose of

our study, which was to investigate the neural mechanisms underlying the dynamic unfolding of events

within memory representations). Functional neuroimaging studies have shown that these memories are

supported by a specific set of brain regions that includes the medial temporal lobes (e.g., hippocampus,

parahippocampal gyrus), cortical midline structures (medial prefrontal cortex, precuneus, posterior cingu-

late cortex, and retrosplenial cortex), and lateral frontotemporoparietal areas.20–24 Within this core mem-

ory network, the hippocampus and medial parietal cortex have been associated with the process of ‘‘scene

construction’’ (i.e., the generation, maintenance, and visualization of complex spatial scenes), which is

considered one of the key components of past event recall.25 Supporting this view, it has been shown
iScience 25, 105391, November 18, 2022 ª 2022 The Author(s).
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that episodic memory retrieval and the imagination of fictitious experiences are associated with overlap-

ping patterns of brain activation, notably in the hippocampus, parahippocampal gyrus, and retrosplenial

cortex.26 However, most studies on scene construction required participants to mentally represent static

scenes (e.g., visualizing an old library),27 whereas, as noted above, memories for real-life events involve

a dynamic succession of moments of prior experience.

A recent fMRI study has provided important insight into the neural mechanisms underlying the dynamic

unfolding of naturalistic events in episodic memory.28 During the initial encoding of events from a movie,

event segmentation processes were evidenced at multiple time scales throughout the cortical hierarchy:

Although early sensory regions represented relatively short-lived segments of experience, the posterome-

dial cortex and angular gyrus supported more extended episode representations that corresponded

closely to event boundaries identified by human observers. Event boundaries in these higher-level areas

triggered the hippocampus to encode the current situation model into episodic memory, which was later

reinstated in the posteromedial cortex and angular gyrus during memory retrieval (see also refs. 29–31). In a

recent reanalysis of the same dataset, Musz and Chen32 further showed that, relative to temporally precise

utterances during recall, compressed event representations were associated with reduced neural reinstate-

ment in the posteromedial cortex.

Although these results present an important first step toward understanding the temporal dynamics of

event perception and memory, the movies that were used differed from real-world events in important

ways, notably because the events depicted were summarized using film editing techniques such as cuts,

which affects memory representations.33 Thus, the dynamic unfolding of real-world memories remains to

be elucidated. As noted above, these memories are not literal reproductions of past events, but instead

consist of a succession of event segments that typically includes temporal discontinuities. The density of

the segments of experience that constitute memories, and therefore the amount of temporal discontinu-

ities within memories, can vary substantially across events, leading to more or less compressed represen-

tations.17 Here, we aimed to unravel the neural basis of this dynamic unfolding of the units of experience

that constitute real-world memories.

We first sought to examine brain regions that are involved in remembering dynamic and temporally

extended events as compared to static scenes. Memories were prompted using a paradigm that capitalizes

on wearable camera technology to investigate the remembrance of real-life experiences.12,34,35 Specif-

ically, participants performed a 40-min walk on a university campus during which they experienced a series

of daily life events, whereas the content and timing of these experiences were recorded using a wearable

camera36 (Figure 1A). Immediately after the walk, participants took part in an fMRI session in which they had

to remember events that were cued by pictures that had been taken during their walk (Figure 1B). By con-

trasting these episodic memories to a control condition involving the mental representation of static

scenes, we identified the brain regions that specifically underlie the recall of temporally unfolding events.

We focused on the recall of real-world events rather than movies because the former involve a sense of

agency that is absent from passive video viewing but may play an important role in structuringmemory rep-

resentations, given that a key function of episodic memory is to remember actions and goal-relevant

information.1,37,38

The central aim of the current study was then to compare the neural correlates of episodic memories that

are associated with different event compression rates. Previous studies have shown that the density of the

units of experience that constitute real-world memories, and therefore the temporal compression of

events, is not constant but varies with the content of remembered events. In particular, memories for ac-

tions contain a higher density of experience units than memories for spatial displacements.12,13,17 Indeed,

spatial displacements involve a relatively simple structure that is primarily organized in terms of changes in

direction (i.e., turns), whereas actions typically have a more complex and fine-grained structure in which

event segments correspond to changes in goals and sub-goals.39 This difference in the density of event

segments should be reflected in the dynamics of neural activity when remembering the unfolding of events.

Our main hypothesis is that the posterior medial network, which is thought to support the representation of

event models,40–42 plays a key role in representing the temporal structure of memories. Indeed, regions

such as the retrosplenial cortex, posterior cingulate cortex, precuneus, and angular gyrus might contribute

to the integration of successive changes in experience when remembering the unfolding of events, and
2 iScience 25, 105391, November 18, 2022



Figure 1. Experimental procedures

(A) Overview of the walk on the campus of the University of Liège. Locations in which participants performed an action are

indicated by blue circles and the paths taken to go to these locations are indicated by yellow lines. For each event, an

example of picture taken by the wearable camera that was used as cue for the episodic memory task is provided.

(B) Trial structure in the episodic memory conditions (top panel) and in the control condition (bottom panel). Participants

were first presented with a cue specifying the experimental condition. In the episodic memory conditions, a picture taken

during the walk of the participant (corresponding to the beginning of an action or a spatial displacement) was then

presented on the screen. As soon as they identified the moment of the walk depicted by the picture, participants were

asked to remember the unfolding of the event, starting at the precise moment they identified on the picture. In the control

condition (i.e., scene condition), participants were asked to imagine the visual scene depicted by the picture (which was

not part of their walk). For each condition, participants were asked to close their eyes and to press a response key once

they started to perform the task; they did the task with eyes closed until the presentation of a sound signal (which was

presented 12 s after their button press). Finally, each trial ended with the presentation of a Likert scale on which

participants rated the temporal dynamics of their mental representation (i.e., static versus dynamic). In total, 20 trials were

presented for each condition. FMRI analyses focused on the time interval between the key press and the end of the 12 s

period, thus corresponding to the phase of mental replay.
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might also maintain and elaborate integrated event representations.41 To test these hypotheses, we not

only examined brain activity over the entire duration of the retrieval period using classical univariate ana-

lyses, but also investigated to what extent multivariate patterns of brain activity change across time during

the unfolding of events in memory. To the extent that memories for actions contain a higher density of
iScience 25, 105391, November 18, 2022 3



Table 1. Behavioral data for the episodic memory (action, spatial displacement) and control (scene) conditions

Action Spatial displacement Scene

Representational dynamics 3.80 [3.70, 3.88] 3.90 [3.79, 3.96] 1.04 [1.01, 1.10]

Number of experience units 8.51 [7.51, 9.55] 4.93 [4.08, 5.78] –

Number of experience units/min 12.42 [10.28, 15.62] 5.02 [4.05, 6.56] –

Clarity 5.88 [5.48, 6.32] 4.68 [4.31, 5.19] 5.34 [4.80, 5.82]

Easiness 6.09 [5.60, 6.57] 4.93 [4.55, 5.42] 5.32 [5.02, 5.74]

Re-experiencing 5.71 [5.18, 6.20] 4.94 [4.57; 5.43] –

Note: Data represent 20% trimmed means and their 95% confidence intervals. Ratings of the dynamics of mental represen-

tations obtained during scanning ranged from 1 = ‘totally static’ to 4 = ‘totally dynamic’. Ratings for clarity, easiness and re-

experiencing made during the post-scan debriefing ranged from 1 = ‘not at all’ to 7 = ‘extremely’.
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experience units, we expected that they would be associated with higher temporal dynamics (i.e., lower

autocorrelations) of brain activity patterns at successive time points during the retrieval period.

RESULTS

Behavioral results

Participants successfully identified the presented pictures for nearly all trials (M = 98.24%, 95% CI [98.11%,

98.36%]). As expected, the ratings obtained for each trial during scanning (see STAR Methods) indicated

that the mental representations formed in the two episodic memory conditions were dynamic, whereas

the mental representations formed in the control condition were static (see Table 1 for mean ratings).

Ratings were not significantly different between the two memory conditions (i.e., action and spatial

displacement), t = 1.74, p = 0.108, x = 0.34.

The verbal descriptions of memories obtained immediately after the scanning session showed that partic-

ipants re-experienced a succession of experience units when recalling the events (see STAR Methods).

Memories of actions contained more experience units than memories of spatial displacements, t = 7.29,

p< 0.001, x = 0.85 (Table 1). To assess the density of recalled experience units, we computed the number

of reported units per minute of the actual event duration (see STAR Methods). In line with previous

studies,12,13,17 the density of experience units was higher when recalling actions than spatial displace-

ments, t = 6.77, p<0.001, x = 0.88. As shown in Table 1, all memory representations were judged as clear,

easy to recall/construct, and associated with a subjective feeling of re-experiencing the events.

fMRI results

Univariate activity associated with episodic memories versus scene representations

Although our main interest was in the temporal dynamics of brain activity patterns during event recall, we

first sought to check that our novel paradigm would engage the brain network that has been associated

with memories for real-life events in previous studies. To do so, we conducted univariate analyses to iden-

tify brain regions within the autobiographical memory network (see STAR Methods) that showed higher

activity when recalling the unfolding of events compared to static scene representations (see Figure 2A,

Table 2). Results showed that the recall of actions (action > scene) was associated with increased activation

in bilateral parietal areas, including the precuneus, posterior cingulate, retrosplenial cortex, and angular

gyrus. Moreover, we found higher activity in the superior/middle frontal gyrus, the posterior middle tem-

poral gyrus, middle occipital cortex, and cerebellum. When looking at memories of spatial displacements

(spatial displacement > scene), similar activations were observed in medial parietal areas (i.e., precuneus,

posterior cingulate, and retrosplenial cortex). Additional clusters of activation were detected in the right

angular gyrus/middle occipital cortex, and bilaterally in the middle frontal gyrus. Figure 2A also illustrates

overlapping activations associated with each contrast, which show that the two types of episodic memories

were associated with common activation in medial parietal areas, including the precuneus, posterior cingu-

late cortex, and retrosplenial cortex.

Next, we compared the two episodic memory conditions (actions versus spatial displacements; see Fig-

ure 2B and Table 3). The retrieval of actions was associated with higher activity in the precuneus, left middle

frontal gyrus, right middle temporal gyrus, middle cingulate cortex, and angular gyrus compared to the
4 iScience 25, 105391, November 18, 2022



Figure 2. Brain regions activated when recalling the unfolding of events (univariate analyses)

(A) Regions that were more activated when recalling actions and spatial displacements compared to the scene

construction condition.

(B) Regions showing differential activity when recalling actions and spatial displacements. Activations are displayed at p<

0.001 (uncorrected) within the autobiographical network mask.
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retrieval of spatial displacements. The reverse contrast (spatial displacements > actions) revealed

increased activations in the retrosplenial cortex, the right parahippocampal gyrus, and the right middle oc-

cipital gyrus.

Patterns of brain activity across recall conditions

We next examined whether distributed patterns of brain activity in the autobiographical memory network

(using the same mask as for the univariate analyses) reflected the content of memories, i.e., whether these

patterns differed systematically between experimental conditions. Using representational similarity anal-

ysis, we compared all recall trials of the three experimental conditions (actions, spatial displacements,

and scenes) with trials of the same condition as compared to trials of other conditions. A repeated mea-

sures ANOVA revealed a significant main effect of within versus between similarities (F(1,20) = 34.58, p =

<0.0001), which showed significantly higher within condition correlations compared to between condition

correlations for all three conditions (Figure 3A). There was no main effect of condition (action/spatial

displacement/control; F(2,40) = 1.21, p = 0.308) and no interaction (F(2,40) = 1.49, p = 0.238).

One may argue that these higher similarities for trials within conditions might be caused by similarities in

types of neural processes engaged during recall (e.g., different amounts of memory search processes)

rather than recalled contents. To address this issue, we further computed the similarity of each of the

four recall repetitions of an event with the activity pattern during their image cue and compared it to

the similarity with the image cues of the other events of the same condition (Figure 3B). Because similarities

within trials tend to be higher than between trials, we calculated, for each event, neural activity during the

recall phase in trial m with activity during the image cues in trials nsmof the same event and compared this

to correlations with image cues of the other events in the same condition. A repeated measures ANOVA

showed a significant main effect of cue type (own versus other events; F(1,20) = 17.05, p = 0.0005), no

main effect of condition (F(2,40) = 1.51, p = 0.235), and no interaction (F(2,40) = 0.67, p = 0.499).
iScience 25, 105391, November 18, 2022 5



Table 2. Brain regions showing increased activity for episodic memories as compared to scene representations

Brain regions Side

MNI coordinates
Cluster Size

(n� voxels) tX Y Z

Actions > scenes

Precuneus/PCC/RSC R 12 �62 36 2111 11.46

R 8 �54 44 9.93

R 8 �38 26 8.35

L �12 �60 20 8.79

R 12 �62 28 10.99

Middle cingulate gyrus L �2 �32 40 28 6.71

Middle/superior frontal gyrus L �40 10 54 84 6.40

R 30 14 58 35 5.85

Middle frontal gyrus L �24 30 48 172 4.73

AG R 44 �68 36 165 5.66

L �58 �56 26 21 4.40

MTG/AG L �48 �54 20 66 5.64

Middle OC L �40 �72 38 64 5.38

MTG R 62 �52 10 20 5.18

Cerebellum L �6 �54 �40 28 4.18

Spatial displacements > Scenes

Precuneus/PCC/RSC L �10 �58 18 1983 11.03

R 12 �52 20 8.64

R 4 �44 12 7.75

R 8 �64 44 7.48

AG/Middle OC R 42 �70 34 92 537

Middle frontal gyrus R 28 16 54 31 4.91

L �34 6 60 40 4.72

L �38 8 54 4.40

L �22 26 42 23 4.17

Note: Coordinates refer to brain regions identified in the SPMs thresholded at p< 0.001 (uncorrected) that were statistically

significant (at p< 0.05) using SVC (see STAR Methods). PCC = Posterior cingulate cortex; RSC = Retrosplenial cortex; OC =

Occipital cortex; AG = Angular gyrus; MTG = Middle temporal gyrus.
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Overall, these initial analyses suggest that voxel patterns reflected remembered contents and can thus be

used to analyze the temporal dynamics of episodic memories, which we did in the next step.

Temporal dynamics of brain activity patterns during event recall

We computed temporal autocorrelations between successive patterns of brain activity as a measure of the

temporal dynamics of memories (see Figure 4A). A searchlight analysis revealed higher temporal dynamics

(i.e., lower autocorrelations) during the recall of episodic memories compared to the representation of

static scenes. Compared to the control condition, the recall of actions was associated with higher temporal

dynamics in the precuneus, posterior cingulate cortex, angular gyrus, and lingual gyrus (t(20) = 10.8; pcorr<

0.05, FWE corrected using TFCE; Figures 4B and 4C). This extended cluster also included themiddle frontal

gyrus, frontal pole, middle temporal gyrus, and precentral gyrus. Compared to the control condition, the

recall of spatial displacements was associated with higher temporal dynamics in the posterior cingulate

cortex, cuneus, angular gyrus, and lateral occipital cortex (t(20) = 5.48; pcorr< 0.05, FWE corrected using

TFCE; Figures 4B and 4C).

Next, we compared the temporal dynamics of the two types of episodic memories and found higher tem-

poral dynamics for the recall of actions than spatial displacements in the lateral occipital cortex, precuneus,
6 iScience 25, 105391, November 18, 2022



Table 3. Brain regions showing differential activity for actions versus spatial displacements

Brain regions Side

MNI coordinates
Cluster Size

(n� voxels) tX Y Z

Action > Spatial displacement

Middle frontal gyrus L �32 26 36 34 6.25

Precuneus L �2 �62 38 131 5.51

MTG R 64 �48 6 22 5.45

Middle cingulate gyrus R 2 �26 38 21 5.39

AG L �58 �54 30 24 4.82

Spatial displacement > Action

RSC L �12 �52 12 483 9.44

R 12 �46 6 363 7.84

PHG/FG R 20 �34 �10 170 7.68

Middle occipital gyrus R 42 �74 26 21 4.28

Note: Coordinates refer to brain regions identified in the SPMs thresholded at p< 0.001 (uncorrected) that were statistically

significant (at p< 0.05) using SVC (see STAR Methods). RSC = Retrosplenial cortex; MTG = Middle temporal gyrus; PHG =

Parahippocampal gyrus; FG = Fusiform gyrus; AG = Angular gyrus.
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posterior cingulate, cuneus, and angular gyrus (t(20) = 7.06; pcorr< 0.05, FWE corrected using TFCE, Fig-

ure 4B/C). None of the opposite contrasts showed any significant differences.

In addition to this whole brain analysis, we conducted a second searchlight analysis within the autobio-

graphical network mask that we used for the univariate analyses (Figure 5). This analysis revealed

significantly higher temporal dynamics during the recall of actions compared to the control task within

the precuneus and posterior cingulate (cluster 1: t(20) = 12.3; pcorr< 0.05, FWE corrected using TFCE), mid-

dle temporal gyrus (cluster 2: t(20) = 5.52; pcorr< 0.05, FWE corrected using TFCE), superior frontal gyrus

(cluster 3: t(20) = 4.48; pcorr< 0.05, FWE corrected using TFCE), lateral occipital cortex and angular gyrus

(cluster 4: t(20) = 4.15; pcorr< 0.05, FWE corrected using TFCE). We also found higher temporal dynamics

for the action condition compared to the recall of spatial displacements within one cluster including the

precuneus, lingual gyrus, cuneus, angular gyrus, and the lateral occipital cortex (t(20) = 8.75; pcorr< 0.05,

FWE corrected using TFCE). The contrast between the spatial displacement and control conditions did

not yield significant differences within the autobiographical network mask.

DISCUSSION

The aim of our study was to better understand the neural mechanisms underlying the dynamic unfolding of

events within episodic memory representations. Compared to mental representations of static scenes,

memories of dynamic events elicited greater activation in medial parietal areas (including the precuneus,

posterior cingulate cortex, and retrosplenial cortex) and in the angular gyrus. Furthermore, when investi-

gating the autocorrelation of patterns of brain activity throughout the retrieval period, we found that these

posterior brain regions showed greater temporal dynamics when remembering dynamic events compared

to static scenes. These effects were more pronounced for memories that included a higher density of expe-

rience units (i.e., memories for actions compared to spatial displacements). Of interest, the posterior brain

regions that were identified as showing higher temporal dynamics without a priori location constraints (i.e.,

in the whole-brain searchlight analysis) overlapped with regions previously identified as part of the auto-

biographical memory network.

Memories for real life events depend on an extended frontotemporoparietal network, but the exact func-

tions of specific regions within this network are not fully understood.20–24 Medial parietal areas, including

the precuneus, posterior cingulate, and retrosplenial cortex, are central areas of this network24 that share

reciprocal connections43 and have been referred to as the posterior medial episodic system.28,40,41 A first

contribution of the present study is to show that this posterior network is more active when recalling the

dynamic unfolding of events compared to mentally representing static scenes. Remembering the
iScience 25, 105391, November 18, 2022 7



Figure 3. Content-specific memory representations in the autobiographical memory network

(A) For each condition (here illustrated for actions on the left panel), we compared trials within each condition (yellow)

versus all other trials (green). Distributed patterns of neural activity were more similar when recalling events from the same

condition than events from different conditions. This effect is observed across all experimental conditions (right panel).

(B) For each event in each condition (here illustrated for actions, event 1, on the left panel), we compared the similarity

between the recall period and the image cue of the same event (red) to image cues of other events (blue), excluding same

trial similarities (diagonal). Recall patterns were more similar to their event-specific image cue than to image cues of other

events in the same condition (right panel). This effect is observed across all experimental conditions. Dots show

descriptive means for each subject; individual observations are linked with lines.
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unfolding of events involves the retrieval of moments or slices of prior experience (each moment itself con-

sisting of a bounded set of various event features) that need to be sequenced and integrated into a stable

and coherent representation.1,44 The posterior medial episodic network is considered to play a central role

in the elaboration and use of event models (i.e., models that specify the spatial, temporal, and causal re-

lationships between entities within a particular context),40–42 and may thus contribute to organize and inte-

grate the sequence of experience units that represent the unfolding of events during episodic recall.

Another important aim of this study was to compare the neural correlates of episodic memories that are

composed of different densities of experience units. Consistent with previous findings,12,13,17 our behav-

ioral results showed that the density of experience units was higher when remembering actions compared

to spatial displacements. Actions typically have a more complex and fine-grained segmental structure than

spatial displacements,39 which is manifest when mentally representing the unfolding of prior experience

during episodic recall. At the neural level, we found that some regions of the posterior medial episodic

network, including the precuneus, were more active when remembering actions compared to spatial dis-

placements. Furthermore, andmost importantly, we observed higher temporal dynamics within patterns of

activity in the precuneus, as well as the posterior cingulate and occipital cortex, when remembering the

course of action events than when remembering spatial displacements or mentally representing static

scenes. The precuneus has been associated with central aspects of autobiographical memory retrieval,

including visuospatial imagery, first-person perspective taking, and an experience of agency.43 Of interest,

recent findings suggest that the precuneus plays a causal role in the dynamics of memory retrieval,45 and

may notably contribute to the temporal structure and order of moments of past events.46,47 The higher

temporal dynamics of activity patterns in the precuneus and other posterior regions that we observed
8 iScience 25, 105391, November 18, 2022



Figure 4. Temporal dynamics of patterns of brain activity during the recall period

(A) Within each searchlight sphere (first volume blue circle), we correlated 10 consecutive volumes (starting with the fifth

volume after the recall onset to account for the delayed hemodynamic response function), resulting in a 103 10 spearman

rho correlation matrix. From this matrix we extracted the mean of the first off-diagonal (i.e., correlations of patterns

between all pairs of temporally adjacent volumes). This procedure was applied to all trials of all conditions and for all

sphere locations, resulting in three brain maps (one for each condition) indicating the averaged autocorrelation as an

(inverse) measure of the temporal dynamics of episodic recall.

(B) The searchlight analysis revealed significantly higher temporal dynamics for the action condition compared to the

control and spatial displacements conditions. Spatial displacements showed higher temporal dynamics compared to the

control condition.

(C) The conjunction of higher temporal dynamics for actions compared to both the spatial displacements and control

conditions is shown in purple (The conjunction of spatial displacements versus control and of action versus control is not

shown as it overlaps completely with the action versus control contrast.).
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suggest that these regions are sensitive to changes in recalled content during the retrieval period and may

thus contribute to implementing and organizing transitions between experience units when representing

the temporal unfolding of past events. This interpretation fits with previous research showing that patterns

of activity in posterior medial regions are less similar across than within segments of a video episode.28

We also found that the angular gyrus was more active and showed greater temporal dynamics when

remembering actions compared to spatial displacements. Several studies have established relationships

between activity in the angular gyrus, especially left-lateralized, and the amount of recollected information

and strength of recollection.48–51 Although the exact role of this region has been a matter of considerable

debate,52,53 a recent unifying framework has proposed that the angular gyrus supports the integration and

representation of the multimodal contextual details that constitute a mnemonic representation and pro-

mote vivid re-experiencing.54 The present findings suggest that this integration process contributes to rep-

resenting the dynamic unfolding of experience units within episodic memory representations.

Compared to the recall of actions, the recall of spatial displacements was associated with increased activity

in the retrosplenial cortex and parahippocampal gyrus. These regions are well known for their role in spatial

navigation, and notably respond to relevant spatial elements of the environment such as landmarks.55 Of
iScience 25, 105391, November 18, 2022 9



Figure 5. Searchlight analysis of temporal dynamics within the autobiographical network mask

(A). This analysis revealed significantly higher temporal dynamics for the action condition compared to both the control

and the spatial displacement condition.

(B) The conjunction of higher temporal dynamics for actions compared to spatial displacements and compared to the

control condition is shown in green.
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interest, the parahippocampal gyrus coordinates observed in the present study overlap with those re-

ported in a previous study on the role of the parahippocampal place area on scene perception.56 Evidence

suggests that the parahippocampal place area and the retrosplenial cortex might play complementary

functions in building a coherent and detailed representation of a scene across several viewpoints.56,57 Spe-

cifically, it has been proposed that when viewpoint changes occur continuously in a scene, the parahippo-

campal place area is sensitive to changes in physical details across each view, thereby representing scenes

as a succession of individual representations of each view rather than a unique and integrated representa-

tion of multiple views. On the other hand, the retrosplenial cortex links the current and previous views of the

same scene, creating an integrated representation of this scene over changes in visual perspective.56 In the

current study, it is therefore possible that the parahippocampal gyrus and the retrosplenial cortex were

more active when remembering the unfolding of spatial displacements compared to actions because

the former implied more important updating and integration of successive views of the surrounding envi-

ronment when mentally traveling from one particular moment of past experience to the next.

The critical role of the hippocampus in the retrieval of episodic memories is well established.2 This region is

considered to play an important role in binding the various elements that constitute memories, including

information about the sequence of events.58–60 Therefore, one could have expected that in the present

study the hippocampus would be differentially activated when remembering events with different densities

of experience units, but this is not what we found. We have no ready explanation for this null result, but it is

worth noting that in previous work on memory for dynamic events, hippocampal activity was observed dur-

ing encoding but not during event recall.28 One possible explanation could be that hippocampal activity

during retrieval is transient in nature61 and thus was not captured by our analysis. Alternatively, the episodic

segments supported by the hippocampus may be substantially longer (�1 min)28 than the relatively short

recall periods that we analyzed (12 s). A third possibility is that the lack of hippocampal activity in the pre-

sent study is related to the fact that participants were highly familiar with the university campus where the

events took place. Indeed, it has been found that the hippocampus is involved in memory for a recently

learned, but not a highly familiar environment.62 In addition, in the present study, the events were recalled

four times, which may have further increased their familiarity. To investigate the possible effect of repeti-

tions, we conducted an additional RSA comparing the similarities of each trial to all other repetitions of the

same event. This analysis indicated that neural activity patterns remained overall stable across trial repeti-

tions for the action, spatial displacement, and control conditions (see Data S1 and Figure S2). In any case,

future studies should investigate the contribution of the hippocampus to the temporal dynamics of mem-

ories in more detail.
10 iScience 25, 105391, November 18, 2022



ll
OPEN ACCESS

iScience
Article
We investigated the temporal dynamics of brain activity as a function of the density of recalled experience

units by comparing memories for two types of events that have been repeatedly shown to differ in terms of

event compression rates (i.e., actions versus spatial displacements).12,17 However, it should be noted that in

addition to these differences in the density of recalled units, other event characteristics might also have

contributed to the observed differences in brain activity. For example, the action events mainly involved

interactions with focal objects in indoor environments, whereas spatial displacements involved larger-scale

outdoor environments.

Finally, it should also be noted that we do not consider the compression rates of events in episodic memory

to be fixed. On the contrary, compression rates can be voluntarily modulated according to retrieval goals.58

For example, when people scan their memory for a particular piece of information, they skip more event

segments and thus compression rates are higher than when they try to mentally relive the events.18,63

An interesting avenue for future research would be to use the method we developed for analyzing the tem-

poral dynamics of brain activity patterns to investigate the neural basis of this flexible modulation of event

compression during episodic retrieval.

In sum, the present study provides first insights into the neural correlates of the dynamic succession of

experience units that constitute memories for real-life events. Our results show that remembering the un-

folding of events activates posterior brain structures (including the precuneus, posterior cingulate cortex,

retrosplenial cortex, and angular gyrus) that support event models and may contribute to the representa-

tion and integration of episodic details to form coherent representations of the succession of moments of

prior experience. Furthermore, an important finding of the current study is that changes in patterns of ac-

tivity within these regions reflect differences in the density of recalled experience units, suggesting that the

posterior medial network plays an important role in the temporal dynamics of event recall and may notably

contribute to implement transitions between the units of experience that represent the unfolding of events.
LIMITATIONS OF THE STUDY

From a methodological perspective, it would be interesting in future studies to compare our method of

analysis of the temporal dynamics of brain activity patterns with other methods that detect state bound-

aries in activity patterns using hidden Markov models (HMM)28 or greedy state boundary search

(GSBS).64 HMM and GSBS were not applicable to our data for several reasons. First, these methods

have been applied to fMRI recordings ranging from 8 min64 up to 45 min,28 whereas recall trials in our study

were limited to 12 s. State boundaries might not be detectable within such short trials, as Geerligs et al.64

found that the algorithms start to struggle with short state durations. Second, HMM andGSBSmethods are

applied to group data, detecting state boundaries across participants. The real-life events experienced by

our participants were not completely comparable across participants, contrary to the standardized movies

used in the aforementioned studies. In future studies, applying state detection algorithms on the recall of

real-life events while taking these issues into account would be a promising next step for further character-

izing the representational dynamics of memories.

Another limitation of the present study is that, although the memories that we instigated involved events

happening in the real world, these events were constrained to be standardized across participants. This was

done to investigate events that clearly differed on the density of recalled experience units (i.e., actions

versus spatial displacements), based on previous behavioral findings.12,13 In future studies, it would be

interesting to use a similar paradigm with more idiosyncratic events that participants would record in their

own life circumstances and to investigate whether and how various event features (e.g., emotional signif-

icance, self-relevance, and familiarity) affect the representational dynamics of memories.
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Materials availability

This study did not generate new unique reagents.

Data and code availability

d The behavioral data and processed fMRI data (contrast files and subject-wise similarity maps) have been

deposited on OSF and are publicly available as of the date of publication. Accession numbers are listed

in the key resources table.

d Original codes have been deposited on OSF and are publicly available as of the date of publication.

Accession numbers are listed in the key resources table.

d Any additional information required to reanalyze the data reported in this article is available from the

lead contact on request.
EXPERIMENTAL MODEL AND SUBJECT DETAILS

Twenty-one right-handed students (13males and 8 females; mean age = 22.29 years, SD = 2.12, range = 18–

27 years) from the University of Liège took part in this study. All participants were highly familiar with the

university campus where the pre-scan walk took place. None of them reported a current use of psychoac-

tive medication or a history of a neurological or psychiatric disorder. Five additional participants were

tested but were excluded from the analyses because of noncompliance with the task, either during the

pre-scan walk (one participant) or in the scanner (four participants). A formal power analysis was not per-

formed because we did not find any prior study that involved a similar analysis as our main analysis of in-

terest (i.e., examining autocorrelations between patterns of brain activity across time). Thus, our sample

size was selected to be comparable to previous studies investigatingmemory for dynamic stimuli.28 All par-

ticipants gave their written informed consent to take part in the study, which was approved by the ethics
iScience 25, 105391, November 18, 2022 15

mailto:a.dargembeau@uliege.be
https://osf.io/4ske6/
https://doi.org/10.17605/OSF.IO/4SKE6
https://osf.io/4ske6/
https://doi.org/10.17605/OSF.IO/4SKE6
https://osf.io/4ske6/
https://doi.org/10.17605/OSF.IO/4SKE6
https://de.mathworks.com/
https://surfer.nmr.mgh.harvard.edu/
https://www.fil.ion.ucl.ac.uk/spm
https://fsl.fmrib.ox.ac.uk/fsl
https://www.r-project.org/
https://cran.r-project.org/web/packages/ez/index.html
https://cran.r-project.org/web/packages/ez/index.html
https://dornsife.usc.edu/labs/rwilcox/software/
https://dornsife.usc.edu/labs/rwilcox/software/


ll
OPEN ACCESS

iScience
Article
committee of the Medical School of the University of Liège and was performed in accordance with the

ethical standards described in the Declaration of Helsinki (1964).

METHOD DETAILS

Pre-scan session

Immediately before scanning, participants performed a series of daily life activities at different locations on

the campus of the University of Liège while wearing an Autographer (OMG Life Ltd., Kidlington, UK) tied

around their neck. The Autographer is a small wearable camera that automatically and silently takes a

continuous series of pictures from the first-person perspective through a 136� fish-eye lens, depending

on several electronic sensors (e.g., temperature, accelerometer, magnetometer, etc.). This device has

been used in recent neuroimaging and behavioral studies investigating episodic memories for real-life

events.36 To record the entire set of events as completely as possible, the Autographer was set to the fast-

est capture rate (approximately 10 pictures per minute).

The entire set of events was designed to simulate activities that college students would perform in their

daily life. It consisted of two kinds of events: goal-directed actions at specific locations, and spatial dis-

placements that did not involve any particular action other than walking from a place to another. These

two kinds of events correspond respectively to what Tversky et al.39 referred to as ‘‘events by hands’’

(i.e., interactions with objects; e.g., buying a snack) and ‘‘events by feet’’ (i.e., changes of location; e.g.,

going from the laboratory building to the bus stop). We initially planned to examine a third kind of events

that consisted in waiting at specific locations without doing any particular action (e.g., waiting at the bus

stop); this condition was included as we assumed it would involve fewer perceptual changes than the

two previous types of events. However, preliminary behavioral analyses (see Data S1 and Tables S1–S3) re-

vealed that this was not the case and that the variance in recalled elements (i.e., information about persons,

objects, thoughts, and perceptual details) was much higher in memories for waiting moments than in mem-

ories for actions and spatial displacements, showing that the former condition did not involve a homoge-

nous set of events (the waiting moments took place in public spaces, such as a bus stop, where many

different events could occur while participants were waiting). Thus, we decided not to report analyses

about waiting events in the main article because this heterogeneity in recalled contents makes the results

difficult to interpret, but these are available in Data S1, Table S4, and Figures S1–S3.

Participants were instructed to perform the following series of successive actions: First, they left the laboratory,

went to the bus stop, and stayed there as if they were waiting for the bus. After having waited approximately

2 min, they went to the campus shop to buy a snack of their choice. Next, they went to the elementary school

near theUniversity campus and stayed in front of the school for approximately 2min as if they werewaiting for a

kid. After that, participants went to the Speech and Language Therapy Service to post a letter in a particular

mailbox. Having posted the letter, they came back to the laboratory building to print a document and to

wait in the laboratory building hall (again for approximately 2 min) as if they were waiting for an appointment

with a professor. Then, they went to a cafeteria to buy a drink of their choice, after which they chose a table

inside the cafeteria to wait as if they were waiting for a friend. Next, participants went to a classroom andwaited

outside as if they were waiting for the beginning of a course. Finally, they were instructed to return to the lab-

oratory and answered an e-mail sent by the experimenter during the walk.

Before starting the walk, participants were given the letter that they should post, as well as 5 euros for pur-

chasing the snack and the drink. They were told that they could take the route they wanted to go from each

location to the next, but not to perform any additional actions during spatial displacements or waiting mo-

ments (e.g., using their smartphones, listening to music, or counting down time). In addition, participants

were asked to avoid obstructing the lens of the camera and to behave as naturally as possible. Finally, they

were informed that pictures taken during their walk would be presented during a subsequent fMRI session,

but nomention wasmade of thememory task. Instead, we used a cover story in which participants were told

that they would have to perform aesthetic judgments on the pictures in the scanner. We used an incidental

encoding paradigm because in everyday life memory encoding is most of the time an incidental process

that happens without intentional control.1

fMRI session

Immediately after the walk on campus, participants took part in an fMRI session that involved the recall of

events experienced during this walk, as well as a control condition that was intermixed with the episodic
16 iScience 25, 105391, November 18, 2022
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memory conditions. The entire task comprised 80 trials (20 trials in each condition). The order of trial pre-

sentation was randomized with the constraint that two subsequent trials of the same condition were not

presented in direct succession or with an interval of more than five trials.

Episodic memory tasks

In the episodic memory conditions (i.e., action, spatial displacement, and waiting conditions), participants

were asked to remember the unfolding of actions, spatial displacements, or waiting periods. Each trial

started with a fixation cross (with a variable duration ranging between one and 3 s) followed by the presen-

tation of a written experimental instruction (for 1 s), specifying the task that participants should perform on

the trial (i.e., remembering the unfolding of an event or remembering a particular moment of waiting).

Then, a picture taken during the pre-scan walk of the participant was presented, which corresponded to

the beginning of either a particular goal-directed action, a spatial displacement, or a waiting moment.

Experimental instructions specified that each picture would be displayed several times during the fMRI ses-

sion. In total, 20 trials were presented in each of the episodic memory conditions (five pictures that were

each repeated four times).

For each picture, participants were first asked to identify the corresponding moment of the walk (without

starting to remember the corresponding event); all pictures were presented to the participants before the

scan session to ensure that they would be able to easily identify the corresponding moment of their walk

during the fMRI session. As soon as they identified the moment depicted, participants were instructed to

close their eyes and then to press a response key to indicate that they began their mental replay (their but-

ton press was confirmed by a sound signal). Depending on the condition, they were asked to mentally

replay either the unfolding of the event (for actions and spatial displacements) or the waiting period, in

as much detail as possible, starting at the precise moment they identified on the picture. Participants

were told that their mental replay could be of anything that they encountered during the walk (e.g., people,

objects, actions, thoughts, etc.). Moreover, in the unfolding conditions, it was specified that the task was

not to proceed as far as possible in the recall of the walk or action, but rather to be as precise and detailed

as possible. In the waiting condition, participants were told that they should only remember what they

experienced during the moments in which they waited at a particular location (without remembering the

unfolding of what happened after these waiting moments). The mental replay phase lasted 12 s after which

a sound signal prompted participants to stop their mental replay and to open their eyes.

Following the mental replay phase, a 1-s fixation cross was shown, immediately followed by the presenta-

tion of a four-point Likert scale assessing the extent to which participants’ mental replay was static (mean-

ing that it was focused on a particular moment of past experience) or dynamic (meaning that it involved the

unfolding of several moments of past experience; see Figure 1B). Responses were self-paced with a

maximum of 5 s to respond.

Control task

In the control task (scene condition), participants had to form mental representations of static scenes. The

structure and timing of the control condition was identical to the episodic memory conditions: Each trial

started with a fixation cross, followed by written instructions. Then a picture of a scene was presented in

the middle of the screen. Each picture represented a specific location on the campus of the University of

Liège that participants did not visit during their walk (but that was taken with the same wearable camera).

In total, five different pictures were presented four times each, resulting in 20 trials. As in the episodic mem-

ory conditions, each picture was also presented to the participants before the scan. After having examined

the picture, participants were asked to close their eyes and then to press the response key to indicate that

they began forming a mental representation of the scene (a sound signal confirmed their button press).

They were instructed tomaintain their mental representation of the scene in as much detail as possible until

the presentation of a second sound signal (i.e., after 12 s). It was specified that their task was not to retrieve

personal memories (e.g., past events experienced at the presented location or past experiences that

happened at similar locations) but only to mentally represent the scene that was depicted on the picture.

The control condition trials ended with the presentation of a four-point Likert scale assessing to what extent

each trial involved a static representation or the unfolding of several moments (as in the episodic memory

conditions). We decided to use pictures of scenes that were not encountered by participants during their

tour for the control condition, as scenes that were experienced during the tour might be difficult to repre-

sent statically (i.e., the pictures might automatically trigger dynamic event recall).
iScience 25, 105391, November 18, 2022 17
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fMRI data acquisition

All MRI data were acquired on a whole-body 3T scanner (MAGNETOM Prisma, Siemens Medical Solutions,

Erlangen, Germany) operated with a 20-channel receiver head coil. Multislice T2*-weighted functional im-

ages were acquired using a gradient-echo-planar imaging (EPI) sequence (TR = 1170 ms, TE = 30 ms, FA

90�, matrix size 72 3 72 3 36, voxel size 3 3 3 3 3 mm3). Thirty-six 3 mm thick transverse slices (FOV

2163 216 mm2) were acquired, with a 25% interslice gap, covering the whole brain. Around 1400 functional

volumes were obtained for the entire task and we dropped the five initial volumes to avoid T1 saturation

effect. After image acquisitions, we generated field maps using a double echo gradient-recalled sequence

(TR = 634 ms, TE = 10 and 12.46 ms, FoV = 192 3 192 mm2, 64 3 64 matrix, 40 transverse slices with 3 mm

thickness and 25% gap, flip angle = 90�, bandwidth = 260 Hz/pixel) that we used to correct echo-planar

images for geometric distortion due to field inhomogeneities. Finally, we acquired a structural MR scan

[T1-weighted 3D magnetization-prepared rapid acquisition gradient echo (MP-RAGE) sequence, TR =

1900 ms, TE = 2.19 ms, FOV 256 3 240 mm2, matrix size 256 3 240 3 224, voxel size 1 3 1 3 1 mm]. All

experimental stimuli were presented on a screen positioned at the rear of the scanner, which the subject

could see through a mirror mounted on the head coil.
Post-scan debriefing

Immediately after the fMRI session, participants were shown the 20 pictures presented during the scanning

session (i.e., 5 pictures per condition) and, for each picture, they were asked to describe the content of the

mental representation they formed in the scanner (i.e., their memories or scene representations). Verbal

reports were recorded using a digital audio recorder. Furthermore, in the episodic memory conditions,

each verbal report was followed by a review of the pictures that had been taken during the walk and par-

ticipants were instructed to select the picture that best corresponded to their mental representation of the

last moment they remembered while mentally replaying the unfolding of the event in the scanner (i.e., the

moment they remembered when hearing the second sound signal). These tasks allowed us to determine

(a) whether the participants correctly performed all conditions in the scanner and (b) to estimate the density

of experience units recalled (see behavioral data analyses). Note that although this measure allowed us to

confirm that the memory conditions differed in terms of the density of recalled experience units, it only pro-

vides a rough estimate of the density of recalled units at the trial level because we only have onemeasure of

unit density per event (i.e., each event was repeated four times in the scanner, but we only obtained one

density measure per event in the post-scan session). For this reason, this measure was not used as a para-

metric regressor in the fMRI analyses.

Finally, participants were asked to rate the overall clarity of thememory or scene they formed in response to

each picture (from 1 = not clear at all, to 7 = extremely clear) and the easiness of remembering/imagining

(from 1 = not easy at all, to 7 = extremely easy). Furthermore, for trials of the episodic memory conditions,

participants were asked to estimate their overall feeling of re-experiencing the unfolding of events (from

1 = not at all, to 7 = completely).
QUANTIFICATION AND STATISTICAL ANALYSIS

Behavioral data analyses

Verbal descriptions of the memories reported during the post-scan interview consisted of a succession of

distinct moments of past experience—referred to as experience units.12,13,17 For example, a typical verbal

report would start by ‘‘I got out of the building’’ (first experience unit), ‘‘then I walked along the parking’’

(second experience unit), ‘‘then, I saw a man I know on the opposite side of the road’’ (third experience

unit), and so on. The segmentation of verbal reports into distinct experience units was performed by the

first author based on indications of transitions or temporal discontinuities between reported moments

of experience (i.e., verbal clues such as ‘‘then’’, ‘‘next’’, and ‘‘after that’’ or moments of silence); most of

the time, transitions between experience units involved significant changes in actions, environmental ele-

ments, and/or thoughts (e.g., ‘‘I saw a sheet of paper on the ground just in front of the door of the cafete-

ria,’’ followed by ‘‘Once inside of the cafeteria, I was happy to see that there were few students queuing’’).

Although in most cases this segmentation procedure was obvious, we nevertheless assessed its reliability

by asking a second trained rater to independently segment a random selection of 20% of verbal reports.

The intraclass correlation coefficient (ICC) computed on the number of experience units that were identi-

fied within verbal reports showed an excellent agreement between the two raters (ICC = 0.91).
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In addition to computing the number of experience units reported by participants, we estimated the den-

sity of recalled experience units in the two episodic memory conditions by using temporal information

associated with the pictures acquired during the walk. More specifically, for each trial, we estimated the

actual event duration by calculating the amount of time between the beginning of each event and the

end of the event. The beginning corresponded to the picture presented on the computer screen during

each fMRI trial. The end of the event corresponded to the picture selected by participants as the last

moment of the experience they remembered in the scanner. Then, we estimated the density of recalled

experience units as the number of experience units reported per minute of the actual event duration.12,17

Behavioral data were analyzed using robust statistical methods (i.e., Yuen’s t test)65 because the assump-

tions underlying classical inferential methods (normality and homoscedasticity) were violated for our main

measures of interest (i.e., the number of reported experience units per minute of the actual event duration).

These methods perform well in terms of type I error control and statistical power, even when the normality

and homoscedasticity assumptions are violated.66 Effect sizes were estimated using the explanatory mea-

sure of effect size x: values of 0.10, 0.30, and 0.50 correspond to small, medium, and large effect sizes,

respectively. All descriptive statistics refer to the 20% trimmed means and their 95% confidence intervals.

These analyses were conducted in R67 using the functions provided by Wilcox.68

fMRI data preprocessing

Image preprocessing was performed using the SPM 12 software (Wellcome Department of Imaging Neuro-

science, http//www.fil.ion.ucl.ac.uk/spm) implemented in MATLAB R2017a. EPI time series were corrected

for motion and distortion artifacts using Realign and Unwarp69 with the Fieldmap Toolbox.70 The mean

realigned EPI image was co-registered with the structural T1 image, and the co-registration parameters

were applied to the realigned EPI time series. The T1 image was segmented into gray matter, white matter,

and cerebrospinal fluid, using the unified segmentation approach,71 and we used the normalization param-

eters obtained from the segmentation procedure to normalize the functional images to MNI space

(2 3 2 3 2 mm voxels). Finally, we performed a spatial smoothing of functional images using an 8 mm

FWHM Gaussian kernel.

For the representational similarity analyses, slice time corrected volumes co-registered to the first scan of

each subject were used to perform the searchlight in the native space of each subject. To exclude variance

explained by motion, regressors from motion correction were used as predictors in a GLM for the voxel

time series in every voxel. The resulting residuals were then used as the final input for the analyses. To

exclude that the searchlight results are influenced by condition differences in motion inside the MRI we

analyzed the motion parameters resulting from fMRI preprocessing. As the assumptions for an analysis

of variance (ANOVA) were violated we evaluated motion effects with a non-parametric permutation test

using ez-Perm72 in R.67 No significant differences of the motion regressor between the three conditions

were found.

fMRI data analyses

Univariate analyses

Univariate analyses were performed using SPM 12. For each participant, BOLD responses were modeled at

each voxel, using a general linear model (GLM). The memory/scene representation phase of each trial was

modeled separately for each condition (i.e., action, spatial displacement, waiting, and scene representa-

tion) as epoch-related responses (beginning at the key press and ending at the second sound signal after

12 s) and convolved with the canonical hemodynamic response function to create the regressors of interest.

Trials for which participants did not press the response button to indicate that they identified the picture

and trials for which ratings indicated that they did not perform the requested task were modeled in a sepa-

rate regressor of no interest. This corresponds to trials for which they provided a rating of 1 or 2 in the two

episodic memory conditions (indicating that they mentally represented only one single moment of past

experience), or a rating of 3 or 4 in the scene condition (indicating that they mentally represented the un-

folding of several moments of past experience). Note that more than 80% of trials in the episodic memory

conditions received a rating of 4, and more than 90% of trials in the control condition a rating of 1, so that

there was not enough variance to include the ratings as a parametric regressor in the analyses. Experi-

mental phases corresponding to the presentation of the pictures and the presentation of the Likert scales

were alsomodeled as epoch-related responses with two regressors of no interest (i.e., a single regressor for

each phase across all conditions). Finally, we also modeled the two beeps presented respectively at the
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beginning and the end of each task as an event-related response, with a single regressor across all

conditions. The design matrix included the realignment parameters to account for any residual move-

ment-related effect. The canonical hemodynamic response function was used and a high-pass filter was im-

plemented using a cutoff period of 128 s to remove low-frequency drifts from the time series.

A series of linear contrasts was computed to identify the brain regions involved in the processing of

episodic versus scene representations, and in the retrieval of actions versus spatial displacements. More

specifically, we first investigated brain regions showing higher activity during each episodic memory con-

dition compared to scene representation (i.e., Action > Scene; Spatial displacement > Scene). Next, we

examined brain regions showing differential activity during the retrieval of the goal-directed actions and

spatial displacements (Action > Spatial displacement, and vice versa).

The contrasts of interest were first computed for each participant and were then entered into random ef-

fects one-sample t-tests. For all analyses, statistical parametric maps (SPMs) were thresholded at p< 0.001,

uncorrected, and statistical inferences were corrected for multiple comparisons at the voxel level (p< 0.05,

FWE-corrected) using a small volume correction (SVC) within a priori regions of interest. These a priori re-

gions of interest corresponded to brain areas that have been previously related to autobiographical mem-

ory, as determined by a meta-analysis of 84 studies performed with Neurosynth (www.neurosynth.org).73

These regions were merged into a single mask for the SVC (8156 voxels). The coordinates reported in Ta-

bles 2 and 3 refer to brain regions identified in the SPMs thresholded at p< 0.001 (uncorrected) that were

statistically significant when the SVC was applied. Only clusters with a size of k > 15 voxels are reported, as

small clusters of above threshold voxels can be the result of spatial smearing (because of data smoothness

introduced during preprocessing) around isolated voxels with high t-values. For visualization purposes,

Figure 2 displays activations thresholded at p< 0.001 (uncorrected) that fell within the autobiographical

network mask.

Representational similarity analysis

In addition to the univariate analyses, we conducted a representational similarity analysis, a well-estab-

lished method to study neural representational structures in brain activity patterns.74 First, we used this

method to assess whether the different conditions (i.e., action, spatial displacement, and scene represen-

tation) showed distinct patterns of voxel activity during the recall period. This would substantiate further

analysis of the temporal dynamics of multi-voxel pattern activity (see below). We computed a single-trial

GLM for each subject with one regressor for each recall period of 12 s, resulting in 60 beta weights for

each subject. Within the autobiographical network mask (as used for the univariate analyses), we tested

whether trials within one condition were more similar to each other compared to trials of other conditions.

We calculated the cross-correlation between all trials using spearman rank correlations, resulting in a

60 3 60 matrix. Correlation coefficients between all pairs of trials in each condition were used to build

themean within-condition correlation coefficient. Correlations of each trial with itself were excluded before

computing the mean. To generate between-condition correlation coefficients, trials of one condition were

correlated to trials of the other conditions. In addition, we correlated each recall trial beta to its respective

image cue beta, which we derived from a single-trial GLM for each subject with one regressor for each cue

period. The resulting 60 recall x 60 cue image correlation matrix was then used to calculate the correlation

coefficients of each recall event to its own cue and the cue of other trials of the same event (own event) and

to cues of other events from the same condition (other events). Differences for within and between condi-

tion/event similarities were analyzed using a using a repeated measures ANOVA implemented in the ez-

package72 in R.67 For significant effects, we report Cohen’s d as measure of effect size.75

Analysis of temporal dynamics

Next, we investigated the temporal dynamics of patterns of brain activity during the memory/scene con-

struction period by computing correlations between consecutive MRI volumes during the recall phase.

We expected dynamic and high-density events to show higher differences in brain activity patterns across

time, as indicated by smaller volume to volume correlations. The analysis was limited to grey matter voxels

by applying a subject specific grey matter mask segmented using FreeSurfer (version 6).76 We constructed

a sphere with a radius of 6 voxels which was centered at each voxel. If the sphere consisted of fewer than 20

voxels no further analysis was performed at this location. At each valid sphere location, 10 consecutive vol-

umes from the recall period, starting with the fifth volume after the recall onset to account for the delay of

the hrf, were used to compute a 10 3 10 cross-correlation matrix (Figure 4A). To analyze consecutive
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changes in voxel patterns, the first off-diagonal was used to extract Spearman’s rank correlations of each

volume with the next (i.e., volume 5 was correlated with volume 6; volume 6 with volume 7; etc.). Then, we

computed the mean over the first off-diagonal for the resulting 9 volume-to-volume correlations. This was

done for each trial in each condition. In a final step, the mean overall Fisher-Z-transformed volume-to-vol-

ume correlations in all trials per condition was saved at the current sphere location. Thus, three correlation

coefficient maps, one per condition, were created for each subject. For group level analysis, the subject-

wise correlation coefficient maps were normalized to the FSL standard 2mm 152 MNI template using a

non-linear registration in FSL (version 5.0.9, http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/).

On the group level, the correlation coefficient maps were used to identify regions with consistent differ-

ences in correlations between the conditions. Using randomise in FSL,77 a non-parametric version of the

paired one-sample t-test for each condition pairing was conducted. Randomise analysis was performed us-

ing 10,000 random sign-flips and threshold-free cluster enhancement (TFCE)78 was used to identify signif-

icant clusters. TFCE has been shown to be more sensitive than clusterwise thresholding methods by taking

both voxelwise signal strength and extent of neighboring voxels into account without relying on an abso-

lute threshold.78 All results reported are FWE corrected based on TFCE and thresholded at p< 0.05 to con-

trol for multiple comparisons. We used the Harvard-Oxford Cortical Structural atlas79 for anatomical labels.
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