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a b s t r a c t 

Since the second half of the twentieth century, intracranial electroencephalography (iEEG), including both elec- 
trocorticography (ECoG) and stereo-electroencephalography (sEEG), has provided an intimate view into the hu- 
man brain. At the interface between fundamental research and the clinic, iEEG provides both high temporal 
resolution and high spatial specificity but comes with constraints, such as the individual’s tailored sparsity of 
electrode sampling. Over the years, researchers in neuroscience developed their practices to make the most of 
the iEEG approach. Here we offer a critical review of iEEG research practices in a didactic framework for newcom- 
ers, as well addressing issues encountered by proficient researchers. The scope is threefold: (i) review common 
practices in iEEG research, (ii) suggest potential guidelines for working with iEEG data and answer frequently 
asked questions based on the most widespread practices, and (iii) based on current neurophysiological knowledge 
and methodologies, pave the way to good practice standards in iEEG research. The organization of this paper 
follows the steps of iEEG data processing. The first section contextualizes iEEG data collection. The second section 
focuses on localization of intracranial electrodes. The third section highlights the main pre-processing steps. The 
fourth section presents iEEG signal analysis methods. The fifth section discusses statistical approaches. The sixth 
section draws some unique perspectives on iEEG research. Finally, to ensure a consistent nomenclature through- 
out the manuscript and to align with other guidelines, e.g., Brain Imaging Data Structure (BIDS) and the OHBM 

Committee on Best Practices in Data Analysis and Sharing (COBIDAS), we provide a glossary to disambiguate 
terms related to iEEG research. 
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. Data collection: the patient being a participant 

.1. Introduction 

Treatment of neurological disease and some clinical circumstances
ay call for the transient implantation of electrodes in direct contact
ith the human brain (see Fig. 1 ): the precise targeting of deep-
rain stimulation (e.g., in movement disorders: ( Benabid et al., 1987 ;
ringelbach et al., 2007 ), depression ( Mayberg et al., 2005 ), obsessive-
ompulsive disorder ( Nuttin et al., 1999 ) or dystonia ( Vidailhet et al.,
005 ; Vidailhet and Pollak, 2005 )), intraoperative mapping of cor-
ical function during awake surgery (e.g., for tumor resection 2 

 DeAngelis, 2001 ; Sanai et al., 2008 )), and the evaluation of potentially

ig. 1. Intracranial EEG recordings and basic signal features. 
EEG can be measured using three different recording strategies: stereotactic
EG (sEEG), Electrocorticogram (ECoG), and deep-brain stimulation (DBS). Sig-
al features are generally characterized as oscillations, broadband changes, and
vent-related potentials. 

urgically remediable epilepsy using intracranial electroencephalogra-
hy (iEEG) ( Cardinale et al., 2016 ; Jobst et al., 2020 ; Krucoff et al.,
2 https://www.aans.org/en/Patients/Neurosurgical-Conditions-and- 
reatments/Brain-Tumors 
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g  

c  
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2 
017 ). Implanted electrodes can be composed of electrode arrays placed
n the brain’s surface (electrocorticography, ECoG) or on probes that
enetrate into deep brain structures for recording stereotactic EEG
sEEG) or for deep-brain stimulation (DBS electrodes). The present arti-
le focuses on iEEG research carried out within the context of invasive
onitoring for the treatment of drug-resistant epilepsy ( Engel et al.,
005 ; Jacobs and Kahana, 2010 ; Lachaux et al., 2012 ; Mukamel and
ried, 2012 , Johnson et al., 2020). Surgeons can also use iEEG during
ntraoperative procedures which has significant advantages, such as the
ossibility to reposition the electrode array or the use of cooling probes.
owever, iEEG research conducted during acute application falls out-

ide of this review’s scope. The opportunity to work with epilepsy pa-
ients presents several characteristics that favor cognitive neuroscience
esearch: (i) the electrodes typically cover multiple cortical regions and
ubcortical structures in several lobes, sometimes bilaterally; (ii) elec-
rodes remain implanted for several days to weeks, allowing time for re-
earch; and (iii) candidates for epilepsy surgery often have near-normal
r normal neurological and cognitive functioning, which can enable
omparisons to the healthy human brain. This section introduces iEEG
ata collection for research purposes. We discuss the clinical context,
escribe how research projects can be introduced within that context
nd finally, we address technical considerations. 

.2. Clinical context 

.2.1. The presurgical evaluation 

In patients suffering from severe focal epilepsy that is pharmacolog-
cally intractable or that is not adequately controlled by anticonvulsant
edications, epilepsy surgery represents a curative therapy, potentially
roviding patients with profound improvements in their quality of life
 Chauvel et al., 2019 ; Engel et al., 2005 ; Englot et al., 2013 ; Kovac et al.,
017 ). In most cases, epilepsy surgery aims to resect the brain tissue gen-
rating the seizures (the epileptogenic zone), with the goal of suppress-
ng their occurrence completely without causing significant neurologi-
al or cognitive deficits. Because epilepsy surgery is irreversible, it re-
uires careful individualized presurgical assessment after review of the
atient’s medical history, medications, and neurological examination.
ypically, the multidisciplinary assessment comprises long-term moni-
oring of video-scalp EEG recordings of the patient’s habitual seizures
i.e., seizure semiology), structural magnetic resonance imaging (MRI)
cans of the brain, and neuropsychological assessment ( Baxendale et al.,
019 ; Bernasconi et al., 2019 ; Rosenow et al., 2016 ). Additional ex-
minations may include positron-emission tomography (PET), ictal sin-
le photon-emission computed tomography (SPECT), surface electroen-
ephalography (EEG) and/or magnetoencephalographic (MEG) source
maging, or an intracarotid anesthetic procedure ( Lascano et al., 2016 ).

https://www.aans.org/en/Patients/Neurosurgical-Conditions-and-Treatments/Brain-Tumors
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t the conclusion of this non-invasive assessment, enough converging
vidence may have been gathered to offer the patient a surgical op-
ion. In other cases, however, additional information must be collected
o localize more precisely the putative epileptogenic zone or to ensure
hat the resective surgery will not impair normal cerebral functions. In
uch cases, an invasive evaluation with iEEG electrodes may be indi-
ated. 

.2.2. Surgical implantation 

Electrode implantation consists of a surgical procedure performed by
he neurosurgeon in the operating room under general anesthesia. The
re-surgical evaluation helps surgeons determine the electrode place-
ent, which typically targets the putative epileptogenic zone or zones.

nvasive monitoring allows for the evaluation of multiple hypotheses re-
arding the cortical regions involved in seizure onset. Additionally, the
ognitive functions of the implanted regions can be assessed by elec-
rical stimulation mapping (see Section 1.2.4.1 ). The implanted areas
i.e., spatial coverage) can be extensive, depending on estimated epilep-
ic focus locations and seizure propagation. These electrodes may, or
ay not, record from epileptic tissue and are therefore especially rel-

vant for fundamental research. Nonetheless, for ethical reasons, the
lectrode implantation must only be determined by clinical needs and
ot by research interests. Two types of implantation strategies are used,
epending on the approach of the clinical team (see Fig. 1 ). 

Electrocorticography (ECoG) was first introduced by Penfield and
olleagues in the mid 1950s at the Montreal Neurological Institute
 Penfield et al., 1954 ) and was historically commonly used outside of
urope. It consists of one dimensional (1D) (strips) or 2D electrode ar-
ays (grids) embedded in flexible silicone sheets placed onto the cortical
urface just below the dura mater (outer cranial membrane). Regularly
paced contacts provide 1D or 2D spatial coverage (see Section 1.4.3 ),
ypically extending over centimeters to cover large cortical areas (i.e.,
yri), but are less sensitive to neural activity generated within sulci and
o not access deep cortical structures (e.g., hippocampus or insular cor-
ex). Surgical implantation involves a craniotomy to position the larger
ortical grid(s) and/or a combination of associated strips. In some cen-
ers, 1D strip electrodes are inserted through burr holes, obviating the
eed for a large craniotomy. The implants are often, but not always, su-
ured in place to ensure that the electrodes do not move throughout the
uration of the clinical monitoring period (see Section 2.2.4 ). 

An alternative approach, the stereotactic EEG (sEEG), was developed
 few years later in Paris by Bancaud and Talairach ( Bancaud and Ta-
airachs, 1965 ). The term ‘stereotactic’ refers to the way the electrodes
re positioned: using a 3D stereotactic frame, which allows electrode
lacement in specific targeted deep brain structures. Targeted brain re-
ions were formerly referenced relative to a set of idiosyncratic alphanu-
eric coordinates in a 3D standardized Talairach atlas ( Talairach and
ournoux, 1988 ) that was based on a single post-mortem brain. To-
ay, stereotactic placement of electrodes is guided by the individual
atient’s structural imaging data - often a combination of MRI and X-
ay computerized tomography (CT). sEEG uses needle-like semi-rigid
hafts (often called “leads ”), generally with regularly-spaced electrode
ontacts ( Gonzalez-Martinez et al., 2013 ), but some manufacturers of-
er shafts with larger spacing in the middle of the shaft (e.g., where it
raverses the white matter, see Section 1.3.3 ). The shafts are inserted
hrough small burr holes (typically a few millimeters in diameter) in
he patient’s skull. The shafts can penetrate the brain with different ap-
roaches: laterally/orthogonally to reach the inter-hemispheric plane,
bliquely for orbital or insular implantation, longitudinally/parietally
o span the entire long axis of the hippocampus via a posterior implan-
ation. The shafts are held in place with skull bolts (see Fig. 1 ), ensuring
hat the electrodes remain at the same position for the duration of clini-
al monitoring. A typical sEEG implantation involves between eight and
wenty shafts, with five to twenty electrode contacts along each shaft. 

The main advantage of sEEG over ECoG is the access to activity
n deep cortical structures and sulci, which, however, comes at the
3 
ost of the detailed 2D spatio-temporal mapping that ECoG provides
 Minotti et al., 2018 ). That said, sEEG electrode contacts traverse both
ray and white matter, which needs to be considered during signal anal-
sis and data interpretation (see Sections 2.2.4 and 3.2 ). Nowadays,
any epilepsy surgery centers in Europe and North America are experi-

nced with both ECoG and sEEG and select the most appropriate tech-
ique for each patient. Some centers use a combination of both ECoG
nd sEEG intracranial implantation in the same patient ( Kim et al., 2011 ;
urbeck et al., 2011 ). 

.2.3. Clinical monitoring 

Following electrode implantation, the patient remains under contin-
ous medical observation in the epilepsy monitoring unit (EMU); typi-
ally for a period of several days to two weeks depending on the results
f the evaluation and the patient’s clinical state. In the EMU, iEEG sig-
als are continuously recorded together with the audio and video of the
atient. The main objective is to let the patient’s habitual seizures occur
pontaneously under careful withdrawal of anticonvulsant medication,
nd to identify, in relation to seizure semiology (e.g., overt behavioral
anifestation), the iEEG sites with the earliest abnormal electrophysio-

ogical activity (i.e., the “seizure onset zone ” from which seizures orig-
nate and spread to other brain regions). Temporal synchronization be-
ween recorded audio, video and intracranial EEG is crucial for accurate
eizure characterization. 

.2.4. Functional exploration / mapping 

.2.4.1. Electrical stimulation. During the patient’s stay in the EMU,
linicians generally deliver intracranial electrical stimulations (iES)
hrough iEEG electrodes (extraoperative ES mapping). It consists in
elivering low-amplitude current electrical stimulations between pairs
f contacts and is also known as direct cortical stimulation, elec-
rical stimulation mapping, cortical stimulation mapping, or as elec-
rocortical stimulation ( Borchers et al., 2012 ; Cuello Oderiz et al.,
019 ; Kovac et al., 2016 ; Trébuchon and Chauvel, 2016 ). Informa-
ion collected during iES is essential for surgical planning to poten-
ially avoid resecting brain regions supporting critical functions, as
he success of the epilepsy surgery depends not only on the resec-
ion of the epileptogenic zone but also on the absence of any conse-
uent neurologic postoperative deficits (e.g., motor, sensory, linguis-
ic or cognitive impairments ( Corley et al., 2017 ; Kanner, 2016 )). By
eans of iES, the functional brain regions or networks covered by

he electrodes, are characterized based on a combination of observed
ehavior (e.g., motor movements when stimulating the motor cortex
 Penfield and Boldrey, 1937 ), speech arrest when stimulating language
reas ( Ojemann and Whitaker, 1978 )) or based on descriptions of expe-
iential manifestations by the patient themselves, such as hallucinations
 Aminoff et al., 2016 ; Mégevand et al., 2014 ; Penfield and Perot, 1963 )
r emotional reaction ( Caruana et al., 2018 , 2016 ; Fried et al., 1998 ).
hen the iES mapping reveals so-called eloquent tissue close to the

pileptogenic focus, surgery can proceed with additional acute iES map-
ing in the operative room. In that case, during the surgical procedure,
he depth of general anesthesia is decreased so that the patient can be
apped awake on the operating table (with local anesthesia of the sur-

ical wound) to extend the resection margin to its maximum without
reating post-surgical deficits. iES can be used to identify sites where
ES elicit after-discharges and/or symptoms similar to what the patient
xperiences at the beginning of their seizures. However, these evoked
eizures may not match the patients’ naturally occuring seizures; and
ome neurologists prefer not to do stimulation until monitoring is com-
lete and the patient is back on their anti-epileptic medications. 

From a research perspective, iES can produce experiential phe-
omena that provide excellent functional localization information
 Kern et al., 2019 ). These must be carefully documented (see Section
.4.8 ), because they can interfere with other test stimuli. For instance,
he position of an illusory visual percept evoked by the iES can be
ointed at, or mapped, using a white type of ’dartboard’. The patient
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Fig. 2. Schematic representation of the interaction between clinic and research. 
Left panel: starting from surgical planning, with involvement over time of the clinical and research procedure. The clinical team provides the research team with 
the iEEG data, imaging data, and clinical annotations (e.g., epileptic activity). In return, the research team(s) can provide the precise localization of the electrodes 
(Loc), and activation tasks with associated event-related results regarding brain functions (Events). 
Right panel: illustration of the different types of data in an iEEG study: iEEG (Signal) and imaging data, clinical annotations (Annot), electrode locations (Loc) and 
(responses to) task-related events (Event). 
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an have this in front of them during the stimulation and can indicate
he region in space where they experience illusory percepts; this can also
elps to determine if the illusory percept moves (e.g., by measuring the
ccentricity relative to the fovea or its position on an imaginary clock).

Yet, iES has limitations in identifying functional networks: stimula-
ion cannot be repeated ad infinitum due to time constraints, patient
verload and progressive loss of response specificity (e.g., behavioral
atigue and risk of unspecific after-discharges, ( van ’t Klooster et al.,
011 )). Furthermore, the effect on most cognitive functions can only be
bserved if stimulation produces an obvious change in the patient’s be-
avior, or if that function is being performed by the patient at the time
f the stimulation (e.g., speech production, access to episodic memory,
ental imagery, mental calculation). Many stimulation sites often lead

o undetected subtle or no effects that provide no relevant functional
nformation ( Mazzola et al., 2019 ; Murphey et al., 2009 ). 

.2.4.2. Task-related exploration. A complementary strategy to iES is to
ecord evoked iEEG activity during a battery of short tasks engaging crit-
cal cognitive functions (i.e., “localizers ” assessing sensory/motor pro-
esses, language, memory, attention, etc.). Changes in the activity of the
euronal populations supporting those functions is locally recorded by
EEG electrodes sited nearby, which provides additional information for
roducing functional maps of the patient’s brain. Some centers have im-
lemented a systematic analysis pipeline to provide the clinical team
ith a detailed report of all significant iEEG task-induced responses
ithin a few hours ( Cheung and Chang, 2012 ; Lachaux et al., 2007b ;
iller et al., 2007a ; Schalk et al., 2008 ). Such localizer-based functional
apping procedures can be performed in a short period and be planned

arly during the hospital stay to inform clinicians and guide subsequent
ES. Since electrode implantation is patient specific, and given that func-
ional responses cannot be predicted based on structural anatomy alone,
uch reports are also valuable for research ( Fig. 2 ). 

.2.5. Challenges, recommendations and reporting advice 
• Many factors may preclude a patient from being a suitable candidate

for a given study. For example, the cognitive abilities of the patient
may prevent them from completing demanding cognitive tasks, elec-
trode placement may not be deemed relevant for the functions being
studied, and/or persistent epileptogenic activity between seizures
may hinder recording of artifact-free iEEG. Prospective recruitment
of patients for research studies allows avoiding sampling biases, i.e.,
the selection of participants on a priori criteria which will limit the
generalization of the results (see Section 5.2 ). We recommend that
4 
researchers report inclusion and exclusion criteria in their publica-
tions. 

.3. Research and experimental aspects 

A major technical challenge for iEEG research is to adapt research
uestions to the clinical environment, controlling sources of variabil-
ty while maintaining high-quality iEEG signals. This section discusses
onsiderations for running experiments in the EMU and addresses some
thical issues (see also Chiong et al. 2018 , Feinsinger et al. 2022 )). 

.3.1. Interactions between researchers, clinical staff and the patient 

Researchers should seek to minimize interference with normal clini-
al procedures. Should a seizure occur, it is essential that the experiment
mmediately cease and that research equipment does not hamper clinical
ntervention, both for the patient’s safety and to not obstruct the video
ecording of the behavioral characteristics of the seizure. Therefore, it
s beneficial to use mobile, battery-powered setups that can be quickly
oved without data loss. Should the participant become uncomfortable
uring the experimental recording, this should be respected: the exper-
ment should be stopped. Then, only if the participant is willing, the ex-
eriment could be resumed or restarted at a later time. Intracranial im-
lants can cause headaches and nausea, making it difficult or impossible
or patients to concentrate and perform demanding tasks. Researchers
ust ensure that experiments do not cause stress, anxiety or discomfort,

r take time away from visitors. The researcher may want to schedule
he experimental recordings together with the participant. Giving au-
onomy to the patient benefits the relationship with the participant and
is/her experience regarding research participation. Importantly, when
cheduling experimental recordings, researchers should also liaise with
linical staff and make sure that they are not testing the patient at times
hen clinical staff need to interact with the patient, or when other clini-

al tests have been scheduled. When interacting with patients, three key
erspectives must be taken into account: 

– From an ethical perspective, it is essential to inform the patient that
his/her medical care will not be influenced by, or depend on, his/her
participation (or lack of participation) in experimental research. It
is also important that the patient understands that there is no di-
rect benefit to them and that the research might not necessarily be
directly clinical in nature. When the clinical staff is part of the re-
search team, this can pose a particular challenge. Even if the clinician
explicitly explains what is clinical necessity and what is voluntary
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research, for the patient these lines can remain blurry. For this rea-
son, it can be advisable to not have the patient’s own clinical staff
(neurologist or neurosurgeon) ask for informed consent/perform ex-
periments. 

– From a human perspective, while the patient is aware that there is no
direct benefit for him/her, curiosity often brings the patient to ask
questions about the research. Here, our experience is that a sense
of partnership can be established between researchers and the pa-
tient, who can enjoy the time spent in that ephemeral relationship
at both a personal and intellectual level (e.g., knowledge sharing). A
practical consequence is that the scheduled time-slot for the exper-
imental interaction should also leave time for all important social
interactions. 

– Finally, from a medical perspective, it is important to keep in mind
that during this period the patient attempts to follow and understand
the evolution of his/her clinical assessment. It is not appropriate for
researchers to provide the patient with information concerning their
medical assessment. 

It can be a good idea to use gamification and story-telling to make ex-
erimental paradigms more enjoyable. Researchers should keep in mind
hat experimental conditions are unlikely to reach the quality of a proper
aboratory setting due to many factors such as lighting conditions, elec-
rical noise, distracting sounds, patient fatigue and fluctuating motiva-
ion. In that regard, it should never be forgotten that the iEEG research
articipant is a patient first. 

.3.2. Recording environment 

Some centers have a dedicated experimental room to perform re-
earch in a controlled environment. While the additional time required
or the patient transfer may reduce the total amount of time participat-
ng in the actual research paradigms, the advantage is the better stan-
ardization of experimental settings between patients. Such a controlled
nvironment allows performing finer psychophysical manipulations, in-
reasing the signal to noise ratio when it is possible to use a better elec-
rical isolation (e.g., Faraday cage) or a high-quality research-oriented
ata acquisition system, reducing the risk of distractors during the ex-
eriment and permitting to record without other patient(s) in the same
oom. Yet, the transfer from the patient’s room to the dedicated experi-
ental room can imply interrupting the clinical iEEG recording and the

isk of missing seizures during the transfer which would have a nega-
ive clinical impact. We therefore recommend being extremely vigilant,
hat is, (i) to equip the experiment room with a microphone and a video
amera to record potential seizure semiology, (ii) to start the recording
s soon as possible and to continuously record from the participant in
he experiment room in case a seizure occurs while the participant is
ot performing an experiment, (iii) to minimize the transfer time, (iv) a
eurologist and/or a nurse should stay with the patient, (v) to ask the
linicians about the degree of patient medication (i.e., whether a reduc-
ion of anticonvulsant medication increases the probability of seizure),
vi) to use a wheel-chair or transport bed to reduce the risk of a fall
hould a seizure occur. 

Other centers are equipped with a specific patient room that is opti-
ized for both clinical observation and research with additional electro-
agnetic isolation. In this case, the EMU can be complemented with a

esearch controlled setting, including, for example, conduits for cables
llowing two-way communication between patients and research set-
ing rooms. Hence, once arriving from the operating room the patient
emains there for all investigations throughout the monitoring period
 Billig et al., 2019 ; Lehongre et al., 2022 ). 

.3.3. Research projects in a clinical setting 

An iEEG experiment might be interrupted at any time due to clin-
cal events (e.g., a seizure); therefore, experiments organized in short
locks ensure that data analysis remains possible, even if some data are
issing. That said, when designing the experiment, the minimum num-

er of ‘trials’ in each condition to be analyzed should be considered.
5 
henever possible, experiments should be designed to linearly increase
he amount of useful data as time passes. All blocks should include all
onditions, so later blocks will simply add more trials per condition and
ncrease statistical power. Interictal epileptiform discharges can contam-
nate iEEG signals and their prevalence and frequency can vary from day
o day. A check of the iEEG signal on the clinical system before commenc-
ng the experimental set-up may aid in a decision to go ahead with or
ostpone a recording session. It is generally preferable to not spread the
ecording of a single paradigm over multiple days, as the quality of the
ignal ( Sillay et al., 2013 ), the medications taken by the patient, and
heir behavioral state may vary over time. 

Since a patient can only participate in a limited number of experi-
ents, it is important that those experiments are chosen and prioritized
isely. This inevitably leads to some selection bias (see Section 5.2 ),

or instance with more patients recorded in the left hemisphere being
ncluded in language studies. Some centers send the results of their lo-
alizers (see Section 1.2.4.2 ) to all research teams with ongoing projects
nd then prioritize incoming research requests according to protocol du-
ation, particular requests to access certain brain regions, as well as the
eam’s or project’s history (e.g., how many patients have been recorded
o far, and results obtained). 

As multiple research teams often compete for a few time slots with
he patient, it is always a good idea to keep an open register of all ex-
eriments performed and timing of recording sessions, to create a feel-
ng of equity and transparency. This can be facilitated by organizing a
egular schedule of meetings between clinicians and researchers to dis-
uss new protocols and present results obtained from ongoing protocols
rom previous patients. These meetings provide an excellent opportu-
ity to create bridges between clinical and fundamental science, and to
ncrease the global understanding of a given patient’s brain, by combin-
ng all observations made by independent research groups for that same
atient, in relation to his/her clinical records. Importantly, should some
echnical problem develop with the iEEG recordings themselves due to
hanges in software/hardware, regular team meetings can provide an
xcellent troubleshooting forum and communication to all about how
o deal with any encountered technical issues. 

.3.4. Research procedure 

The initial time spent by researchers with the patient is devoted to
 careful explanation of the experimental procedure and making sure
he patient has given formal written informed consent. When possible,
e recommend discussing participation in research protocols with the
atient prior to the implantation, and if possible asking for consent at
hat time. Thus, the patient can anticipate this dimension of his/her stay
t the clinic and is less burdened during this period. Yet, it must be clear
or the patient that the length of his/her stay is solely determined on a
linical basis. 

Subsequently, careful installation of the necessary equipment (e.g.,
omputer screens, audio outputs, response devices, eye-tracking device)
nd their connection/synchronization to the iEEG data recording system
s required. We strongly recommend carefully performing all the needed
ests (e.g., synchronization between presentation device and acquisition
ystem) during a “dry run ” with no patient (i.e., prior to performing the
cquisition with the patient, see Section 1.4.1 ). 

When the EMU is not directly equipped for research (see
ection 1.3.2 ), the experimental equipment might be housed on a trol-
ey/cart that can be moved from one room to another. This can facilitate
asy removal of equipment from the field of view of the video camera
o record the behavioral characteristics of a seizure, as well as allowing
linical staff access to the patient at any time (see Section 1.3.2 ). 

In some centers, a dedicated member of the staff is in charge of per-
orming the experiments, assisted by the researcher. If the person in
harge is part of the clinic, he/she should make it clear to the patient
hat at that time he/she is ‘wearing a research hat’ (i.e., the patient
hould feel free to say ‘no’ to a research request, see Section 1.3.1 ). The
bvious advantage of having the same person doing all the recording is
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hat installation of experimental equipment is fast, efficient and repro-
ucible, and that the interaction with the patient and the clinical team is
ptimal. The dedicated member of the staff is also in a good position to
urvey and provide information on the patient (e.g., handedness, age,
oment of last seizure, medications, and technical information about

he electrodes and recording setup, see Section 1.3.8). 
Because the interaction with the patient is usually attention-

emanding, we recommend that experimenters prepare and use a check-
ist to keep track of each step in the experimental procedure. Such doc-
mentation reduces the cognitive load on the researcher, leads to more
igorous organization, can provide relevant meta-data, and makes data
ollection consistent. Working in teams of two researchers is also useful
 one person can monitor the iEEG display continually (in case of seizure
ctivity), while the other monitors the task computer and the patient’s
erformance of the activation task. 

.3.5. Challenges, recommendations and reporting advice 
• The clinical and research team should closely collaborate in organiz-

ing experimental recording sessions. 
• Written informed consent must be obtained from the patient for all

research procedures being undertaken as well as for the clinical data
that is used for the research (e.g., neuroimaging data). Make sure
that a duly authorized professional collects this consent prior to test-
ing (this is generally stipulated in the consent form and approved by
the appropriate Ethical Review Committee). 

• Any person interacting with the patient during intracranial evalua-
tion must behave and present a professional image at all times. This
is important as it might influence the patient’s perception of his/her
medical care. 

• Script the explanations/information given to the patient, use appro-
priate terminology, e.g., avoid using personalized phrasings like “test
your abilities ” but rather use terms such as “investigate human brain
functions ”. Be explicit with the purpose of fundamental research
(e.g., “this research is not designed to help you, but the knowledge
obtained may help future patients ”). 

• Use template “recording sheets ” to collect and document information
relevant for subsequent analyzing and reporting (e.g., the time of the
last seizure, the level of medication, handedness, reference/ground
electrodes, comments on the recording quality and patient state).
These records can be made on paper or digitally, but ultimately all
data should be archived in digital format. 

.4. Signal monitoring, recording and supplementary data 

.4.1. Experimental acquisition setup 

Most iEEG acquisition and visualization systems are optimized for
linical requirements and may not include some of the features desired
or experimental research (e.g., the ability to input triggers, perform
nline averaging, or allow other online analysis for closed-loop exper-
ments). Some acquisition systems allow starting a new recording with
arameters for an experimental session (e.g., increased sampling rate)
ithout interfering with the ongoing clinical recording. In other cases,
 research amplifier may record data in parallel to the clinical system.
oth good quality recordings and the local regulatory constraints for
atient safety are the responsibility of a trained clinical engineer. We
ecommend coordinating with the clinical staff prior to taking any ac-
ion that may alter the parameters of the long-term continuous clin-
cal iEEG/video recordings. Additionally, when recording at the bed-
ide with specialized research equipment that interacts with the clinical
etup, it is important for patient safety that this equipment is approved
or use in the clinical setting (which depends on local and national reg-
lations), is battery operated, and does not lead to any discomfort to the
atient (e.g., goggles or headphones exerting pressure on the bandaged
ead). 

Practical considerations for stimulus presentation include what stim-
lus presentation software the researcher should use, how reliable the
6 
ardware and software of the recording environment are, and how well
hese serve the purposes of the research goal. Selection of stimulus pre-
entation software may be constrained by the researcher’s ability to in-
tall new software on the available EMU equipment, or to synchronize
heir own equipment to the EMU set-up. The researchers should also
e familiar with the hardware connection between the stimulus pre-
entation computer and the recording device (e.g., whether a parallel
ort or other types of connections are supported). If the researcher can
hoose the stimulus presentation software, we recommend one that op-
imizes precise timing for the stimulus type being used in their study.
 comparison between common stimulus delivery programs is available
 Bridges et al., 2020 ). 

Any electrophysiological recording that requires synchronization
ith a behavioral task needs a stimulus trigger channel that allows syn-

hronization of event timing in the experimental software with electro-
hysiological events in the iEEG recordings. The trigger channel is the
ritical piece that renders our data useful - placing timestamps in the
ata file for specific task events. Given the idiosyncrasies of the iEEG
ecording environment, and the high value of such rare data, it is im-
ortant that every trial be accurately accounted for. We recommend
mbedding redundant information in the data collection strategy, such
s additional channels which directly record stimulus presentation, such
s a photodiode attached to the computer screen, a microphone or di-
ect audio recording from the amplifier (see Section 1.4.4 ). These allow
or a ‘ground-truth’ timing-reference in case the trigger channel does
ot record events, or does so with variable timing. Another source of
edundant information could be the behavioral or task-related files gen-
rated by stimulus presentation scripts. While these may not as easily
rovide timing-related information, they can help the researcher to en-
ure a match between the number and types of events that occurred
ver the course of the experiment with the information embedded in
he trigger channel. As such, a complete and verbose behavioral record-
ng is desirable for any cognitive task. 

Restrictions around the hardware and software permitted in the clin-
cal environment (for reasons of clinical certification and patient safety)
an introduce unforeseen sources of variability when running cognitive
nd behavioral experiments. In the ‘dry run’ that researchers should do
efore recording with an actual patient, they should aim to capture such
ariability in their experimental set-up, such as latency or jitter in stim-
lus presentation (see Section 1.4.4 ). However, discrepancies between
he timing of the trigger channel and other channels may be tolerable
o long as the latency is consistent (i.e., correctable constant lag). An
dditional benefit of this dry run is to more accurately estimate the du-
ation required for equipment set-up, providing realistic expectations
f the amount of data the researcher can acquire in a session with the
atient, while minimizing the appearance of uncertainty or unprepared-
ess that might make the patient uncomfortable. Accurately estimating
he time required for set-up also allows for better communication with
linical staff and fellow research teams. Dry runs should be repeated if
ny hardware or software on either the clinical or the research side has
een changed or updated. 

.4.2. Recording reference and ground 

As with scalp EEG, recording iEEG signals relies upon low-noise
ifferential amplifiers typically housed in a “headbox ” located close
o the patient, in combination with another amplifier component (the
DC converter and/or the interface and synchronization system) located
loser to the data acquisition computer. Each differential amplifier chan-
el takes a pair of electrodes (the electrode of interest and the reference,
hich is usually shared among all channels), amplifies the potential dif-

erence and converts it to a digital representation that can be visualized
nd stored on a computer. iEEG signals typically range from 0.05 to
 millivolts, about 10 to 100 times larger than scalp EEG signals. Be-
ides the electrodes of interest that are placed at, or close to, the tissue
f interest, biopotential recording systems also require a reference elec-
rode (REF) and usually include a ground electrode (GND) that serves to
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uppress noise. As an alternative to the ground electrode, biopotential
ystems can also include a common sense (CMS) and a so-called driven
ight leg (DRL) electrode. 

Electrical potentials by definition quantify a voltage difference. Thus,
he iEEG signal reflects the voltage differences between a pair of elec-
rode contacts, typically the electrode of interest relative to a reference
lectrode. It is important to distinguish the ‘online’ reference that is used
uring data acquisition itself, from the reference selected in post-hoc
igital re-referencing for offline data reviewing, processing and/or anal-
sis (see Section 3.4 ). It is important to document what, and where, the
nline reference was and to share this with others that might analyze
he data (e.g., scalp reference electrode at Cz, or sEEG shaft B contact
, see Section 1.3.8). 

Differential physiological amplifiers use the GND electrode to re-
uce the effect of the common mode voltages present on both the elec-
rode of interest and the reference electrode. This reduces common-
ode interference, for example due to the 50/60 Hz power line and
ue to other non-physiological sources of noise ( Scheer et al., 2006 )
see Sections 3.3 and 3.4 ). 

At the electrode-tissue interface the displacement of electric charge
n the electrode (a metal) consists of free electrons, whereas the displace-
ent of electric charge in the tissue (an electrolyte) consists of ions. The

lectrochemical reaction at the electrode-electrolyte interface not only
esults in a specific electrode impedance, but also in an electrode poten-
ial. Different metals have different surface polarization potentials that
an introduce offset potentials to the amplified and recorded potential
ifference between an electrode and the reference ( Lee Stephen, 2022 ).
he impedance at the electrode-tissue interface (and thereby the elec-
rode potential) fluctuates over time (about few minutes in case of scalp
EG, to days in the case of iEEG ( Sillay et al., 2013 )). 

Besides being the source of slowly changing offset potentials, the
lectrode-tissue interface can also introduce broadband noise and affect
he signal depending on the electrode impedance ( Huigen et al., 2002 ).
his also pertains to the impedance of the REF and GND, which are
ometimes placed on the scalp or located in the skin, bone, meninges
r white matter. Additionally, some metals can introduce filtering ef-
ects into measured signals, therefore the material for these electrodes
eeds to be carefully considered ( Hari and Puce, 2017 ). When the re-
earcher can choose these electrodes, he/she may consider the vari-
us possibilities that we have described here. However, in practice, the
hoice of the REF and GND is usually made by clinicians when the pa-
ient arrives in the EMU and usually maintained during the entire mon-
toring time. The criteria for a good REF/GND include: the patient’s
afety and comfort, the complexity of the set-up/placement, the ease
f maintenance and the ability to maintain a low impedance for a long
ime. 

The two following subsections describe various options for choosing
he recording reference and ground, ordered from the least to the most
nvasive. There is not a single best solution, but there are multiple rea-
onable solutions that depend on the electrode implantation schemes
hat impose constraints on where the REF and GND can be placed -
argely due to the presence of sterile dressings that can cover large sec-
ions of the head. Despite this variation, considering signal quality and
he influence of the REF and GND can have on planned analysis should
e considered (e.g., for common pick-up on the measure of coherence,
ee ( Zaveri et al., 2000 ), and see Sections 3.4 , 4.3.3.7 and 4.3.3.8 ). 

.4.2.1. External REF/GND. When opting for an external REF or GND,
n electrode on the skin (e.g., tip of the nose, mastoids, clavicle) or scalp
urface can be used to achieve a low impedance, although they require
egular maintenance. The electrode paste or gel and tape used for their
lacement may not always be compatible with the sterile dressings cov-
ring the craniotomy and/or burr holes post-implantation. 

These issues can be avoided with a subdermal needle electrode, al-
hough this is already more invasive ( Vulliemoz et al., 2010 ). Alterna-
ively, as part of the surgical procedure, an electrode such as a skull
7 
crew, or a cranial electrode (i.e., sEEG electrode localized in the skull),
r an inverted subdural strip electrode, facing upward to the inner side
f the skull, may serve as an indwelling reference. 

The main disadvantage of an external reference is that it is more
rone to pick up external noise (i.e., ambient 50/60 Hz), some arti-
actual muscle activity (including blinks and eye or head movements)
nd/or global brain activity being passively volume conducted through
he tissues. That said, invasive and semi-invasive reference electrodes
an still pick-up volume-conducted artifactual activity such as eye
links and movements or cardiac activity (see Section 3.3.2 ). Impor-
antly, as noted earlier, different material for electrodes should be
voided, as they would result in different half-cell potentials and thereby
ntroduce unstable DC offset potentials which deteriorate the signal
uality. 

.4.2.2. Internal REF/GND. An alternative solution for the REF and
ND consists of using a pair of iEEG electrodes, e.g., adjacent electrodes

n the white matter. This reduces the risk of using different electrode ma-
erials which inadvertently could introduce DC offset potentials. In this
ase the REF (like any other electrode) is sensitive to fluctuations of the
ioelectrical activity generated in its vicinity, therefore it is advisable
o choose an electrode site which picks up as little neural activity or
ioelectrical artifacts as possible, as this would be introduced back into
he full montage. An additional advantage with internal REF electrodes
s that its impedance is likely to be comparable to the contacts of inter-
st that form the other input to the differential physiological amplifier:
mpedance mismatches between pairs of contacts that provide the in-
uts to differential amplifiers can impair the ability of the amplifier to
eject common mode signals. 

.4.3. Electrode characteristics 

The materials used for ECoG and sEEG electrodes are in most
ases platinum/iridium because of its biocompatibility and suitabil-
ty for long-term implantation in human tissue. However, sEEG and
CoG electrodes vary substantially in terms of their geometry and
any manufacturers custom-design probes on request (see Section
.2.2 ). Here we describe the most used macro-scale electrodes for both
echniques. 

– ECoG subdural electrodes are flat discs. The diameter of the ex-
posed surface varies from 1 to 4.5 mm and the surface from 5.3
to 28.2 mm 

2 . The distance between individual electrodes within a
grid or strip is typically 3 to 10 mm. Typically, grid arrays consist of
4 ×4, 4 ×5, 8 ×8 or 10 ×10 electrodes, and strips can include various
electrode configurations e.g., 1 ×4, 1 ×6,1 ×8, 2 ×10 (Boatman et al.
2010). Strips can be linear arrays or form ‘L’ or ‘T’ shapes. Beneath
an ECoG electrode with 2.3 mm diameter, given an estimate of about
100,000 neurons under 1 mm 

2 cortex, the electrode contact covers
about 5 ×10 5 neurons ( Miller et al., 2009 ). Estimates from macaque
V1 suggest that each electrode measures activity from an area of
about 3 mm in diameter ( Dubey and Ray, 2019 ). Nonetheless, local
field potentials also reflect volume-conducted activity from distant
sources ( Kajikawa and Schroeder, 2011 ). 

– sEEG depth shafts are cylinder-shaped with 5 to 20 contacts. For each
contact the exposed surface length is around 2 mm with diameters
ranging from 0.8 to 2 mm, leading to a surface area of 3.5 to 50
mm 

2 . Various options exist for the spacing of the centers of adjacent
electrodes, but distances typically range from 2.5 to 10 mm. Each
sEEG electrode explores a small volume of brain tissue estimated to
be a sphere of approximately 5 mm radius surrounding the electrode
( von Ellenrieder et al., 2012 ). 

ECoG electrodes measure cortical activity differently compared to
EEG electrodes. Their subdural position covers a large cortical surface
rea (i.e., up to tens of cm 

2 ) and captures the origin of grey matter sig-
als orthogonal to the cortical surface; as compared to sEEG electrodes,
hich sample, from different spatial orientations, depths, and discrete
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3 https://www.hedtags.org/ 
rain volumes (i.e., a few cm 

3 ), by straddling different tissues and poten-
ially different cortical layers. Finally, it is worth noting that the ability
o pick up iEEG signals does not only depend on electrode properties,
ut also on the characteristics of the neural source itself: its spatial ex-
ent, its location and orientation relative to the electrode contact and
he degree of synchronization among the active neural population (see
 Cosandier-Rimélé et al., 2008 ; Ramantani et al., 2016 ) for a thorough
nvestigation of the neurophysiological models of sources in sEEG and
calp EEG). 

There are other specialized electrodes that we do not consider fur-
her here, for example microelectrodes specifically designed for the
ecording of activity of individual neurons or shafts with very closely
paced small electrodes to record the laminar potential distribution
( Kellis et al., 2016 ; Tóth et al., 2016 ) and see Section 6.4 ). Their use
equires recordings with much higher sampling rates and filter settings
han regular ECoG and sEEG. 

.4.4. Supplementary channels and behavior 

Along with iEEG signals, additional physiological signals may be
ecorded for clinic and/or research and may help identify artifacts (see
ections 1.4.5 and 3.3 ). Electrocardiographic activity (i.e., ECG/EKG)
s almost systematically recorded in the clinical environment, not only
o monitor the patient’s cardiac activity, but also to allow distinguish-
ng ECG/EKG artifacts from rhythmic interictal epileptiform discharges
n the EEG. ECG/EKG can also be used to guide iEEG signal analy-
is ( Kim et al., 2019 ; Park et al., 2018 ). Electrodermal activity (EDA,
lso referred to as galvanic skin response (GSR), psychogalvanic reflex
PGR), skin conductance response (SCR), or sympathetic skin response
SSR)) a marker for sympathetic skin activity, can be used for seizure
onitoring, detection and prediction ( Vieluf et al., 2021 ) as well as for

tudying cognitive processes (e.g., emotional processing, see for an ex-
mple ( Chen et al., 2021 ; D’Hondt et al., 2010 )). For research purposes,
lectro-oculogram (i.e., the horizontal (HEOG) and vertical (VEOG) eye
ovements) or eye-tracking (i.e. eye gaze and/or a measure of pupillom-

try) can be recorded to monitor gross and fine eye movements, respec-
ively, ( Ball et al., 2009 ; Cimbalnik et al., 2022 ; Golan et al., 2017 , 2016 ;
erbi et al., 2009a ; Katz et al., 2020 ; Kern et al., 2021 ; Kovach, 2011 ;
achaux et al., 2006 ; Podvalny et al., 2017 ). Similarly, surface elec-
romyography (EMG) can be recorded to probe muscular activity (i.e.:
oluntary and involuntary movement, ( Talakoub et al., 2017 )). Last,
atural breathing can be recorded, for instance to investigate the in-
uence of the respiratory cycle on the activity of specific brain areas
nd on cognitive functions ( Herrero et al., 2018 ; Zelano et al., 2016 ),
owever, this requires specialized equipment that may require a lot of
djustment. 

In most iEEG research paradigms, the participant receives instruc-
ions and performs a specific task. Therefore, iEEG data is often com-
lemented by behavioral recordings which can be either discontinuous
vents (e.g., button presses) or a continuous data stream, e.g., from
 microphone for speech tasks ( Bouchard et al., 2013 ; Chartier et al.,
018 ; Hamilton et al., 2021 , 2018 ; Mesgarani et al., 2014 ); eye tracking
 Golan et al., 2017 , 2016 ; Podvalny et al., 2017 ); or hand movements
ecorded with a dataglove ( Miller et al., 2012 ). To relate the iEEG data
o behavioral measure(s), synchronization between the two recordings
s critical (see Sections 1.3.4 and 1.3.1 ). For discontinuous events, cor-
esponding time-points are either marked as triggers in a dedicated file
ccompanying the iEEG data (e.g., .vmrk in BrainVision Analyzer for-
at one of the iEEG BIDS formats, see Section 1.3.8), or events are

agged in a dedicated trigger channel (i.e., as binary pulses, numbers
r strings). For some continuous streams a different sampling rate may
e used (e.g., for audio as analog inputs, at least 16 kHz is needed,
hereas the typical iEEG is sampled at about 1 kHz). Some systems al-

ow implicit synchronization for recording iEEG along with other signals
t different rates, whereas in other cases explicit synchronization be-
ween multiple systems is needed. The acquisition of continuous signals
n parallel with the iEEG recording presents many advantages and moves
8 
orward to naturalistic neuroscience (see Section 6.5 ). As mentioned in
ection 1.4.1 , the continuous recording of supplementary channels can
e used as ‘ground-truth’ in the timeline of iEEG data. Moreover, record-
ng continuous signals allows for higher sensitivity in some research
elds, like in the investigation of natural speech production where the
pecific spectrotemporal characteristics of the recorded audio stream
an be analyzed and compared with neural activity ( Ozker et al., 2022 ),
hich is not possible when only speech onset is marked as a discrete

rigger-event. 
Just like clinicians annotate the signals using the clinical monitor-

ng system (e.g., to indicate seizure onset and/or associated behavior),
esearchers can document iEEG data to drive analyses (e.g., manual
creening for real-life conversation or other activities, see for example
 Glanz et al., 2018 ; Mercier et al., 2017 ), Fig. 2 ). To that aim, the Hi-
rarchical Event Descriptor tag (or HED schema 3 ) offers a standard to
nnotate brain imaging data. It has been adopted as part of BIDS (see
 Robbins et al., 2021 ) and Section 1.4.8 ). Supplementary channels and
nnotations add value to iEEG data: they guide preprocessing (e.g., to
dentify artifacts; see section 3 ) and to integrate behavioral correlates
n signal analyses (see Sections 4.2.3 and 4.3.4 for common practices to
elate behavior and iEEG signal through data visualization). 

.4.5. Monitoring artifacts 

The term “artifact ” refers to signal features that are not relevant or
ndesired for the research purpose, in iEEG these would be signals that
o not originate from the brain or pathological neural activity. The sig-
als not originating from the brain can further be divided into two: phys-
ological and non-physiological artifacts. Pathological epileptiform ac-
ivity during seizures or between seizures is discussed in Section 3.3.1 .
f artifacts are identified during monitoring, the researcher can annotate
hem and possibly try to avoid or reduce them. 

Physiological artifacts are generated by the patient, from sources
ther than the brain. The most common are eye blinks, eye move-
ents (i.e., saccades or micro-saccades measured with EOG and/or

ye-tracking), cardiac activity (EKG/ECG), and muscle activity (EMG)
 Ball et al., 2009 ; Jerbi et al., 2009a ; Kern et al., 2013 , 2021 ;
ovach, 2011 ; Melloni et al., 2009 ; Mosher et al., 2020 ; Otsubo et al.,
008 ). Physiological artifacts are a major source of contamination in
on-invasive neurophysiological techniques (e.g., MEG, EEG). While
heir presence in the iEEG signal is less evident to the naked eye, they
an mix with the signal of interest spatially, temporally, and/or spec-
rally (see Section 3.3.2 ). In addition, some unwanted brain responses
an occur from experimental events (e.g., the patient hears the sound of
heir own button press when giving a behavioral response). 

Non-physiological artifacts arise from a potentially large number
f external elements including electrical stimulation artifacts, other
lectrical equipment (e.g., patient monitoring equipment, intravenous
umps, etc.), electrical motors (e.g., to incline the patient’s bed), elec-
ronic devices (e.g., screen, speakers, cell phones), and sway in im-
roperly anchored electrode cables. Other sources of interference can
roduce low-frequency patterns, punctate high-frequency artifacts and
ontinuous power line interference (50/60 Hz and harmonics, see
ection 3 ). 

.4.6. Combining intracranial and non-invasive electrophysio- logical 

ecordings 

iEEG has a high signal to noise ratio (SNR) and a high spatial speci-
city: it directly records brain signals and is mainly focused on activity
riginating from summated post-synaptic potentials from populations of
eurons in the immediate vicinity of the electrode. Yet, iEEG is spatially
parse because the clinical exploration targets only a specific subset of
rain regions. 

https://www.hedtags.org/
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MEG and EEG also record summated neurophysiological activity, but
ith sensors covering the whole scalp, therefore offering a more com-
lete spatial coverage of the whole brain. However, these measurements
re made outside of the brain and skull and have significantly reduced
NR relative to iEEG. Additionally, localizing and reconstructing the
ime course of activity in the brain requires source modeling and solv-
ng the inverse problem as measurements are not taken directly from
he source locations. 

Simultaneous invasive and non-invasive electrophysiological record-
ngs can combine the qualities of each technique to describe as ac-
urately (high SNR, high spatial specificity) and as comprehensively
whole brain) possible brain processes. For instance, a limited set of
ronto-central EEG electrodes can help to identify sleep stages during
EEG (Hayat et al., 2022). Since the development of high density EEG
nd MEG (M/EEG), there is increasing interest to investigate the re-
ationship between surface signals and the spatiotemporal configura-
ion of underlying brain sources. In this context, iEEG can only provide
ome “ground truth ” for characterizing sources in brain areas where
lectrodes are implanted ( Mikulan et al., 2020 ). Cosandier-Rimélé et al.
 Cosandier-Rimélé et al., 2008 ) modeled the impact of several fac-
ors (e.g., distance to sources, skull conductivity, source area, source
ynchrony, background activity) on the observability of simultaneous
apid discharges in sEEG and scalp EEG signals. Empirical studies have
ested ability for non-invasive techniques to detect activity originating
n deep structures ( Fahimi Hnazaee et al., 2020 ; Koessler et al., 2015 ;
izzo et al., 2019 ; Seeber et al., 2019 ), to determine the lateralization of
eizure onset ( Sammaritano et al., 1987 ) and provided insights into the
uality of source reconstruction ( Mikulan et al., 2021 , 2020 ). For cog-
itive research, the joint analysis of depth and surface signal evoked
y individual stimuli can contribute to understanding the neural ac-
ivity linked to cognitive processes ( Dalal et al., 2009 ; Dubarry et al.,
014 ). Simultaneous recordings can also provide additional informa-
ion relating to tissue that is actively generating the patient’s seizures
 Gavaret et al., 2016 ; Kakisaka et al., 2012 ; Santiuste et al., 2008 ).
or instance, MEG data time-locked to iEEG interictal epileptiform dis-
harges revealed an additional generator in a region not covered by the
EEG implants ( Gavaret et al., 2016 ). 

While these studies provide unique perspectives on brain activity,
imultaneous recordings are difficult to implement. There are infection
ontrol and pain-related issues due to the craniotomy and burr hole sites.
t can be difficult to place non-sterile scalp EEG electrodes on patients
ith extensive intracerebral electrode implantation as they might con-

act iEEG probes (i.e., cables, screws). Scalp EEG electrode type can af-
ect signal quality and practicality (e.g., transcutaneous electrodes can
e more stable, while adhesive electrodes are easier to place). Scalp EEG
ecording should begin shortly after these electrodes are placed by the
linical team as the signals will be optimal at this time. Furthermore,
hen interpreting scalp EEG signals, changes in electric field propa-
ation caused by the implants themselves, and discontinuities in the
kull due to craniotomies and associated burr holes must be considered
 Dalal et al., 2009 ; Kirchberger et al., 1998 ; Oostenveld and Oosten-
orp, 2002 ; Voytek et al., 2010 ). 

Recording MEG simultaneously with iEEG presents physical chal-
enges, e.g., transporting the implanted patient to the MEG labora-
ory, introducing iEEG hardware inside the shielded MEG environment,
nd getting the patient’s head successfully into the rigid MEG helmet.
he amount of time the patient spends outside the EMU must be kept
o a minimum, so the recording session must proceed efficiently (see
ection 1.3.2 ). Unfortunately, the quality of MEG signals can be severely
ompromised by the iEEG hardware. Because of these major technical
hallenges, it is possible, but in practice rare to acquire data in the three
odalities (iEEG, EEG and MEG) simultaneously (see the single case

tudy in ( Dubarry et al., 2014 )). 
In summary, recording non-invasive and intracranial neural signals

imultaneously can provide a more complete perspective for integrat-
ng and evaluating brain activity recorded by different methods. This
9 
onveys potentially important benefits for improving methods, and for
nterpreting clinical and cognitive questions that are addressed by these
ame approaches when used in isolation. However, concurrent neuro-
hysiological recordings are technically and logistically challenging,
rom patient consent (explaining procedures), to data acquisition, anal-
sis and interpretation. Performing such recordings should only be at-
empted when the research hypothesis clearly motivates this and there
s strong support from the clinical staff. 

.4.7. Imaging data 

As part of the clinical procedure, imaging data is routinely acquired
nd is available for research purposes if the patient gives their con-
ent ( Fig. 2 and see Section 1.3.5 ). Notably, pre-implantation structural
RI and post-implantation CT or MRI scans are critical for localizing

nd categorizing electrode contacts (e.g gray vs white matter, specific
ulci/gyri) (see Section 2 ), as well as for reporting and sharing data (see
ection 1.4.8 ). Sometimes additional complementary neuroimaging in-
estigations may exist (e.g., fMRI, MRI scans with different imaging se-
uences, PET or SPECT scans), and these might also be informative for
he research data analysis. Importantly, some patients have had previous
rain resections or have brain lesions that may, or may not, be epilepto-
enic. This has important implications for matching individual to tem-
late brains (see Section 2.3.2 ), and interpreting and modeling neuro-
hysiological brain activity. Some centers also use fMRI studies with
ocalizer tasks prior to implantation to perform a non-invasive brain
apping that can complement iEEG investigations (see Sections 1.2.4 ).

Functional MRI and iEEG signals have been combined in many stud-
es (for review see ( Ojemann et al., 2013 )). Most of these studies per-
ormed separate iEEG and pre- or postoperative fMRI recordings using
he same task in the same individuals, and a few carried out simulta-
eous recordings. Several approaches have been used to compare sep-
rate recordings in the same individuals, including comparisons of the
patial distribution and comparisons of activity levels within electrodes
cross task conditions or time. Temporal approaches typically extract
ifferent iEEG measurements that are then convolved with a hemody-
amic response function to predict the BOLD signal ( Haufe et al., 2018 ;
ukamel et al., 2005 ). Initial spatial comparisons showed overlap be-

ween the sEEG high frequency and fMRI signal changes ( Lachaux et al.,
007a ; Nir et al., 2007 ). More complex relationships between these sig-
als were revealed later ( Hermes et al., 2012 ), where ECoG high fre-
uency power increases and low frequency power decreases explain
omplementary variance in BOLD increases (see also ( Haufe et al., 2018 ;
ermes et al., 2017 )). One methodological consideration when integrat-

ng separately recorded fMRI and iEEG data is how to match voxels to
EEG electrodes (see Section 2.2.4 ). A typical approach is to calculate a
weighted) average of the BOLD activity in a small region of gray mat-
er cortex of about 3–8 mm around the electrode (excluding non-gray
atter voxels), as correlations drop across larger regions ( Hermes et al.,
012 ; Piantoni et al., 2021 ). When integrating iEEG with fMRI data,
here may be serious fMRI signal dropout in anterior ventral temporal
nd orbitofrontal areas. These are often covered with iEEG electrodes
 Ojemann et al., 1997 ; Shum et al., 2013 ), so there may be an absence
f complementary information from both imaging modalities. 

Simultaneous fMRI-iEEG studies have reported spatial correspon-
ence in the trial-by-trial correlations between the BOLD signal in-
reases and ECoG high frequency power increases and low frequency
ower decreases ( Murta et al., 2017 ), and have also used simultaneous
ecordings to explore the effects of electrical stimulation on the BOLD
ignal ( Oya et al., 2017 ). While scientifically interesting, simultaneous
MRI-iEEG recording requires specific authorization as it presents ad-
itional challenges with respect to fMRI compatibility with iEEG elec-
rodes and recording devices (e.g., cables, amplifiers) and general pa-
ient comfort and safety. Surgical dressings themselves can be bulky and
ay impose space constraints for some MRI head coils - not to mention
ainful pressure points for the patient at the surgical site. 
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.4.8. Reporting and sharing 

An iEEG dataset consists of complex and often heterogeneous data,
ncluding information from the clinical team, pre- and post-operative
euroimaging data, results of neuropsychological assessments, electrical
ortical mapping, assessments of patient participation in the experimen-
al tasks, the actual neurophysiological and behavioral data recorded
uring the experimental tasks and associated annotations ( Fig. 2 ). 

The Brain Imaging Data Structure (BIDS) provides a template for or-
anizing neuroimaging data of various types in a standardized directory,
lename and file structure that now covers multiple imaging modalities
for MRI, iEEG, MEG and EEG, see, respectively, ( Gorgolewski et al.,
016 ; Holdgraf et al., 2019 ; Niso et al., 2018 ; Pernet et al., 2019 )), with
ork continuing to incorporate additional modalities such as single unit
ctivity. A typical iEEG dataset includes anatomical imaging data, loca-
ion of intracranial electrodes, iEEG data in relation to the events in
he experimental task, and behavioral measures (see Fig. 2 ). As iEEG
s acquired in clinical rather than lab settings, this introduces sources
f variability across acquisition sessions and medical centers, so spe-
ial attention is needed to document metadata. Minimally, those meta-
ata shall document the experimental environment (e.g., hardware, soft-
are, equipment wiring diagram), information concerning additional

quipment, participant behavioral status, and the experimental proto-
ol and/or deviations from the protocol due to unforeseeable reasons
uch as medical interventions during testing. Specific pre-processing is
equired for the raw dataset both from the clinical and research perspec-
ive (e.g., determining electrode locations from imaging data, indicating
he recording REF/GND identifying channels with epileptiform activity
r non-functioning contacts), and these must be documented. 

We recommend a research data management plan that not only con-
iders the iEEG data but also supplementary data. The latter includes
mportant information that changes at a slower rate than the main data
f interest such as medication and clinical state of the patient, research
uestionnaires, and version control where time-stamped (pre)processing
teps are documented in a clear readable workflow. This is important for
he easy identification and tracking of data and its derivatives. This en-
ures that future researchers (from the same or another lab) will see
hat has already happened to the data, without having to repeat any

teps. This will improve efficiency, quality and reproducibility of sci-
nce. For an example of iEEG datasets in the BIDS format, see 4 . 

While a standardized format offers the most universal application
f data, some researchers share valuable data in a lab-specific manner.
n that case, the interoperable (I) and reusable (R) criteria of FAIR 

5 

hould be considered ( Wilkinson et al., 2016 ). Specifically, i) the for-
at of physiological and behavioral data should be sufficiently simple,

nd variables corresponding to each measurement should be explicitly
escribed in companion documents, ii) co-registered anatomy in stan-
ardized coordinates should be integrated into a provided workflow,
nd allow plots to be easily made from analyses of time series data,
nd iii) a clearly written workflow and all code (fully and extensively
ommented) to reproduce every element of published work should be
rovided. For examples of this approach, see recent libraries of publicly-
vailable, open-source, ECoG data and code 6 , ( Miller, 2019 ), or multi-
odal iEEG-fMRI dataset ( Berezutskaya et al., 2022 ). 

If the patient data is to be shared publicly according to Open Science
rinciples, additional constraints will apply. For example, to support a
aper with primary research findings, or alternatively the form of a data
escriptor paper, it is crucial to consider the legal (e.g., GDPR or HIPAA)
nd ethical considerations regarding patient privacy. Anatomical imag-
ng data that are shared with the published dataset must be defaced or
kull-stripped to remove facial features, but that does not guarantee that
t is impossible for the participant to be re-identified ( Abramian and Ek-
4 https://openneuro.org/search/modality/ieeg 
5 https://www.go-fair.org/fair-principles/ 
6 http://memory.psych.upenn.edu/Data 

 

 

 

10 
und, 2019 ; Schwarz et al., 2021 , and in some cases the transformation
an degrade performance of image analysis methods ( de Sitter et al.,
2020) ). The same considerations must be applied to appropriately han-
le any supplementary data that is identifiable, such as audio and video
ecordings, but also clinical and demographic data that is represented
n simple tabular format. Furthermore, the specific configuration of im-
lanted electrodes and the clinical information itself (e.g., brain lesions)
an contribute to the risk of potential reidentification of the individ-
al ( Rocher et al., 2019 ). However, the scientific utility of the shared
ata can be compromised by de-identification approaches which also
emove the critical features that are required for data interpretation
nd reuse (on behalf of the MAGNIMS Study Group and Alzheimer’s
isease Neuroimaging Initiative et al., 2020). To balance the value of

he shared data with legal and ethical responsibilities to the patient,
e recommend sharing the data under a data use agreement that per-
its bona fide research, but ensures that the patient’s interests are not
armed, more specifically that the identity of the patient is protected
 Bannier et al., 2021 ; Eke et al., 2021 ; Jwa and Poldrack, 2021 ). Since
haring anonymized iEEG data is challenging, new techniques may have
o be developed and the awareness for existing deidentification strate-
ies should be increased (e.g., ( Meurers et al., 2021 ; Prasser et al., 2014 ;
inding and Oostenveld, 2022 ), and see Section 6.2 ). 

.4.9. Challenges, recommendations and reporting advice 
• Sharing iEEG data, or any other data from human research partic-

ipants, requires written informed consent that explicitly specifies
which data can be shared (e.g., iEEG signal, neuroimaging data,
video), to which audience (e.g., other institute(s), public space) and
what measures are undertaken to warrant data anonymization or de-
identification to protect participant privacy (( Bannier et al., 2021 ),
see also 7 ). In addition, one needs to consider the safety of the tools
used to share the data, as well as the necessity of setting up a data
sharing agreement. 

• Visualization of the raw signals and their power spectra permit
the evaluation of data quality (if permitted by the acquisition soft-
ware, the sanity check of power spectra should be performed dur-
ing the actual recording, otherwise it must be performed offline, see
section 3.3 ). When the signal from all electrodes is noisy (e.g., pres-
ence of 50/60 Hz and its harmonics) it is possible that the noise
originates from the REF and/or the GND electrodes or cable; in that
case these must be changed independently to identify the source of
noise (see Sections 1.4.2 and 3.4 ). If noise only contaminates a single
ECoG grid/strip or sEEG shaft), its cabling should be verified (i.e.,
cables, adaptors and plugs). 

• Whenever possible, the reference electrode and ground electrode
should be of the same material as the other electrodes to reduce
the effect of half-cell electrode potentials ( Section 1.4.2 ). 

• As researchers operating in the clinical environment have inherently
less control over the software and hardware, it is important to pre-
emptively itemize the tools available for research in the EMU and
to accommodate any deficiencies with redundancy in experimental
design and recording scheme ( Section 1.4.1 ). 

• We recommend recording physiological artifact samples to ensure
that some prototypical patterns are available when off-line review-
ing and cleaning the data (see Sections 1.4.5 and 3.3 ). These artifact
templates are helpful to compare with those overlapping the signal
during the experiment itself, especially when artifacts are suspected
to be present in the data in line with the task (e.g., jaw, lip and
tongue movements for language production). 

• As well as recording artifact templates, during data collection it is
useful to keep track of any unexpected environmental or patient-
related artifacts during the task (e.g., aura or prodrome prior to a
seizure, seizure, sneezing, yawning, coughing, environmental noise,
7 https://open-brain-consent.readthedocs.io/en/stable/ 

https://openneuro.org/search/modality/ieeg
https://www.go-fair.org/fair-principles/
http://memory.psych.upenn.edu/Data
https://open-brain-consent.readthedocs.io/en/stable/


M.R. Mercier, A.-S. Dubarry, F. Tadel et al. NeuroImage 260 (2022) 119438 

 

 

 

 

 

 

 

 

 

 

 

 

2

2

 

f  

p  

a  

fl  

p  

m  

t  

s  

s  

o  

o  

a  

m  

i  

e
 

t  

p  

a  

p  

i  

e  

s  

p  

c  

d  

l  

a  

t  

S  

t  

p  

e
 

p  

b  

l  

q  

q  

t  

i

f

2

 

s  

o  

t  

t  

i  

s  

B  

p  

e  

c  

e  

e  

t  

n  

e
 

f  

m  

M  

C  

2  

d  

p  

p  

t  

n  

i
 

g  

l  

e

2

 

t  

o  

B  

H  

N  

2  

l  

t  

p  

F
 

p  

(  

o  

T  

(  

l  

a  

w  

c  

E  

t  

(  

a  

a  
see ( Mosher and Funke, 2020 ) in the context of MEG recordings).
We recommend using annotation plug-ins directly in the acquisition
software, or when that is not possible, to write notes in an experi-
mental notebook or lab diary with times of occurrence (see Section
1.4.8 ). Later, these annotations will allow the detection of artifacts
in the recording and may provide insight into detecting ones that
were not annotated. 

• Considering experimental designs, different conditions might result
in different amounts of artifacts, for example 50/60 Hz line noise
when touching a button-box/computer keyboard in one condition
and not the other, or when one condition results in more partic-
ipant movements. An experimental difference in artifacts should
be considered as a potential confound for subsequent analysis (see
Section 3.3 ). 

. Electrode localization and anatomy 

.1. Introduction 

Intracranial electrodes are in close contact with the brain tissues
rom which electrical activity is generated (see Fig. 1 ). For ECoG im-
lants, neural activity passively propagates through volume conduction
cross several layers of the cerebral cortex, pia mater, cerebrospinal
uid and arachnoid mater before reaching the electrodes. For sEEG im-
lants, neural activity passively propagates through gray matter, white
atter and cerebrospinal fluid (see Section 1.2.2 and 1.4.3 ). This confers

o iEEG both a high SNR and a high spatial specificity. The iEEG spatial
pecificity is in the range of millimeters, which cannot be matched with
urface EEG or MEG recordings ( Buzsáki et al., 2012 ). To make the most
f the high iEEG spatial specificity, one needs to localize the electrodes
n/in the brain and to identify the anatomical structures the electrodes
re implanted in or in contact with. Electrode localization therefore
ore strongly depends on imaging data and anatomical processing than

s common for M/EEG studies. We discuss how to localize the implanted
lectrodes on/in the individual patient’s brain in Section 2.2 below. 

The sparse coverage of iEEG results in data that is not sampled from
he whole brain. The scattered electrode placement is participant de-
endent, as dictated by individual clinical needs. While typical M/EEG
nalysis relies on averaging and comparing recordings across multiple
articipants with standardized sensor positions, iEEG recordings are id-
osyncratic and difficult to compare across patients. For instance, sEEG
lectrodes can sit in sulci and it can be difficult to gauge which side of
ulcus is the source of the activity, and differences in cortical folding
atterns can make direct comparisons between participants even more
omplex. Two main approaches are used to collate and interpret iEEG
ata at the group level: using a normalized space or delineated parcel-
ations (see Section 5.4 ). In Section 2.3 , we discuss how co-registering
nd normalizing the individual patient’s MRI (with corresponding elec-
rode positions) permits work in a standard brain template space. In
ection 2.4 , we discuss the procedure of matching anatomical or func-
ional atlas labels from a template brain to an individual’s brain. This
rocedure permits electrodes to be grouped with respect to the delin-
ated feature in the individual’s anatomy. 

There is no clear consensus in the iEEG research community about
erforming analyses either in normalized space or in native space. Yet,
ased on the literature and specialized toolboxes (see 8 for an updated
ist), a common workflow emerges ( Fig. 3 ). Here, we recommend a se-
uence of steps to obtain all information that may potentially be re-
uired in subsequent analyses of iEEG data. We assert that iEEG elec-
rode localization is critical to fully utilize the high spatial specificity of
EEG, but also to acknowledge its limits and imperfections. 
8 http://ielvis.pbworks.com/Links-to-other-free-software-for-analyzing-data- 
rom-epilepsy-surgery-candidates 
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.2. Individual space 

The clinical procedure of electrode implantation involves a patient-
pecific surgery (see Section 1.2.1 ). For sEEG, the positions (3D co-
rdinates) of the sEEG shafts trajectories are pre-specified in the pa-
ient’s structural MRI and/or CT to guide stereotactic intervention by
he neurosurgeon when targeting the region of interest while avoid-
ng blood vessels. All information is uploaded to the neuro-navigation
oftware to guide the planned stereotactic trajectory ( Bakr et al., 2021 ;
randmeir et al., 2018 ). However, during surgery the neurosurgeon may
roceed differently than planned depending on the quality of periop-
rative recordings, the medical condition of the patient, existing vas-
ulature or technical reasons. Surgical planning is usually not precise
nough to properly estimate the final anatomical locations of the sEEG
lectrodes on the sole basis of the pre-surgical documentation, hence
he complementary post-op imaging. With ECoG, the use of a neuro-
avigator could provide decent approximates with a few millimeters
rror ( Gupta et al., 2014 ; O’Shea et al., 2006 ). 

To obtain accurate 3D coordinates and corresponding anatomical in-
ormation (e.g., tissue types or brain regions), when available we recom-
end using a pre-implantation high-resolution whole brain T1-weighted
R and post-implantation imaging exams (if only one is available
T is generally preferable to post-implant structural MRI, see Section
.2.1 and 2.2.4 ). A three step procedure is then followed, which we
escribe in this section: (i) localization of each electrode contact from
ost-implantation anatomical images, (ii) coregistration of the post- and
re-operative images and (iii) segmentation of the pre-implantation MRI
o obtain tissue classification. The order of execution of these steps does
ot critically affect the outcome, although reslicing of imaging data as an
ntermediate step may affect electrode localization (see Section 2.2.2 ). 

As the diagnostic neuroimaging protocols of epilepsy surgery pro-
rams may not include an MRI and/or CT scan, we indicate in the fol-
owing some alternative, but non-preferred, options for localizing the
lectrodes. 

.2.1. Electrode localization 

The 3D coordinates of each electrode centroid are determined on
he post-implantation imaging data by pinpointing the center of mass
f the electrode artifact visible in the imaging data ( Blenkmann, 2017 ;
ranco et al., 2018b ; Deman et al., 2018 ; Groppe et al., 2017 ;
amilton et al., 2017 ; Hermes et al., 2010 ; LaPlante et al., 2017 ;
arizzano et al., 2017 ; Sebastiano et al., 2006 ; Stolk, 2018 ; Tao et al.,
009 ). Post-implant CT-scans offer high-resolution images with excel-
ent contrast between soft tissue and the electrodes and skull. Therefore,
o achieve a high accuracy in the electrode localization, the CT-scan
rovides clear unambiguous data with a straightforward procedure (see
ig. 3 ). 

When post-implantation CTs are not available, alternative ap-
roaches can be used to localize the electrodes: post-implant MRI
 Kovalev et al., 2005 ; Morris et al., 2004 ; Yang et al., 2012 ), intra-
perative photographs taken during the surgery ( Mahvash et al., 2007 ;
ao et al., 2009 ; Wellmer et al., 2002 ) or two orthogonal skull X-rays
 Miller et al., 2007b ; Winkler et al., 2000 ). However, these approaches
ead to lower spatial precision: post-implant MRI shows large blurred
rtifacts around the electrode contacts due to their metallic structure,
hile photograph or skull X-rays imply some approximation in the re-

onstruction of the third dimension, and photography only applies to
CoG electrodes that are visible through the craniotomy and require
o visually/manually relate them to underlying anatomical landmarks
e.g., gyri/sulci, blood vessels etc.). Usually, more than one of these
pproaches are used - taking advantage of their respective strengths
nd correcting for potential tissue deformations (see also Section 2.2.4 ).
or instance, Dalal and colleagues ( Dalal et al., 2008 ) proposed a mul-
imodal approach for ECoG, where: (i) perioperative photographs are
sed to localize the electrodes visible during the craniotomy, (ii) the co-
rdinates are transferred to the pre-operative MRI rendering, (iii) a 3D-

http://ielvis.pbworks.com/Links-to-other-free-software-for-analyzing-data-from-epilepsy-surgery-candidates
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Fig. 3. Canonical framework of iEEG electrode localization using illustrations utilized as a sanity-check for the outputs of each step of the processing pipeline. 
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2  
D projective transform on the X-ray radiographs is used to back project
o the cortical surface the location of the occluded electrodes. Two re-
ent ECoG studies further propose defining anchor points on periop-
rative photographs and then using them to constrain semi-automated
lectrode localisation from a post-operative CT ( Trotta et al., 2018 ) or
ost-operative MRI ( Pieters et al., 2013 ). 

.2.2. Coregistration 

To link electrode coordinates to neuroanatomy, the post-implant im-
ge (CT or MRI) is coregistered with a pre-implant MRI that serves as
he reference. This registration is performed using a rigid transforma-
ion (i.e., rotation-translation) estimated mostly from the skull shape
 Friston, 2007 ; Jenkinson et al., 2012 ). If electrodes were localized prior
o coregistration with the pre-implant MRI, the same transformation
ust be applied to the 3D electrode positions as to the post-implant

mage. 
Following coregistration, the registered image (CT or MRI) can op-

ionally be resliced/resampled onto the reference image so that the two
olumes match voxel-by-voxel. This is useful for quality control: over-
aying the two images in the same view allows a visual check of whether
oregistration was successful (see Fig. 3 ). However, interpolation on a
ifferent voxel grid spacing does degrade image quality and spatial res-
lution of the post-implant image. CT scan resolution is typically higher
han that of the pre-implant MR. Hence, we recommend performing lo-
alization of iEEG contacts on the post-implant (CT or MRI) images prior
o reslicing. Once electrode coordinates are projected in the pre-implant
RI, electrodes can be visualized on/in the patient’s brain by scrolling

hrough MRI slices. 

.2.3. Segmentation 

The pre-implant whole head MRI can be processed to quantify and
econstruct anatomical features of the brain (see Fig. 3 ). Voxel-based
orphometry methods provide tissue classification (skin, skull, blood

essels, CSF, gray matter, white matter, lesions). As an imaging voxel
s not a biologically meaningful unit, other methods have been devel-
ped such as surface-based morphometry, which makes use of segmen-
ation boundaries into parametric surface meshes representing the sep-
12 
ration between tissues in 3D (skull shape, pial envelope, gray-white in-
erface) and providing related measures (e.g., cortical thickness, amount
f CSF). T1-weighted MRI scans offer the optimal contrast between the
issues to be segmented, and are therefore recommended as the starting
oint for most segmentation pipelines (e.g., FreeSurfer, CAT, BrainSuite,
rainVISA, SimNIBS; ( Fischl, 2012 ; Gaser et al., 2022 ; Rivière et al.,
009 ; Shattuck and Leahy, 2002 ; Thielscher et al., 2015 )). Some tools
llow including additional T2 or FLAIR images to improve quality of the
ial surface estimation (see for instance FreeSurfer, SimNIBS or SPM;
 Lindig et al., 2018 )). Specialized sequences for higher fidelity segmen-
ation and tissue type identification such as the Fast Gray Matter Acqui-
ition T1 Inversion Recovery (FGATIR see ( Sudhyadhom et al., 2009 ))
hould be used where possible as adjuncts to assist in segmentation. 

Some surgical procedures require additional MR angiography scans
o guide the implantation and avoid vessels: a contrast agent (e.g.,
adolinium, see recommendation from ( Bernasconi et al., 2019 )) is in-

ected intravenously and results in a hypersignal in T1-weighted images
round blood vessels and lesions, and possibly lower contrast between
issues in the rest of the image ( Hannoun et al., 2018 ; Maekawa et al.,
019 ; Vakharia et al., 2018 ). These effects may affect the quality of
egmentation pipelines (e.g., making gray and white matter difficult
o separate, or meningeal vessels classified as gray matter), therefore
he use of such images is not recommended as input for the segmen-
ation pipeline. If the use of a contrast agent is requested, it is recom-
ended to perform a T1-weighted scan before and after the infusion

see recommendations from the International League Against Epilepsy:
 Bernasconi et al., 2019 )), and only the former should be used for brain
egmentation and then for iEEG electrode labeling. 

The segmentation can be used to provide multiple labels or tis-
ue metrics for each electrode (e.g., Tissue Proximal Density, see
 Mercier et al., 2017 ) and see Fig. 4 ), which can help identify which
hannels to include/exclude in analysis and visualization (e.g., some
ontacts in SEEG electrodes might not be in the brain, see Section
.2.4 ). The geometrical surface meshes can be used for projecting ECoG
lectrodes on the folded cortical surface or the inside of the skull, for
isualization purposes, and/or for brain shift correction (see Sections
.2.4 and 3.2 ). The surface meshes and volumetric parcellations can also
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Fig. 4. Examples of differences in signals related to the surrounding tissue. 
A: ECoG signal as a function of electrode location. 
The left panel shows the location of the ECoG grid on the individual’s brain. Three electrodes are highlighted (but not at scale): over a blood vessel and sulcus (in 
yellow), on the bank of a gyrus and close to a blood vessel and sulcus (in orange), and over a gyrus (in red). The insert shows the angiogram (vessels) projected on 
the cortical surface. The right panel shows 30 sec of the high-frequency band signal (frequency analysis using Morlet wavelets, high-frequency band power extracted 
in 1-Hz bins and averaged over 45–120 Hz with 1-second smoothing) for the three electrodes (same amplitude scale). 
B: sEEG signal as a function of electrode location. 
The left panel shows the location of three sEEG electrodes (not at scale): one in the skull (in purple), one at the interface of the soft tis- 
sues (in pink), and one in the gray matter (in red). The right panel shows 2 sec of the raw signal for the three electrodes (same amplitude 
scale). 

b  

i

2

 

 

 

 

 

 

 

 

 

 

e  

r  

t  

s  

l  

s
 

i  

O  

t  

t  

l  

a  

(  

f

 

 

 

 

a  

2  

C  

S
 

t  

t  

b  

s  

a  

r  

t  

e  

o  

a  

s  

t  

2
 

i  

(  

u  

c  

9 https://www.fieldtriptoolbox.org/reference/ft_electrodeplacement/ 
e used to compute volume conduction models of the head for modeling
ntracranial electrical currents ( Medani et al., 2020 ). 

.2.4. Challenges, recommendations and reporting advice 
• We recommend visual inspection of the output of each processing

step as a sanity check (e.g., Fig. 3 ). This verification can save a lot
of time rather than trying to figure out a posteriori at which step
there was a failure in the pipeline (e.g., when left and right axes are
flipped). 

• Fiducial markers are reference points placed on the skin before per-
forming brain imaging. Generally they are placed at the nasion, in-
ion and/or pre-auricular points. Their use is recommended as these
points help to reference and align different images. An additional
fiducial, placed on one side of the head (e.g., the forehead), can pre-
vent right/left confusion. 

The 3D image acquisition can be performed with non-isotropic vox-
ls and therefore to less detailed images along the axis with the coarser
esolution; this results in more blurred localization accuracy of the elec-
rode in that direction. When possible, we recommend using isotropic
cans to avoid discrepancy between the three dimensions, so electrode
ocalization is not impacted by the orientation of the electrode with re-
pect to that of the scan. 

Additional image data processing such as filtering or smoothing may
ntroduce some approximation in the localization of iEEG electrodes.
nly the center of mass of the iEEG electrode is localized, then the elec-

rode is matched to a given voxel, which in most cases is smaller than
he electrode itself (the size of an electrode contact is about a few mil-
imeters, typically larger than the voxel size generally about 1 mm). As
 consequence, electrode location must be considered as an estimation
( Ken et al., 2007 ; Sebastiano et al., 2006 ) also see the method review
rom ( Pieters et al., 2013 )). 
13 
• We recommend localizing the center of mass of each electrode con-
tact on the original volume (e.g., on post-implantation CT-scan) prior
to any further imaging processing, notably coregistration, which can
blur the contact shape and decrease spatial specificity. 

Electrode localization can be performed manually or using a semi-
utomated or fully automated algorithm (for sEEG see ( Arnulfo et al.,
015 ; Granados et al., 2018 ), for ECoG see ( Branco et al., 2018b ;
entracchio et al., 2021 ; Hunter et al., 2005 ; O’Shea et al., 2006 ;
ebastiano et al., 2006 ; Yang et al., 2012 ). 

For sEEG, some semi-automatic procedures identify two points along
he electrode shaft (e.g., the proximal tip and the distal entry point of
he shaft in the skull) and interpolate the coordinates of other contacts
ased on the description of the electrode’s geometry (i.e., inter-electrode
pacing, electrode size, etc.). This approach assumes that the contacts
re on a line, however the shaft can bend during implantation due to the
esistance of the tissues (e.g., Fig. 6 , 3D view panel). Consequently, elec-
rodes along a shaft may deviate from a straight trajectory ( Cardinale
t al., 2016 ). To improve on this issue, some tools fit a spline to three
r more points along the electrode shaft and distribute the electrodes
long the spline (e.g., 9 ). More automated procedures based on CT-scan
egmentation were specifically developed to take into consideration
he bending of electrode shafts ( Arnulfo et al., 2015 ; Granados et al.,
018 ). 

ECoG implants push the brain inward due to the thickness of the
mplant and because of a general reaction to the surgical intervention
e.g., CSF leakage due to dura opening, soft tissue swelling). These non-
niform and unpredictable brain shifts range up to 24 mm for corti-
al displacement and to 3 mm for deeper structures, ventricles and

https://www.fieldtriptoolbox.org/reference/ft_electrodeplacement/
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11 https://bids-specification.readthedocs.io/en/bep-009/04-modality- 
he midline ( Dalal et al., 2008 ; Etame et al., 2011 ; Hartkens et al.,
003 ; Hastreiter et al., 2004 ; Hill et al., 1998 ; Roberts et al., 1998 ;
tudholme et al., 2001 ; Tao et al., 2009 ). This deformation requires
ome correction of the 3D reconstruction by projecting ECoG electrodes
t the surface of the brain using segmentation outputs (see below) or on
he brain convex hull or the inner skull surface (see 10 ). 

• We recommend correcting for brain shifts. Several effective auto-
matic methods have been developed. In Hermes et al. (2010) , ECoG
electrodes are orthogonally projected from the local vector norm of
the grid to the point on the cortical surface. Yang et al. (2012) use
the inverse of the gnomonic projection to “fold ” the grid onto the
smoothed pial surface. Finally, in Dykstra et al. (2012) , the proce-
dure consists of two steps: first the initial coordinate estimates are
projected to the dura smoothed surface via an energy-minimization
algorithm (constrained by a minimal local displacement relative to
each electrode original position, and by a minimal global deforma-
tion of electrodes configuration), then the new coordinates are pro-
jected to the closest vertex of the pial surface (e.i., euclidean dis-
tance). All these methods require the use of the MRI segmentation
output (i.e., cortical mesh) and they must be applied in the individ-
ual space. The pre versus post brain shift corrected distance can be
used to visually check the quality of the method (see the Fig. 2 in
( Groppe et al., 2017 )). 

The distal ends of sEEG shafts are screwed in place on the skull and
an remain in a fixed position, but for ECoG electrodes some shift can
ccur due to blood and cerebrospinal fluid accumulation-pressure and
oft tissue swelling, especially when they are loosely sutured in place.
lthough the position of the electrodes is only determined once from

he imaging data, such a displacement over time has consequences for
he actual location from where the signal is recorded ( LaViolette et al.,
011 ; Wellmer et al., 2002 ). 

With sEEG, while the interest is typically in gray matter, the shafts
o through several tissues and consequently some sEEG electrodes can
e located at the interface with, or in the skull, soft tissues (e.g., skin,
ura, muscles), cerebro-spinal fluid, gray matter or white matter (see
ig. 4 ). 

• We recommend using the brain mask computed from the volume
segmentation to exclude the electrodes that are outside the brain
from the analysis (see Section 3.2 ). 

Anatomical labels (i.e., tissue maps) are generated by the segmen-
ation pipelines and can be binary or probabilistic (see Section 2.2.3 ).
n the case of binary masks, each voxel of the image is associated with
 single label. The class of the voxel with the centroid of an iEEG elec-
rode can be associated with the corresponding tissue label. For tissue
robability maps ( Ashburner and Friston, 2005 ; Lorio et al., 2016 ), the
ntensity of the voxel indicates a cumulative probability of belonging
o each of the tissues (e.g., 0% skull, 10% soft tissues, 80% gray, 10%
hite matter) and reflects an uncertainty on the classification of each
oxel. 

• For sEEG, because of the uncertainty on the 3D locations described
above, we recommend taking a region around the contact centroid
(e.g., 3 ×3 ×3 mm, with respect to the size of the electrode that is no
more than about 2 mm wide) and counting the number of voxels
of each label in this neighborhood volume (probabilistic approach
in space, for an example of implementation see the Proximal Tissue
Density index introduced in ( Mercier et al., 2017 )). Tissue probabil-
ity maps can be combined with the uncertainty of a contact location
by averaging the label probability across voxels around the centroid.

• For ECoG, grids and strips generally cover multiple gyri and some
electrodes may face blood vessels (see Fig. 4 and ( Bleichner et al.,
10 https://neuroimage.usc.edu/brainstorm/Tutorials/ECoG#ECoG_grid:_G 

s
j

14 
2011 ; Wang et al., 2016 )). In this case, the tissue map provides in-
formation about the electrode vicinity and allows to compute, for
each electrode, the distance to the leptomeningeal surface. 

Along the localization pipeline, imaging data can be registered to
ifferent coordinate spaces (relative to the scanner origin, relative to
xternal head or internal brain anatomical landmarks, etc.). It is impor-
ant to know which referential space is used at each processing step,
ecause 3D coordinates are valid only in one given spatial reference. 

• It is crucial to document clearly in which coordinate system the spa-
tial data and the position of electrodes are reported. The iEEG-BIDS
specification ( Holdgraf et al., 2019 ) provides guidelines to document
the iEEG coordinates in a reproducible way (see 11 ). 

.3. Normalized space 

.3.1. Background 

The first goal of registering the patient’s brain to a template is
o project 3D electrode coordinates from individual space to a nor-
alized space. Because of the anatomical variations between individ-
als, an accurate registration to a common brain template space re-
uires a non-linear method. Two families of approaches exist to perform
his registration. Volume-based pipelines (e.g., SPM12, FSL, Lead-DBS;
 Friston, 2007 ; Horn and Kühn, 2015 ; Jenkinson et al., 2012 )) compute
olume deformation fields and volume parcellations from the individ-
al MRI to the template space based on tissue probability maps from
he segmentation. Surface-based pipelines (e.g., FreeSurfer, CAT, Brain-
ISA, BrainSuite; ( Fischl, 2012 ; Gaser et al., 2022 ; Rivière et al., 2009 ;
hattuck and Leahy, 2002 )) reconstruct the cortical surface of the in-
ividual brain, which is then parametrized and registered to the brain
emplate surfaces based on topological properties (e.g., curvature, sulcal
epth, sulci tracking, etc.). This gives access to surface-based parcella-
ions of the individual cortex, and is further used to compute volume
eformation fields and volume parcellations. 

A critical distinction must be made between these pipelines and their
utputs. A volume-based pipeline can produce a normalized individual
ortical surface mesh, even though the volume-based registration proce-
ure does not rely on this surface. Conversely, a surface-based pipeline
an, as an intermediate step, produce the individual brain as a volume
n the normalized space. Some surface-based pipelines use the output of
 volume-based pipeline (e.g., 12 ). The estimation of the "mapping qual-
ty" depends on the target(s): while volume-based mapping operates well
or subcortical regions, surface-based mapping is more optimal for the
ortex ( Desai et al., 2005 ; Klein et al., 2010 ; Langers, 2014 ). We rec-
mmend the surface-based pipeline to label ECoG electrodes because it
ives better individual-space cortical alignment (and parcellation) than
he volume-based pipeline. We recommend volume-based pipeline out-
ut to label sEEG electrodes, as it operates on the full brain volume
ncluding subcortical regions, (see Section 5.4.2.1 ). 

Practically, volume and surface outputs differ in the way the spa-
ial dimension is organized: respectively, using a 3D matrix of voxels
r using a sheet/mesh made of numerous vertices. Once 3D electrode
oordinates are obtained for a given normalized space, it is possible to
ollate electrodes across patients on the basis of their normalized co-
rdinates, to relate them to findings from other studies, and to report
esults relative to the normalized space ( Section 5.4.1 ). More broadly,
nce registered in a normalized space any individual data (e.g., MRIs,
ET as with the iELVis toolbox ( Groppe et al., 2017 )) can be projected
n the corresponding brain template to perform group-level analyses or
omparisons with prior studies or databases. 
pecific-files/04-intracranial-electroencephalography.html#coordinate-system- 
son-_coordsystemjson 
12 http://www.neuro.uni-jena.de/cat/ 

https://neuroimage.usc.edu/brainstorm/Tutorials/ECoG\043ECoG_grid:_G
https://bids-specification.readthedocs.io/en/bep-009/04-modality-specific-files/04-intracranial-electroencephalography.html
http://www.neuro.uni-jena.de/cat/
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The second goal of registering the patient’s brain to a template is to
ake use of various anatomical or functional information from atlas(es)
atched to this template. While defined in space relative to a template,

n atlas should not be equated with a brain template, rather an atlas
s the projection of information on a template. Similar to an atlas of
he world being defined by features over space (e.g., elevation, climate,
ocial, geopolitical) projected on a given map, a brain atlas consists of
abeled brain parcels with anatomical or functional information. Follow-
ng this analogy, information from a brain atlas is projected to a spatial
emplate brain. When working with data from multiple patients, a strat-
gy can be to select and group electrodes from the different patients that
all within the same atlas parcel (see Section 5.4.2 ). 

.3.2. Challenges, recommendations and reporting advice 

Interpreting data in standardized space should be performed with
are. Even within homologous brain areas across individuals, the
epresentation for particular brain functions can be highly vari-
ble and be a product of that individual’s life experience (e.g., the
emapping of auditory processing to the visual cortex in the blind
 Klinge et al., 2010 )). 

Each processing pipeline registers an individual brain to its own tem-
late (eg. fsaverage for FreeSurfer, USCBrain for BrainSuite, MNI152 for
PM12 and FSL, Colin27 for BioimageSuite), which are not always ex-
ctly compatible with each other (e.g., mapping between MNI volumet-
ic and FreeSurfer surface coordinate systems see ( Wu et al., 2018 )).
ver the past 20 years, the most widely used have been the succes-

ive MNI brain templates (MNI305, Colin27, MNI152, MNI452, see
3 ), jointly referred to as “MNI space ” ( Mazziotta et al., 2001 , 1995 ).
he deformation fields obtained from the registration can subsequently
e applied to the iEEG electrode coordinates to map their location to
he MNI standard space. Normalizing to the MNI space is a prerequi-
ite for most group analysis approaches, yet it should be remembered
hat the MNI152 template is blurred, leading to a loss in spatial speci-
city. Various open-source software packages can perform the normal-

zation to MNI space within a few minutes (SPM12, CAT, FSL, ANTs or
ead-DBS). 

• Reporting 3D MNI coordinates implies that the reader can under-
stand them. However, the term “MNI space ” refers to various spaces
that are not exactly equivalent ( Brett et al., 2002 ). Although the few
millimeter difference between Colin27 and MNI152 may not dramat-
ically impact fMRI or EEG source imaging results, they are concern-
ing for iEEG and critical for DBS. See the iEEG-BIDS specification
and Lead-DBS website for a thorough review of the different “MNI
spaces ” (see 14 and 15 ). Since the reference space and the transfor-
mations estimated are specific to each program, the exact reference
template space (e.g., MNI152NLin2009Asym) should be mentioned,
together with the software used for the normalization of electrode
locations to the MNI space. 

Brain lesions pose a challenge for registration algorithms that would
ry to match the locally abnormal imaging intensity to the template.
s epileptic activity can originate from lesioned tissue, it is actually
ommon to have electrodes surrounding lesions. The position of these
lectrodes in the template is therefore more susceptible to imprecision.
e recommend being particularly vigilant regarding electrode position

n a normalized space for patients with a lesion, and we advise to vi-
ually assess the quality of the registration procedure and the respec-
ive electrode positions around the brain lesion. When possible, cross-
hecking with a neurologist or a neurosurgeon is a good practice. To bet-
er handle brain lesions, some segmentation and registration algorithms
13 https://imaging.mrc-cbu.cam.ac.uk/imaging/MniTalairach 
14 https://bids-specification.readthedocs.io/en/latest/99-appendices/08- 
oordinate-systems.html#standard-template-identifiers 
15 https://www.lead-dbs.org/about-the-mni-spaces/ 
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an use multiple imaging contrasts (T1, FLAIR, T2, see Section 2.2.3 ).
dditionally, some dedicated toolbox extensions ( Griffanti et al., 2016 ;
riffis et al., 2021 ; Guo et al., 2019 ; Schmidt et al., 2012 ; Schmidt, Paul,
017 ), e.g., for FSL, FreeSurfer or SPM, implement methods such as le-
ion growth, machine learning, and Bayesian approaches to define le-
ion masks and improve registration ( Cui et al., 2019 ; Despotovi ć et al.,
015 ; Selvaganesan et al., 2019 ). 

.4. Transformations back to individual space 

.4.1. Background 

Most MRI segmentation pipelines include the registration of the in-
ividual’s imaging data to a common template space and map it onto
ne or multiple atlases. This processing step is generally performed au-
omatically. Even when working with data from only a single patient,
stablishing this mapping allows the transfer of useful atlas information
o the individual level, i.e. reverse mapping (see Fig. 3 and Fig. 5 and fig-
re 1 in ( Hamilton et al., 2017 )). Cortical or subcortical parcellations,
nd information associated with these parcels, can be used in the de-
ineation of the individual brain volume or surface (see Section 2.3.1 ).
onsequently, iEEG electrodes can be automatically associated with var-

ous anatomical or functional labels, making the analysis, interpretation
nd reporting of an iEEG study easier ( Taylor et al., 2021 ). 

.4.2. Challenges, recommendations and reporting advice 

There are inherent approximations in the normalization process,
uch as anatomical data smoothing, cortical deformation, in addition
o the approximation introduced by electrode location estimation (see
ection 2.1.4 , e.g., the non-rigid deformation changes the distances be-
ween points; in sEEG whether an electrode is deep in the sulcus or more
uperficial; in ECoG whether an electrode facing a sulcus is associated
ith either of the two gyri). 

• To take these spatial approximations into account (i.e., inherent to
volume reconstruction, interpolation artifacts, segmentation thresh-
olds, implant deformation, for a discussion see ( Brett et al., 2002 )),
we recommend adopting a probabilistic approach when defining
brain regions in which iEEG electrodes are located (like in some
atlas, see for instance ( Amunts et al., 2020 )). This probabilistic ap-
proach in space consists of taking into account the voxels surround-
ing the electrode centroid. The size of this volume should both con-
sider the contact size (2 to 2.4 mm, see Sections 1.4.3 ) and the pas-
sive spread of the intracranial signal that is about 6 to 10 mm (for
sEEG see ( Lachaux et al., 2012 ; Mercier et al., 2017 ), for ECoG see
( Kellis et al., 2016 ), for both see ( McCarty et al., 2022 )). Consider-
ing the electrode contact size and signal spread, we suggest using
a sphere of a certain size centered on the electrode centroid rather
than considering the signal to originate from an infinitely small point
(see 16 ). The probabilistic approach leads to a number of voxels
around the centroid that may contribute to the recorded activity
( Piantoni et al., 2021 ). 

.5. Data visualization 

For spatial iEEG visualization, it is important to make the distinction
etween the projection of an electrode to the anatomy (i.e., the cortical
heet or the surface that outlines a subcortical structure) and the inter-
olation of the functional values on the anatomy (i.e., on a surface or in
 volume). The projection is more qualitative; it relates to the anatomy,
hat is electrode visualization and/or electrode labeling. The interpola-
ion is more quantitative; it is the spatial extent from the electrode to
hich the data is color-coded, which should take into account passive

ignal spread (see Section 2.4.2 and Fig. 7 ). 
16 https://neuroimage.usc.edu/brainstorm/Tutorials/ECoG#Anatomical_labelling 

https://imaging.mrc-cbu.cam.ac.uk/imaging/MniTalairach
https://bids-specification.readthedocs.io/en/latest/99-appendices/08-coordinate-systems.html\043standard-template-identifiers
https://www.lead-dbs.org/about-the-mni-spaces/
https://neuroimage.usc.edu/brainstorm/Tutorials/ECoG\043Anatomical_labelling
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Fig. 5. Brain depiction and electrode visualization 
ECoG electrodes are color-coded according to the anatomical label that corresponds to their location. Electrodes are shown on (A) the original pial surface of the 
participant’s brain, where the grid structure may be best appreciated, (B) the inflated cortical surface and (C) the flattened cortical surface (in this case based on 
the projection onto the fsaverage brain). The inflated and flattened surfaces are colored according to surface curvature calculated in FreeSurfer, where darker gray 
indicates the sulci, and lighter gray indicates gyri. The best choice of representation (pial, inflated or flat) depends on the coverage of electrodes as well as which 
areas are to be compared. 
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17 https://f-tract.eu/software/intranat 
• Different strategies exist for anatomical visualization of the position
of iEEG electrodes, each with pros and cons: 
– For ECoG, as electrodes are visible on the brain surface, three di-

mensional brain display is convenient. When not all ECoG elec-
trodes are visible from a single point of view, the surface can be
made transparent, the electrodes can be shown on the inflated
pial surface or can be shown on an “flattened ” or “unfolded ” cor-
tical sheet (see Fig. 5 ). However, the rendering of an inflated or
unfolded surface loses the relative distance between ECoG elec-
trodes, alike between brain regions. 

– In the case of sEEG, as the shafts pass through different tissues
and often target deep structure(s), the 3D brain display needs to
be transparent to see all electrodes (see 3D view in Fig. 6 ). Visu-
alizing sEEG electrodes on an inflated or an unfolded surface, the
electrodes would have to be projected to the cortical mesh, which
implies a non-trivial projection that must be explicitly reported;
furthermore, deep electrodes should not be projected to the su-
perficial surface. Moreover, as with ECoG, the rendering of sEEG
electrodes projected on an inflated or unfolded surface loses the
relative distance between electrodes, and with the anatomical
tissue. 

• Many clinicians and researchers are able to identify brain structures
in canonical axial, sagittal, and coronal views, but less easily along
the shaft trajectory or in an inflated brain. When localization focuses
on a specific sEEG shaft, it is convenient to depict a slice parallel to
the electrode shaft. Some software offers this display by represent-
ing an arbitrary slice going through the shaft, plus a slider to rotate
16 
around the axis of the shaft (see Fig. 6 from the Gardel software
( Medina Villalon et al., 2018 ), see also IntrAnat 17 ). 

• The projection of an sEEG electrode that is located in a sulcus or an
ECoG electrode that overlies a sulcus (and thus faces the gray matter
on both sides), to a single vertex of the triangulated cortical surface
(and thereby a single sulcal wall) is misleading. This anchored lo-
cation should not be used for the interpolation and display of func-
tional data. 

Electrophysiological results of the iEEG analysis can be represented
n the patient brain: any other measure/statistic (e.g., ERPs or spectral
ower, see Section 3 ) can be interpolated on the cortical surface or on
 slice of the MRI (usually based on Euclidean distance, see Fig. 7 ). 

• Electrode projection and data interpolation are mutually exclusive
operations; the interpolation of functional data on the anatomy
should be performed using the original (non-projected) electrode lo-
cation. 

• Due to the sparse spatial sampling of the iEEG, only a limited number
of voxels or triangles (i.e., volume based or surface based) would be
represented with a color-coded value, whereas fMRI and MEG/EEG
source reconstruction typically result in whole brain coverage. The
resulting iEEG images can be misleading if there is no distinction
between a voxel or triangle with no data versus one with a value
below the display threshold. We therefore recommend representing

https://f-tract.eu/software/intranat
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Fig. 6. Oblique slice aligned with sEEG shaft. 
Graphical interface allowing the display of MRI slices aligned with a selected sEEG shaft highlighted in blue in the list. In the oblique slice sEEG contacts are represented 
as green dots. In the 3D view the plane corresponding with the shaft axis is depicted in green with a transparent brain, sEEG contacts are here represented as black 
spheres. 
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the parts of the brain where no data was interpolated with a different
color than the parts where data was interpolated, but considered not
significant (see panels B and D Fig. 7 ). 

• The extent of this interpolation should be documented and should
ideally reflect passive signal spread (i.e., about 6 mm see Section
2.4.2 ). For instance, see panels B and D in Fig. 7 and figure 6 of pt.
51 in ( Stolk et al., 2018 ). 

• The interpretation of the interpolation can be ambiguous. For exam-
ple, if the data at two electrodes are the same, they can be interpreted
as activity originating from the in-between area, but it might also be
that both electrodes pick up activity that is not seen by the other. To
take into account the potential interplay between activity observed
by different electrodes, we anticipate that future developments in
electromagnetic modeling will provide better visualization solutions
with estimates of intracranial currents using Finite Element Method
(FEM) ( Medani et al., 2021 , 2020 ). The combination of better inverse
methods, forward models and more detailed source models (see for
example ( Cosandier-Rimélé et al., 2008 )) will enable source local-
ization from iEEG, and reconstructed activity will for example suffer
less from ambiguous representations on both sides of a sulcus. 

. Preprocessing 

.1. Introduction 

Preprocessing aims to provide better exploitable signals for subse-
uent analysis that targets the experimental question or explores a phe-
omenon of interest. Hence we define preprocessing as mostly neutral
ith respect to the research question, whereas analysis is specific to the
17 
esearch question. The preprocessing stage also provides an opportunity
o familiarize oneself with the data, especially in case the researcher was
ot present during data acquisition. In this section, we specifically ad-
ress three preprocessing operations that are commonly used in iEEG
tudies, and explain how these steps increase the specificity (e.g., local
ctivity) and the selectivity of the signal (e.g., brain signal). 

The first step consists of identifying channels (e.g., the signals mea-
ured between an electrode of interest and a reference electrode) that
re expected to show meaningful neural signals (i.e., either electrodes in
ontact with the leptomeningeal surface for ECoG and/or the gray mat-
er for sEEG). Specifically in the case of sEEG, some electrodes might be
ocated outside the brain or in the white matter. 

The second step aims at identifying channels and/or time segments
hat include epileptiform activity or that are contaminated by physio-
ogical and non-physiological artifacts. Although epileptiform activity is
he prime reason for doing the clinical recordings and is the subject of
esearch on the epileptiform features of iEEG signal, it is to be avoided
or cognitive neuroscientific research questions for the sake of general-
zation to healthy brains. 

The third step consists of re-referencing the signals. This opera-
ion focuses the signal on neural activity generated in the close vicin-
ty of the electrode; and thus derives signals that are less affected
y distant activity that can be observed through passive volume con-
uction. Re-referencing can also help to reduce common sources of
oise. 

The outcomes of these preprocessing steps consist of (1) tables or
rrays indicating which electrodes to keep for the analysis, (2) tables
ith the timestamps of artifacts, and (3) montage(s) for re-referencing.
lthough these steps do not modify the raw data, they should be doc-
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Fig. 7. Electrode display and data interpolation. 
For ECoG (Panel A) and sEEG (Panel C), the amplitude of the iEEG signal is represented at their corresponding 3D locations, then projected orthogonally along the 
three axes (as in a glass brain view), and depicted on MRI slices. 
In panels B (ECoG) and D (sEEG), the amplitude of the signals is interpolated on a 3D brain (left column) and on an inflated brain (right column, with light gray 
indicating gyri and dark gray indicating sulci). Signal interpolation was done using a sphere of 5 mm for the upper row and 15 mm for the lower row. In panel B the 
ECoG electrodes are indicated in green; in panel D two sEEG shafts are indicated in red and green. While activity is identical in the upper row and in the lower row, 
the extent of the interpolation changes the rendering. 
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mented as they provide valuable information for sharing and reuse.
ubsequently, the preprocessing completes with epoching, demeaning
nd filtering. 

.2. Electrode selection based on anatomy 

.2.1. Background 

The properties of the measured signal depend on the tissue in/on
hich an electrode is located (see Fig. 4 ). In iEEG, the differences in

ignal amplitude between channels are not only caused by brain ac-
ivity elicited by an experimental task/protocol. Signal amplitude also
epends on the distance between the electrode and the gray matter (i.e.,
eometry) and the properties of surrounding tissue(s) (i.e., tissue type).
ome analyses, such as signal feature classification (e.g., using Receiver
perating Characteristic), are not necessarily affected by a weakened

ignal that is recorded centimeters away from the source ( Torres Valder-
ama et al., 2010 ). However, weak signals are a concern when it comes
o determining the location of the iEEG signal source. 

With sEEG, while the gray matter is the main target, the electrode
hafts inevitably go through different types of tissue and the majority of
EEG electrodes are surrounded by several tissue types. Some tissues,
ike the skull, are poorly conductive and passively spread the activ-
ty over long distances. Other tissues, such as the white matter, show
 more complex profile with a mixture of passive volume conduction
nd active propagation ( Mercier et al., 2017 ). The identification of the
18 
issue surrounding sEEG electrodes requires a precise localization rel-
tive to the individual’s brain anatomy. Subsequent segmentation al-
orithms provide tissue classification and/or tissue probability maps
i.e., type/amount of tissue at each voxel). Knowing in which voxels(s)
he electrode contact stands allows an easily automatized approach (see
ections 2.2.3 and 2.2.4 ). Not only sEEG electrodes located outside of
he brain (e.g., in the skull or in soft tissues) can be identified and disre-
arded from further analysis; tissue classification and/or tissue proba-
ility map can also provide a quantification of the amount of gray matter
urrounding electrodes in the brain and/or the distance to the nearest
ray matter (see Section 2.2 ). 

With ECoG, it frequently occurs that a grid or strip extends over sev-
ral gyri, leading to electrodes positioned on top of a blood vessel or over
 sulcus, which are known to impact signal characteristics (see Fig. 4 ).
pecifically, signals recorded from electrodes on blood vessels have an
ttenuation of absolute power spectral density, especially in the high-
requency band (30–70 Hz in ( Bleichner et al., 2011 ) and 45–120 Hz
n ( Branco et al., 2018c )). Besides affecting the spectral characteristic
f the signal, blood vessels increase the distance between electrode(s)
nd neural source(s), thereby being sensitive for activity from a larger
rea, as if it is a virtually larger electrode. Last, pulsation and smooth
uscle activity of arteries can directly contribute to low frequency sig-
als. Intraoperative photos ( Bleichner et al., 2011 ; Miller et al., 2009 ;
ang et al., 2016 ), as well as imaging data (e.g., magnetic resonance

ngiography ( Branco et al., 2018c )), can be used to determine which
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CoG electrodes are in direct contact with the leptomeningeal surface.
he tissue classification from the brain segmentation can also be used
o estimate the distance to the cortical gray matter surface and thus to
dentify electrodes that are possibly placed over a vessel or a sulcus (see
ection 2.2.3 ). 

.2.2. Challenges, recommendations and reporting advice 
• When electrodes are selected based on anatomical considerations,

we recommend reporting how the selection was performed. For in-
stance, what is the tissue classification method, and what are the
thresholds applied to electrode selection, such as the distance to the
gray matter, or the fraction of gray matter voxels in the electrode
surroundings. 

.3. Data selection based on the signal 

.3.1. Epileptic activity 

As the clinical motivation is to localize and characterize the epilep-
ogenic network, some electrodes are prone to record epileptiform activ-
ty. This activity is not limited to seizures; interictal (between seizure)
pileptiform discharges can also cause unwanted artifacts which can
ometimes propagate widely. Epileptic activity is often not relevant for
he cognitive processes under study, nonetheless this pathological ac-
ivity can add to, or interact with, the physiological activity that is of
nterest (e.g., interictal epileptiform discharges can transiently impair
ognitive function ( Boly et al., 2017 ; Henin et al., 2020 ; Kleen et al.,
013 ; Leeman-Markowski et al., 2021 )). Hence it cannot be excluded
hat epileptic activity reduces the ability to detect the relevant cognitive
ctivity, especially if the epileptic activity is time-related to the event of
nterest (e.g., stimulus onset, behavioral response, time period of inter-
st). Furthermore, epileptic activity may cause false positive activity, if
he investigated cognitive function or the region of interest is linked to
he individual characteristics of the epilepsy. 

The information gathered by the clinical team provides the basis to
eject sites that belong to the epileptogenic network, to identify inter-
ctal activity and thus to alleviate some of the uncertainty related to
pileptiform activity. This knowledge should be shared by the clinical
eam and used by the researchers to shed light on the brain sites showing
pileptic activity and on the cognitive processes that might be impaired
see Section 1.4.8 and Fig. 2 ). 

.3.2. Transient artifacts 

Although in the past it was believed that iEEG is immune to the ma-
or movement-related artifacts that contaminate scalp EEG, this view has
een challenged with several studies showing iEEG being contaminated
y eye movements ( Jerbi et al., 2009a ; Katz et al., 2020 ; Kern et al.,
021 ; Kovach, 2011 ), blinks ( Ball et al., 2009 ) and movements of cranio-
acial muscles ( Otsubo et al., 2008 ). These artifacts overlap within fre-
uency ranges for which task-related physiological signals are analyzed
nd reported (see Fig. 8 ). Despite the use of re-referencing (or more ad-
anced spatial filters such as ICA) to reduce the passive volume conduc-
ion of these artifacts, some residual still affect frontal regions as well
s the ventral, medial and lateral parts of the temporal lobe ( Katz et al.,
020 ; Kovach, 2011 ). 

In addition, non-physiological artifacts can originate from stimulus
elivery equipment, loose moving cables, or other electrical devices (see
ection 1.4.5 ). This contamination impacts not only data quality, but
ay bias the outcomes of certain analyses. A striking example of this was

bserved in speech decoding research, where some signal components
nitially thought to be speech-related turned out to originate from the
echanical action of the sound on the recording chain ( Roussel et al.,
020 ). Similarly, using ECoG and DBS leads, it was reported that speech
roduction itself induced high-frequency artifacts through mechanical
ibration ( Bush et al., 2021 ). More mundane but along a similar line,
he auditory response to the audible click of a response-button could be
19 
istakenly interpreted as evidence that the auditory cortex participates
n task-related processes. 

The operations of artifact detection and rejection benefit from know-
ng what artifact patterns look like. For instance, saccade-related arti-
acts occur as short, massive power increases above 50 Hz in the imme-
iate vicinity of oculomotor muscles in the medial temporal lobe, coin-
ident with eye movements (see Fig. 8 ). Collecting and annotating a set
f “artifact templates ” can be used as training support for researchers
hat are new to iEEG, whereas for already skilled researchers they also
rovide documentation about which electrodes are susceptible to phys-
ological artifacts (see Sections 1.4.4 , 1.4.5 and 1.4.9 ). Last, the spatio-
emporal characteristics of “artifact templates ” can be used in post-hoc
ontrol analyses (see below). 

Some artifacts are more likely to co-occur with certain aspects of
ognitive tasks, and are thus correlated with task-related neural activity
nd/or behavior (e.g., frowning during a difficult task, systematic blink-
ng at the offset of visual stimuli, or muscle tension due to anxiety). Due
o that correlation, the cleaning procedure can remove a mixture of ar-
ifactual and relevant data, and obscure the true relationship between
hysiology and behavior. A compelling example for this occurred during
he detection of saccade-related artifacts in the anterior temporal lobe
 Jerbi et al., 2009a ). The hypothesis was that a “go-signal ” in high-level
isual areas would trigger the subsequent saccade when the local visual
nalysis was complete. The hypothesized signal was a burst of high-
requency energy in the anterior temporal lobe time-locked to saccades;
owever these turned out to have the same characteristics as saccade-
elated artifacts. This was subsequently verified from ‘artifact templates’
nd EOG. Other examples report blink and saccade related suppression
ffects occurring in visual regions ( Golan et al., 2016 ; Katz et al., 2020 )
nd mediating visual processing during natural viewing ( Kern et al.,
021 ), or pursuit related activity in occipital, frontal and parietal re-
ions ( Bastin et al., 2012 ). 

In some clinical settings, electrical stimulation is performed dur-
ng clinical testing, or during single pulse electrical stimulation to
ap networks (see Section 1.2.4.1 and Section 6.6 ). The analysis of

EEG data from such settings requires some understanding of how
hese artifacts depend on recording and amplifier settings. Most ampli-
ers require cortical electrodes that are stimulated to be disconnected

rom recordings and do not record data. On the other electrodes that
re recorded, the stimulation typically causes immediate artifacts that
an saturate the signal; the duration of these effects should be care-
ully assessed ( Miller et al., 2019 ) and/or can be modeled to correct
he signal ( Trebaul et al., 2016 ). Electrical stimulation can also re-
ult in slower offsets in electrodes close to the stimulated electrodes
 Prime et al., 2020 ), where the signal then exponentially returns back
o baseline. Besides, during electrical stimulation in the brain, electri-
al artifacts can also occur when performing somatosensory evoked re-
ponse studies with an electrical stimulator located on the limbs, torso or
ace. 

.3.3. Data selection in practice 

The primary aim of artifact detection and rejection is to obtain data
hat is as clean as possible. That said, statistical power can be jeopar-
ized if an overly large proportion of data is discarded. Artifacts can
ave confounding effects on the analysis (e.g., increased heart rate or
ye blink frequency in one condition than another, see Section 3.3.2 ).
pending too much time in manual artifact-screening can be not as ef-
ective as re-referencing and/or getting more data, especially as some
rtifacts (i.e., confounds) may result in false positives, while other arti-
acts (e.g., uncorrelated interictal epileptiform discharges) are less likely
o cause false positives but mostly decrease the sensitivity. An efficient
rtifact detection procedure requires training: it must be guided by in-
ormation about the data and should be well-balanced in time for ef-
cacy. The optimal data-cleaning strategy differs between studies as it
epends on the research question (e.g., the time window of interest or
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Fig. 8. Examples of artifacts due to eye and mouth movements. 
A. Ocular artifacts in sEEG. The EOG and iEEG were recorded while the participant was asked to either blink or move his eyes leftward (upper left panel, color-coded 
in blue and red respectively,). EOG single-trial averaging (n = 16) shows time-locked muscular-related activity on cardinal EOGs (upper middle panel); and on vertical 
and horizontal EOGs obtained through bipolar referencing (upper right panel). Intracranial EEG was recorded from 252 electrodes relative to a reference located 
in the white matter (yellow circle on the lower left panel). Broadband Event Related Potentials computed with both a monopolar reference (WMR) and a bipolar 
reference (Bp) are depicted for a frontal and a posterior electrode. For the frontal sEEG electrode, the artifact time-locked to muscular activity recorded with EOG is 
visible with the monopolar reference and is reduced when the bipolar montage reference is applied. The posterior electrode shows activity that is not reduced by the 
bipolar referencing and that is delayed with regards to EOG activity. The frontal electrode shows muscular activity that has passively diffused from the eye muscles, 
while the posterior electrode shows local neural activity that is consecutive to the eyes movement (e.g., change in visual input or corollary signal). 
B. Oral artifacts in sEEG. The participant was asked to clench his teeth ten times while sEEG was recorded. Broadband and high-frequency activity recorded from 

frontal electrodes reveal artifacts time-locked to jaw-contraction (color-coded in pink and in green, respectively,). 
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lectrodes of interest) and on the methods that are used in the analysis
e.g., frequency analysis). 

Considering the experimental events (i.e., triggers) while reviewing
he recordings can uncover relations between artifacts and the neural
ignals of interest for the study. The iEEG SNR is so high that many
esponse components can be seen in raw data at the single trial level
See Fig. 11 ). Artifact detection is facilitated when individualized ‘arti-
20 
act templates’ are available, as they identify susceptible electrodes (see
ections 1.4.4 , 1.4.5 and 1.4.9 ). 

Many research teams start the detection procedure by a quick vi-
ual inspection of the data, which provides a first understanding of the
ype and shape of artifacts and immediately reveals “bad channels ”, ei-
her being flat (the signal shows no variance) or showing substantial
mounts of noise or persistent epileptogenic activity. To complete this
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Fig. 9. Interfaces examples for artifact detection 
A. The Power Spectrum Density (PSD) of all channels can help to identify artifacted channels with artifacts (in red). 
B. A display per channel and per trial can be used to identify short-lived artifacts. The heatmap represents for every trial (along the horizontal axis) and every 
channel (along the vertical axis) a metric (here the variance) which is color-coded from blue to yellow. The panels to the right and below the heatmap represent the 
maximum variance over trials and over channels, respectively. A channel with high variance over most trials is highlighted by the magenta rectangle. A trial with 
high variance over channels is highlighted by the orange rectangle. 
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rst examination, we recommend a systematic rapid evaluation by look-
ng at the power spectral density (PSD; + /- its variance) of all channels
ver the entire recording (see Fig. 9 panel A 

18 ). 
Semi-automated artifact detection procedures have been proposed,

aking statistical signal metrics into account (e.g., normalized ampli-
ude, variance, kurtosis or the correlation coefficient between neighbor-
ng electrodes, see for instance ( Tuyisenge et al., 2018 )). Often, multiple
asses are carried out, such as on the broadband signal and on high-
requency activity (typically above 50 Hz), to accommodate the 1/f law
nd thus to avoid biasing artifact identification toward the lowest fre-
uencies (i.e., to facilitate artifact identification in the higher frequency
ange usually concealed due to its lower amplitude, see Section 4.3.3.4 ).
o consensus exists currently within the iEEG community regarding an
ptimal semi-automated procedure. Nevertheless, the lack of objective
rocedures should not be taken as a hurdle to improve traceability: de-
cribing the (automatic or manual) methods and thresholds are part of
he good practices. 

Some researchers carefully check the result of (semi-) automatic pro-
edures “by hand ” to adjust rejection thresholds to individual SNR and
eep a sufficient number of trials for the analysis (see Section 4.2.2 ).
18 https://neuroimage.usc.edu/brainstorm/Tutorials/Epileptogenicity?highlight 
 %28epilepto%29#Review_recordings 
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21 
n the ideal case, experiments should yield a great number of trials, but
he time a patient participates in a single experiment is obviously lim-
ted and the number of trials might be small. Therefore experimental de-
igns with many conditions and statistical contrasts should be avoided
o retain sufficient statistical power (see also Section 1.3.3 ). A recent
eta-study by Meisler and colleagues ( Meisler, 2019 ), evaluated differ-

nt approaches to eliminate artifacts in iEEG: automated artifact rejec-
ion based on statistical properties of times series (standard deviation or
urtosis) and manual artifact rejection based on expert annotation. This
tudy showed that with automatic thresholding, statistical power did not
ncrease with more liberal criteria. In contrast, conservative approach
educed statistical power as much as with manual exclusion (i.e., based
n experts’ notes). Critically, bipolar referencing (BPR, see Section 3.4 )
utperformed common average referencing (CAR) in increasing statis-
ical power by attenuating noise for the automated and manual ap-
roaches. Overall, to increase statistical power, Meisler and colleagues
dvised collecting more data and the use of bipolar or local reference
chemes, rather than spending a lot of time detecting artifacts. Thor-
ugh artifact scrutiny (e.g., performed manually, trial-by-trial) appears
o be less time efficient than quick and semi-automatic approaches. In
ddition to the lack of real improvement of statistical power, it can be
edious, time-consuming and visual detection criteria can be subjective
nd unstable over time. Yet, manual cleaning permits the researcher to

https://neuroimage.usc.edu/brainstorm/Tutorials/Epileptogenicity?highlight=\04528epilepto\04529\043Review_recordings
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et a better feel for the signal. If detailed visual inspection is performed,
t must be documented and traceable, similar to semi-automated ap-
roaches. 

.3.4. Challenges, recommendations and reporting advice 

In M/EEG the channels usually show the underlying sources of in-
erest with a similar order of magnitude and all channels are there-
ore processed in the same way. In iEEG, the sensitivity to the signal
f interest can vary a lot across channels. Researchers familiar with
/EEG artifact rejection should therefore be aware of several pecu-

iarities of iEEG data. In M/EEG, sensors are (i) uniformly distributed
t systematic positions, (ii) centimeters away from the neural sources;
ith (iii) similar SNR; and provide (iv) smooth topographical activity
ue to the passive volume conduction that causes spatial blurring. Con-
ersely, iEEG electrodes (i) are scattered over more or less distributed
rain areas, (ii) are directly in contact with the brain, sometimes right
t the level of the neural sources, with a signal that is orders of magni-
ude stronger than in EEG; (iii) have a variable SNR due to conductance
ifferences between electrodes (especially as sEEG electrodes might be
ocated in different types of tissues); (iv) provide signals that are rather
ndependent from each other, and the sparsity in iEEG hinders topo-
raphic analysis or interpolation of noisy/bad channels. Such speci-
cities therefore lead many iEEG researchers to homogenize or stan-
ardize (e.g., by z-scoring) the signals across electrodes prior to per-
orming artifact detection to compare the normalized signals between
lectrodes. 

When only few trials are available and only a few electrodes
re relevant for the research question, one may consider preprocess-
ng iEEG channels separately, without comparing the raw record-
ngs across electrodes. Tailored signal selection/rejection is a con-
enient strategy when the effect of artifacts are limited to spe-
ific electrodes, since a global rejection would discard a data seg-
ent from all channels, whereas it is only “bad ” for one chan-
el. Such tailored individual rejection retains more “good ” trials for
ach channel. Of course, this rejection strategy is not appropriate
or multivariate analysis where distributed signals across channels are
stimated. 

If the online reference used during the recording was noisy,
e recommend that the data is re-referenced to a common refer-

nce prior to inspecting the data for artifacts (see Section 3.4 and
ig. 10 ). 

.3.5. Data visualization 
• The power-spectral density of the continuous data is useful to imme-

diately detect artifacted channels and thereby electrode(s), as their
power spectra often stand out from the non-artifacted electrodes (see
Fig. 9 panel A, as implemented in Brainstorm ( Tadel et al., 2011 )).
Computed trial-by-trial (or epoch-by-epoch), it permits to addition-
ally estimate variance across time and thus determine if the artifact
is transient or sustained. 

• The complexity of rejecting artifact-contaminated data resides in
finding a compromise between excluding epochs with transient
spread of epileptic activity or other artifacts across artifacted chan-
nel(s) and excluding channel(s) with frequent epileptic activity or
other artifacts. Some techniques/recommendations and clever data
visualization can considerably accelerate the visual inspection step,
for instance for assessing the number of epochs that would need to be
rejected due to repetitive artifacts occurring on the same electrode.
A convenient approach is to create heat-maps that show for each
channel a metric of the signal (e.g., z-score of signal amplitude) as a
function of time (trial/epoch on x-axis) and electrodes (y-axis) (see
Fig. 9 panel B, as implemented in the ft_rejectvisual function used
with the summary method in FieldTrip ( Oostenveld et al., 2011 );
see also ( Tuyisenge et al., 2018 ) for alternative approaches). Maps
can be created for broadband as well as frequency-specific signals
(the effect of muscular or epileptiform activity is more visible above
22 
50 Hz) and all channels can be visually inspected within a few min-
utes, to quickly identify those that should be analyzed further. 

• More generally, reviewing artifacts requires some training. At the
beginning it implies finding the adequate display for data visual-
ization, which is often subjective. Once the visualization strategy is
defined (e.g., scaling, filters, layout), the review process is facilitated
and accelerated. 

.4. Re-referencing 

.4.1. Introduction 

During the acquisition, the online reference is chosen to obtain
lean signals with minimal contamination by artifacts or noise (see
ection 1.4.2 ). After the recording, the signal can be re-referenced to
n offline reference to improve the spatial interpretation of the signal.
ypically, re-referencing is a subtraction that can be implemented as
 linear combination of channels: depending on the reference scheme,
ome signal features are lowered (e.g., far field or distant activity) while
ther features are heightened (e.g., local activity). Therefore, the opti-
al reference scheme depends on the researcher’s definition of noise

nd their assumptions on the signal of interest. 
The iEEG signal reflects a mixture of activity that originates close to

he electrode of interest (see Section 1.4.3 ), activity from sources further
way that passively spreads by volume conduction (see Section 2.4.2 )
nd activity that is mostly captured by the reference and thereby also
ffects the potential difference (see Section 1.4.2 ). Offline re-referencing
ermits: (i) to reduce common mode potentials with the original refer-
nce (line noise at 50 Hz or 60 Hz), (ii) to diminish the contribution
f distant sources through passive volume conduction, (iii) to lower the
orrelation between channels and thus increase the SNR of some com-
onents of the signal (e.g., local features, see Fig. 8 , Fig. 10 and Fig.
2 ). It is critical to know the original recording reference, as it might be
he cause for distant activity appearing in the signals. In cases where a
istributed signal is relevant to the research question, for example slow
aves (4–7 Hz), the investigation does not benefit from a local reference

cheme ( Zaveri et al., 2006 ). A local reference scheme is more appro-
riate for analyzing focal high-frequency activity (e.g., bipolar activity
cts as a high-pass filter because low-frequency signals tend to be more
idespread). Each reference scheme has its own strengths and weak-
esses, which explains the absence of a general consensus. Comparing
esults obtained with different referencing schemes helps to interpret
he spatial origin of the analyzed signal (see Fig. 12 ). Below, we present
nd discuss various alternatives for re-referencing. 

.4.2. Background 

.4.2.1. External reference. As discussed in Section 1.4.2 , an external
lectrode can be utilized as an online reference during the acquisition.
eeping or applying an external electrode for data analysis or for offline
e-referencing is less optimal, as it mixes the iEEG signal with exter-
al noise and global brain activity passively volume-conducted through
he tissues. The resulting signals may thus comprise a combination of
hese components, leading to a feature common to all channels. Unless
he subsequent analysis method permits removing this common unde-
ned component (e.g., based on spatial filtering), we recommend re-
eferencing the signal to one or several internal electrodes. 

.4.2.2. Internal reference. When using an internal reference, at least
our types of reference schemes can be considered (see Fig. 12 ). Note
hat while some reference schemes are identical for all electrodes, other
eference schemes are specific to each electrode (i.e., the reference is
ot the same for all electrodes). 

– Common Average Reference method (CAR): the mean signal over
all artifact-free electrodes is computed and subtracted from every
electrode. The rationale is that the noise which affects all electrodes
can be approximated by the mean. The subtraction of the mean from
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Fig. 10. Interface showing reference switch. 
Illustration of displays with two different montages (unipolar reference on the left and bipolar reference on the right). The montages are selected graphically in a 
dedicated menu (here in Brainstorm). When switching from the unipolar to the bipolar montage, the low- and high-frequency artifacts shared over all channels are 
reduced. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

all electrodes adds a (negative) common component to all channels
and thereby can increase the correlation between channels, which is
to be considered in certain analyses (e.g., connectivity analysis). The
CAR makes spatially focal features less salient compared to widely
distributed signal features. Last, the CAR can be spatially biased by
the distribution of electrodes (e.g., in the case where the density of
electrodes is higher over the temporal cortex as compared to the
other cortical lobes, it leads to an over representation of activity of
the temporal region). 

– The Local Average Reference method (LAR) is similar to the CAR, ex-
cept that it consists in subtracting the mean over a subset of artifact-
free electrodes from each of the electrodes of that same subset. The
subset of electrodes is generally based on the type of implant, for
instance a single ECoG grid or strip, or a sEEG shaft. Here, and as
compared to the CAR, the assumption of having equal representa-
tion of the noise across electrodes of the subset is more likely due
to the spatial proximity of the electrode subset (both in the brain
and at the level of the recording device, e.g., cable sheath). Still, the
LAR results in correlation between channels of the same subset due
to the shared reference, and can inject high focal activity from one
electrode into the entire subset. 
23 
– BiPolar Reference method (BPR): each electrode is referenced to one
of its nearest neighbors (one site only). BPR yields an estimate of
the first-order spatial derivative. This is a popular choice in sEEG:
the signals recorded along an electrode shaft are thus replaced by
the subtraction of two spatially consecutive signals along the 1-D
linear array, leading to a virtual channel shaft with one less channel
than the real electrode shaft. In the absence of artifacted electrodes,
the BPR is more systematized across all electrodes than with the
Local Composite Reference (LCR, see next paragraph). The BPR gives
the compound signal of the activity close to both electrodes and the
volume-conducted activity of the tissue in between. The result of the
BPR is often visualized as a virtual channel located at the mid-point
between the two original electrodes (see Section 3.4.3 ). The BPR
reduces signal features shared between neighboring electrodes and
neural response components with a wide spatial distribution. 

– Local Composite Reference method (LCR): each electrode is refer-
enced to the average of its nearest neighbors (excluding artifacted
electrodes). The LCR is an estimate of the second-order spatial
derivative (i.e., Laplacian), where a stronger weight is assigned to lo-
cal signal features compared to features shared between electrodes.
For a 2-D ECoG grid for instance, the average that is subtracted is
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computed over n = 4 neighboring electrodes for an electrode that lies
inside the grid, n = 3 if it lies on the border and n = 2 if it lies on the cor-
ner. For ECoG strips (i.e., 1-D) or sEEG, the mean signal is computed
from the two neighboring electrodes. A disadvantage of the LCR is
that for electrodes at the edge it has to be computed with a different
number of neighbors, or that it has to be skipped for electrodes at the
edge. Moreover, the LCR can spread highly focal activity from one
electrode to its nearest neighbors that do not originally record that
activity (e.g., neighboring electrodes located on different sides of a
sulcus). Last, LCR reduces signal features that are local but shared be-
tween neighboring electrodes and neural response components with
a wide spatial distribution. 

Specific considerations about sEEG and white matter carriage return:
s sEEG electrodes may be located in white matter, clinicians have com-
only used such signals as a reference (online or offline), based on the

bservation that the signals recorded from the white matter typically
how a lower variance, presumably because it does not correspond to
ctual neural activity. While it is true that neural activity is not directly
enerated in the white matter, activity generated in the distant gray
atter actively spreads along fiber tracts Section 6.8 . Therefore, the no-

ion that white matter electrodes do not record neural activity is only
n assumption and must be assessed (e.g., by computing the variance
f the broadband signal as well as of the low amplitude high-frequency
ctivity, see ( Mercier et al., 2017 ) and ( Uher et al., 2022 ). Further, the
onclusion that a channel lies in the white matter is not always straight-
orward as there is some uncertainty in the precise location of an elec-
rode (see Sections 2.2.4 and 2.4.2 ). Last, a white matter electrode can
e surrounded by gray matter, and thus records neural activity that has
assively spread from it (( Mercier et al., 2017 ; McCarty et al., 2022 ) and
ee Section 6.8 ). There are two main types of white matter montage: 

– White matter reference (WMR or average white matter reference,
AWMR) consists in subtracting from each channel the activity
recorded at a chosen iEEG electrode located in the white matter (or
the mean activity across all artifact-free electrodes located in the
white matter). 

– Proximal white matter reference (PWMR): each iEEG site in the
gray matter is re-referenced to the closest site in the white matter
( Arnulfo et al., 2015 ). 

Recently a low variance average reference montage was proposed
y Uher and colleagues ( Uher et al., 2022 ). They reported that elec-
rodes in the white matter can record signals with high variance and that
uch electrodes are thus not necessarily electrically neutral (as shown in
 Mercier et al., 2017 )). They proposed instead to use a virtual channel
s reference, corresponding to the average signal of all channels with a
ow variance signal. 

In iEEG research, less commonly used methods can serve the
ame purpose as re-referencing by using spatial filtering of the
ata to enhance the SNR of some signal feature(s) (for a discus-
ion see ( Cohen, 2017 )), for instance ICA ( Michelmann et al., 2018 ;
hitmer et al., 2022 ), PCA ( Alexander et al., 2019 ), or Spatio-Spectral
ecomposition ( Schaworonkow and Voytek, 2021 ) . 

.4.3. Challenges, recommendations and reporting advice 
• We recommend first processing the artifacts and then re-referencing

the data, unless the online reference used during the recording was
itself noisy, which complicates artifact detection. 

While a local reference provides the highest human readability of
ocal features of the iEEG signal, it can artificially mix activity from/to
he neighboring electrodes. For instance when a non-local reference is
sed in ECoG, activity projected on the grid can reveal gyri and sulci,
ut when the local reference montage is applied it may shift some ac-
ivity that jumps over a sulcus. It follows that in order to verify the
enuine origin of a given activity, it is always informative to system-
tically compare the pattern of activity obtained using a low-variance
24 
eference scheme to the activity pattern obtained with a local reference
ontage. Finally, the use of a local reference montage may introduce

rtificial correlations between neighboring channels, which in turn may
ias some subsequent analysis (e.g., connectivity) or statistical compar-
sons or corrections (e.g., dependent versus independent variables). 

• Reference schemes should be applied only as lightweight ( “on the
fly ”) linear transformations, especially when doing the first pass of
data reviewing. They can be used as a fully reversible montage, as
long as data is processed linearly. Most software and toolboxes per-
mit applying a reference scheme to the data almost instantaneously
Fig. 10 . The montage is generally provided as a matrix indicating for
each electrode the weights specific to the reference scheme. Also,
when it comes to sharing iEEG data, it is preferable to share the
original signals plus the montages used to visualize and/or process
them. 

• After applying a reference scheme, the output leads to virtual chan-
nels that do not necessarily spatially match the physical electrode
used for acquisition. To obtain the coordinates of iEEG channels
when a BPR is used, we recommend computing the position of the
"virtual sensor" in between the two real sensors. This is done in the
individual space first (see Section 2.2 ): for each channel the coordi-
nates are obtained by averaging the coordinates of the two original
electrodes used from the bipolar montage. These channel coordi-
nates shall then be transferred in the normalized space by applying
the non-linear transform obtained from the non-linear registration
of individual space to the normalized space (see Section 2.3 ). As for
spatial specificity, the signal of the virtual channels can be mislead-
ing for the neighboring electrodes along the shaft that sample from
distinct functional areas (i.e., the functional specificity is then mixed
in the virtual channel). 

• Ideally, bipolar referencing should be standardized to ease the com-
parisons between participants and between studies. In sEEG, elec-
trode numbering is always performed from the most mesial contact
to the most lateral, but there is a lack of common strategy when per-
forming signal subtraction between two adjacent sEEG electrodes.
We here propose to follow the same scheme used by most clinical
teams, that is, to compute the bipolar referencing from the most in-
ner electrode to the most external one (e.g., c1-c2, c2-c3, etc.; this
is the by-default-approach followed in both the Brainstorm and the
FieldTrip toolboxes, ( Oostenveld et al., 2011 ; Tadel et al., 2011 )). In
ECoG, electrode numbering is not standardized with respect to brain
anatomy; it is generally defined on the position of the cables on the
grid or shaft. A common strategy for bipolar referencing is therefore
not possible, yet in the case of ECoG grids the bipolar referencing
should take place along all directions of the grid (i.e., vertical, hori-
zontal and diagonal). 

.4.4. Data visualization 
• The choice of a reference scheme is not straightforward, as it builds

on information relative to signal quality and electrode location, as
well as on expertise. It is effective to be able to go back and forth
between different reference schemes (e.g., using keyboard shortcuts
as in the Brainstorm toolbox as illustrated in Fig. 10 ( Tadel et al.,
2011 ), or using a drop-down menu as in the Anywave free software
see the figure 5 in ( Colombet et al., 2015 )) while visualizing the data,
especially if anatomical information is combined (e.g., to identify an
electrode at the interface with the skull or over a blood vessel). 

.5. Additional preprocessing 

Several steps are often associated with preprocessing, like epoching,
emeaning-detrending, filtering, especially when data is processed with
oftware that groups these steps together. As some of these processing
teps limit the analyses that can or cannot be performed subsequently,
hey are not extensively developed in this section. In addition, they are
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dentically applied in M/EEG and in iEEG. Therefore we only briefly
ntroduce them and indicate some references for more in-depth consid-
ration. 

Epoching consists of segmenting the recorded signal into periods
f interest, either in trials containing at least one experimental event
event-related paradigm), or in segments of a continuous recording
block paradigm). Epochs are defined in conjunction with the research
uestion(s) and are then generally processed as repeated measures. Ex-
luding trials due to artifacts should be done blind to the condition to
void selection biases. 

Demeaning (a.k.a DC-offset correction) corresponds to centering the
ignal around zero. Detrending consists of correcting for a linear drift.
he signal features that we aim to remove with demeaning or detrending
enerally originate from the acquisition equipment and are not interest-
ng. These corrections can be applied on an entire dataset or on single
pochs depending on the planned analysis. For long trials, a high-pass
lter at low frequency could be prefered (e.g., at 0.01 Hz). They fa-
ilitate signal visualization such that the average signal value during a
redefined baseline epoch is zero. 

Frequency filtering refers to the removal of specific spectral com-
onents, such as the ambient electrical noise (i.e., 50 Hz or 60 Hz
otch, plus harmonics). It can also be used to remove low-frequency
omponents if the neural activity of interest is in higher frequencies,
r to remove high-frequency components when the interest is in lower
requencies (e.g., Event Related Potentials). As such, filtering param-
ters depend on the brain dynamics that are being studied. Recom-
ended filtering parameters are the same in iEEG and M/EEG and

an impact signal measures (e.g., latency, amplitude). We redirect the
eader to more specific references on filtering in human electrophys-
ological data ( de Cheveigné, 2018 ; de Cheveigné and Nelken, 2019 ;
anrullen, 2011 ; Widmann et al., 2015 ) and the subsequent commen-

aries from ( Rousselet, 2012 ; Widmann and Schröger, 2012 )). Filter pa-
ameters (such as filter type, order, frequency parameters, and direction)
hould always be reported. 

. Signal analysis 

.1. Introduction 

Many aspects of iEEG signal analysis do not differ that much from
/EEG or other continuously sampled electrophysiological data such as

FPs in animal research ( Pesaran et al., 2018 ). A number of the meth-
ds described below were initially developed and applied in M/EEG
esearch; however, their application to intracranial data benefits from
he high spatial specificity and SNR of iEEG. Therefore, we provide a
idactic overview of the most analysis methods, their neurophysiolog-
cal significance and some specific recommendations for iEEG. We will
articularly focus on the iEEG analysis steps that differ from M/EEG. 

The analysis methods listed here are not to be taken as a catalog
f approaches to undertake sequentially until a potentially interesting
attern emerges. Rather, good research practices imply that the choice
f a method is driven by the research question that is elaborated be-
orehand. This stands not only for hypothesis-driven research but also
or exploratory research (see Section 5.2 ), as in both cases the analysis
ethod is inscribed in a more theoretical framework of neurophysiology

f brain function which leads to the interpretation of the results. Last, to
erform an analysis (e.g., frequency, time-frequency, connectivity), the
ide range of measures (e.g., wavelet, coherence) and their algorithmic

omplexities, requires a motivated choice to prevent getting lost in the
arden of forking paths ( Gelman and Loken, 2014 ). The selection of a
iven measure must be based on a solid understanding of that measure,
ts strengths and its limitations. 

First, we introduce Event Related Potentials (ERPs), which, by defini-
ion, implies that there is evoked activity that is elicited by experimental
vents. The ERPs computed from the iEEG signal are considered to re-
ect mainly post-synaptic synchronized activity of pyramidal neurons
25 
 Buzsaki et al 2012 ) due to coincident incoming inputs to a substantial
opulation of neurons in the vicinity of the iEEG recording site. 

Second, we present frequency analysis. It can be used to quantify
eural activity in the absence of events, for example in spontaneous ac-
ivity. When computed in a time-resolved fashion, frequency analysis
an also be used to quantify neuronal activity related to but not nec-
ssarily precisely time-locked to events. One of the main interests in
requency analysis is to distinguish or focus on activity in specific fre-
uency band(s), either reflecting wide modulatory inputs or more local
eural processes. 

Third, we present connectivity measures that express the relation-
hip between signals recorded at spatially distant sites. Connectivity es-
imates provide information about long range communication between
EEG channels (i.e., nodes in brain-wide networks) and are essentially
erformed in the time-frequency domain. 

Last, we introduce cross-frequency coupling (CFC) which character-
zes the link between signal components occurring in different frequency
ands. CFC can be used to investigate the local architecture (i.e., within
he signal of one recording site), or at the network level (i.e., between
ignals recorded from distant sites). 

.2. Event related potentials 

.2.1. Background 

Computing ERPs consists of averaging the brain’s response over mul-
iple trials that are defined by a specific type of experimental event
e.g., stimulus onset, motor response). Neural activity that is precisely
ime-locked and phase consistent over trials remains in the average,
hereas activity that is uncorrelated over trials (the “noise ”) tends to

ancel out (see Fig. 11 ). Note that activity that is elicited by events but
hose timing is variable will not be seen by the averaging procedure

see Section 4.3.1 ). The calculation of ERPs for intracranial data does
ot differ from scalp EEG, or event-related fields (ERFs) obtained from
EG. Good practices and reporting guidelines in ERP/ERF research are

horoughly documented elsewhere ( Gross et al., 2013 ; Keil et al., 2022 ;
ernet et al., 2020 ; Picton et al., 2000 ) and are not repeated here. In
he following we will mention some critical aspects that are specific to
EEG research. 

.2.2. Challenges, recommendations and reporting advice 

A recurring question pertains to the number of trials needed to ob-
ain an ERP with a sufficient SNR. When designing the experimental
rotocol, it is of strategic importance to minimize the experimental du-
ation for patients who are susceptible to seizures and who donate their
ime and energy at a challenging time for them (see Section 1.3.3 ). Be-
ause of the high SNR of iEEG, especially in functionally specialized
egions, the brain responses of interest are often visible in a single trial
see Fig. 11 ). This high SNR makes it easier, as compared to M/EEG,
o relate responses to single events to behavioral data (e.g., response
imes, see Section 4.2.3 ). That said, patients may have frequent epilep-
iform abnormalities which can limit the number of artifact-free trials
or task-related stimuli. We note that it is also important to emphasize
hat all of the preprocessing parameters —low-pass filter setting, refer-
nce scheme, baseline period, and artifact removal approach —interact
o influence the final estimate of ERP amplitude (see Section 3.5 and
 Clayson et al., 2021 )). 

Fig. 11 shows ERPs recorded in the primary auditory cortex (AudCx)
n response to pure tones. As expected, the SNR increases proportionally
o the square root of the number of trials. The number of trials required
o obtain a robust ERP depends on many factors, but the examples in
ig. 11 provide a lower estimate of the minimum number of trials (for
omparison with surface EEG, see ( Boudewyn et al., 2018 ), for MEG see
 Chaumon et al., 2021 )). Following a procedure similar to the one used
n Fig. 11 , it is possible to simulate the minimal number of trials needed
o reach a stable estimate of a metric (e.g., ERP): (1) a given subset
f trials is randomly selected (e.g., 10 out of the overall number of 20
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Fig. 11. Signal-to-noise ratio (SNR) as a function of the number of trials. 
Activity was recorded in the primary auditory cortex of a participant while lis- 
tening to pure tones (1000 Hz). 
A. Activity is depicted for different numbers of averaged trials. The broadband 
ERP is depicted on the left, the magnitude envelope of high-frequency activity 
(40-150 Hz) is shown on the right. 
B. SNR varies with the number of trials used for averaging. SNR was computed 
using the maximum amplitude of the activity divided by the variance over the 
baseline (S/N). 
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rials); (2) the metric of interest is computed (e.g., ERP, magnitude at a
requency of interest); (3) the variance of the metric is calculated across
any drawings of the chosen subset of trials (e.g., 10 trials); (4) the

ariance is compared for different subset sizes (e.g., n = 3 to n = 19); (5)
he minimal number of trials corresponds to the subset size for which
he variance across drawings does not decrease further as compared to
he next-larger subset size (see for an illustration ( Oehrn et al., 2015 )). 

In scalp EEG, the recommended nomenclature of ERPs consists of
he letter P or N indicating a positive or negative deflection, combined
ith its nominal latency in milliseconds (e.g., N170, P300). Some early

nvestigators have referred to event-related components by successive
26 
eflections in the EEG waveform (e.g., P1, N1, P2, N2, etc), however,
his system of nomenclature is not generally recommended ( Pernet et al.,
020 ). In iEEG, the polarity depends on the location of the electrode of
nterest and its reference relative to the active neural source, or the ref-
rence scheme. Using a bipolar reference scheme in sEEG focuses the
ensitivity of the corresponding channel to the activity between two
eighboring electrodes (see Section 3.4 ). In that case, each electrode
icks up another pole of the source and the polarity of the ERP is oppo-
ite at the two electrodes which comprise the bipolar channel (see phase
eversal example in Fig. 12 ). Consequently, the polarity is arbitrary, as it
epends on whether the bipolar channel is computed as E1-E2 or E2-E1.
ence, the polarity of an intracranial ERP cannot be interpreted as-is,
ut should be put into perspective when compared with the classic EEG
omenclature (e.g., the “N170 ”, for a negative deflection at 170 ms, can
how up as a positive deflection for an iEEG electrode in the fusiform
yrus ( Allison et al., 1994 ; Puce et al., 1999 ); the “P3 ”, for a positive
eflection at 300 ms can show up as a negative deflection for an iEEG
lectrode ( Smith et al., 1990 )). 

• To appreciate the relativity of ERP polarity in iEEG, it is useful to
compare ERPs obtained with a local reference (e.g., bipolar) to the
ones obtained with a common monopolar reference. Applying a sys-
tematic strategy when it comes to computing a bipolar reference
scheme helps to compare ERP between individuals (for instance, by
always subtracting the most internal electrode in each pair, as rou-
tinely done in clinic, see Section 3.4.3 ). Anatomy also brings comple-
mentary information about polarity, especially in the case of sEEG
where it indicates on which side of the gray matter an electrode is
located (outermost or innermost layer) and at which distance. Last,
in some cases the ERP polarity can be flipped to match the polarity
of a known similar component recorded from the surface (see N2-P3
example in ( Baudena et al., 1995 ; Halgren et al., 1995a , 1995b )). 

DC offset removal, sometimes also referred to as baseline correction,
s a generalized practice to center the ERP around zero, by subtracting
he mean activity of the baseline from the entire epoch of interest (e.g.,
sing pre-stimulus period). As for scalp EEG, we recommend including
n integer number of cycles of the prevalent frequency (e.g., with a pre-
ominant frequency at 10 Hz, the length of the baseline period would be
n integer multiple times 100 ms). When possible, the baseline should
e chosen to be free of any cognitive process of interest for the study
see the last paragraph of Section 4.3.3.3 ). If a prestimulus effect is sus-
ected (e.g., due to attention fluctuation ( Johnston et al., 2022 ) and/or
ubcortical activities ( Fell et al., 2007 )), averaging across the baseline
eriod of all trials and then subtracting this trial-averaged baseline may
eaken spurious effects. That is, it avoids prestimulus effects in a given

rial being subtracted from the post-stimulus period of that same trial,
hich would lead to ‘finding’ the effect during the post-stimulus period
hile it is actually in the prestimulus period. Alternatively, when the

iming of such processes are unknown, or possibly encompasses the full
rial length, the baseline might include the entire epoch or might be
xtracted from another part of the recordings, thereby avoiding a bias
owards the activity at specific latencies (but see discussion in the last
aragraph of Section 4.3.3.3 ). 

When channels are compared (e.g., statistics between participants,
ee Section 5 ), and as SNR can highly vary across iEEG electrodes (see
ection 3.3.4 ), a normalization within each channel might be performed
efore comparing channels (e.g., computing a z-score per channel by
emoving the mean and dividing by the baseline variance). 

The high SNR of iEEG makes it a sound method to analyze the
elationships between a continuous stimulus (or stimuli presented in
ery short succession causing the ERP to overlap) and the correspond-
ng continuous brain response (for instance, cross-correlation analy-
es ( Mégevand et al., 2020 ) or spectro-temporal response functions
 Zion Golumbic et al., 2013 )). Analyses like the General Linear Model
re a means to address potential bias introduced by signal drifts when
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Fig. 12. Influence of the reference montage on iEEG signal analysis. 
A. Location of sEEG electrodes in the brain of the participant (axial slice on the left, coronal slice on the right). 
B. ERP computed with different reference montages, respectively, in black for monopolar white matter reference (WMR), dark blue for common average reference 
(CAR), light blue for local average reference (LAR, using all electrodes of the sEEG shaft), and red for bipolar reference (Bp). A schematic of the sEEG shaft is depicted 
to illustrate the spatial organization of the activity and especially the phase reversal revealed by the bipolar montage (e.g., at the level of channel #11). 
C. Power from time-frequency analysis computed with different reference montages, respectively, from left to right: WMR, CAR, LAR and Bp. Both CAR and LAR 
introduce a strong correlation of high-frequency activity over channels, absent in the WMR. 
D. Phase Concentration Index from time-frequency analysis computed with different reference montages, respectively, from left to right: Bp, WMR, CAR and LAR. 
Both CAR and LAR introduce a strong correlation of high-frequency activity over channels, absent in the WMR. Note the presence of induced activity, that is only 
visible in the power depiction (part C), and of evoked activity that is visible in both the depictions of power and Phase Concentration Index (e.g., see channel 8–9 
with Bp montage). 
E. Phase angle distribution represented for different reference montages, respectively, from left to right: Bp, WMR, CAR and LAR. The data corresponds to the red 
square indicated in the time-frequency plane of channel 6. While the absolute angle measure varies with the reference montage, the relative measure (i.e., PCI) is 
consistent across reference montages. 

27 
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he baseline period is included in the statistical analysis as a covariate
 Alday, 2019 ). 

.2.3. Data visualization 
• Two conventions have co-existed for plotting human electrophysio-

logical data: in most recent publications the positive voltage points
upward, but there is another (older) convention, where the positive
voltage points downward ( Hari and Puce, 2017 ). We recommend
that positive up be used, consistent with other recommendations
( Hari and Puce, 2017 ; Pernet et al., 2020 ). 

• Comparing ERPs obtained with different reference schemes helps to
understand their anatomical origin. While local and bipolar refer-
ence schemes increase salience of local activity across electrodes
(e.g., by revealing polarity reversal), .a monopolar low-variance
montage provides a broader picture including the attenuation of the
ERP with distance to the source and passive volume conduction (see
Fig. 12 panel B or the figure 4 in ( Bidet-Caulet et al., 2007 )). 

• Systematic depiction of variance estimate (e.g., mean absolute de-
viation) of an ERP is advised to instantly inform about single-
trial distribution and/or to infer difference between conditions (see
Section 5.5 ). 

• The signal over multiple trials can also be represented using a two
dimensional heat-map, where color-coded lines (time: x-axis) are
stacked (trial: y-axis). These ERP-images ( Delorme et al., 2015 ) show
the consistency over trials (i.e. variance) and can reveal specific tem-
poral organization patterns when they are sorted to a given feature
(e.g., the response times, see the figure 3 ( Flinker et al., 2015 )). 

.3. Frequency and time-frequency analysis 

Most cognitive processes trigger a rich repertoire of frequency-
pecific neural patterns whose signatures range from well-defined and
uasi-periodic patterns (e.g., alpha rhythms around 10 Hz) to responses
xtending over wider, yet limited, frequency ranges (e.g., in the high-
requency activity, above 50 Hz). The orchestration of neural activity in
ifferent frequency bands permits to organize local assemblies of neu-
ons and to coordinate interactions between distant sites ( Buzsáki et al.,
012 ; Varela et al., 2001 ). iEEG is an ideal technique to study this dy-
amical architecture at the millimeter resolution, though care needs to
e taken to ensure that oscillations are truly present when perform-
ng time-frequency analyses for this purpose ( Donoghue et al., 2021 ;
opes da Silva, 2013 ). Readers should be aware that different methods
nd nomenclatures are common in literature for describing the spectral
hanges related to an event, including for example Event-Related Band
ower analysis (ERBP), Event-Related Spectral Perturbations (ERSP),
vent Related Synchronization and Desynchronization (ERS and ERD). 

.3.1. Background 

A theoretical neuroscience foundation helps to make physiologically
nformed methodological choices that are next expressed in directing
roper signal computation. Depending on the aim of the study, fre-
uency analysis can be performed on block-design epochs or on event-
elated epochs. 

When a paradigm is block-design, the continuous data is epoched on
he basis of long blocks corresponding to experimental conditions. Then
he frequency analysis is generally applied on these single epochs to get
epetitions for statistical assessment. Last, single epoch frequency spec-
ra are averaged to obtain the magnitude-power spectra representation
f each block/condition. 

When the precise timing of stimuli or cognitive events is known,
he frequency analysis can be made time-resolved with respect to the
vents (i.e., event-related). To assess periodic activity in different fre-
uency bands, the time-frequency decomposition can be performed ei-
her on the ERP (i.e., after trial averaging) or on the single trial (i.e.,
efore averaging across trials). Applied to the ERP, the time-frequency
ransform can only show evoked activity that is phase-consistent across
28 
rials and precisely time-locked to the event (events used to align the
ingle trials before computing the ERP). Applied at the single trial level,
he time-frequency transform reveals in addition the induced activity,
he timing and phase of which vary across trials ( Tallon-Baudry and
ertrand, 1999 ). The difference between evoked and induced activity
ends to be more pronounced in high frequencies as the faster an oscil-
ation is, the less likely it is for the phase of the oscillation to be time-
ocked across observations. For instance, if a stimulus elicits a strong and
ystematic oscillatory response at 40 Hz in the iEEG signal, but the phase
f that oscillation jitters across trials, averaging the signals across trials
ill cancel that component. In contrast, averaging the time-frequency
agnitude across trials will reveal an increase in magnitude after the

timulus around 40 Hz (the induced response). 

.3.2. Methods and neurophysiological interpretation 

For block-design data for which precise timing of events of interest
nd related activity is unknown, the frequency analysis is commonly
onducted using Fast Fourier Transforms (FFT). When the timing of
vents is known and time-frequency analysis is performed, a variety
f methods are available, among others sliding-window FFT, the com-
ination of band-pass filtering and Hilbert transform, wavelet analy-
is, multi-tapering, matching pursuit analysis, or the demodulated band
ransform ( Bénar et al., 2009 ; Kovach and Gander, 2016 ; Mitra and Pe-
aran, 1999 ; Tallon-Baudry et al., 1997 ). Some time-frequency analy-
es might be more appropriate for specific questions regarding specific
ypes of neural responses (e.g., the precise frequency extent of a short
roadband response, the number of cycles of well-defined sustained
scillation). For a particular situation, choosing “the ” most appropri-
te method requires good understanding of the method and what as-
ects of the signal it captures best. In most cases, the different meth-
ds lead to similar results ( Bruns, 2004 ; Le Van Quyen et al., 2001 ),
specially in iEEG, thanks to the high SNR. A comprehensive pre-
entation of the different methods available is beyond the scope of
his article, and we encourage the interested reader to consult pub-
ications dedicated to time-frequency analysis of electrophysiological
ignal ( Cohen, 2014 ; Gross, 2014 ; Herrmann et al., 2014 ; Roach and
athalon, 2008 ; Wacker and Witte, 2013 ) and to related guidelines

 Gross et al., 2013 ; Keil et al., 2022 , ; Pernet et al., 2020 ). Here, we
ntroduce some key concepts for understanding different neurophysio-
ogical scenarios that are characterized more easily with iEEG (due to
ts spatial specificity) than with scalp EEG which is blurred by volume
onduction. 

Briefly, any frequency transform decomposes the original signal into
 set of sinusoidal functions that are often taken to imply oscillatory
ignals. For each frequency (and each time-point in the case of time-
requency analysis), the output is a complex number from which two
lemental measures are derived: the magnitude (sometimes referred as
mplitude, we here prefer the term magnitude which implies an un-
igned number that is the norm of a vector) and the phase (the shift of
he oscillation along the time-axis). For a given data-point, the depic-
ion of the complex number in the polar coordinate system provides an
ntuitive view: the magnitude is the norm of the vector, the phase is its
ngle from the origin (abscissa axis): 

– The magnitude represents the norm of the vector, i.e., the absolute
value, whereas power refers to the norm squared, hence magnitude
and power have a monotonic but non-linear relationship. The mag-
nitude or power averaged across trials with respect to an event will
show a modulation due to an induced (if it is jittered in time across
trials) or evoked (if it occurs in-phase across trials) effect. 

– The phase indicates where the signal stands in its cycle with respect
to its oscillatory estimate. Phase averaging across trials is generally
performed by taking the norm of the normalized complex-vectors
averaged across trials (i.e., magnitude is set at 1). In particular, the
phase consistency across trials indicates if the phase of ongoing oscil-
lations is reset by the same event across trials. This index is normed
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between 0 and 1, follows a right skew distribution and is generally
named: Inter-trial coherence (ITC), Phase-Locking-Factor (PLF) or
inter-trial phase clustering (ITPC). 

Thus, the use of time-frequency analysis allows to draw four possible
nalytic scenarios following the occurrence of an event ( Makeig et al.,
004 ): (a) a change in magnitude co-occurs with a phase reset; (b)
 change in magnitude but no phase-reset (a.k.a. pure induced activ-
ty); (c) no change in magnitude but a phase-reset (a.k.a. pure phase-
eset); (d) no change in magnitude and no phase-reset. The link be-
ween ERP, power modulation and phase resetting is still an ongoing
ebate ( Fell, 2007 ; Fell et al., 2004 ; Klimesch et al., 2007 ; Lopes da
ilva, 2006 ; Makeig et al., 2004 ; Sauseng et al., 2007 ; Shah et al., 2004 )
nd some measures have been elaborated to investigate these questions
such as the phase-preservation index which evaluates the pre-to-post
vent phase relationship, see ( Mazaheri and Jensen, 2006 )). Critically,
hese scenarios are hard to dissociate using surface recordings because
he passive spread of the signal mixes magnitude change and phase
odulation across electrodes. The spatial specificity and SNR of iEEG
ermits a finer characterization of magnitude and phase modulation(s)
aused by an event. For example, iEEG studies showed pure phase re-
et as a mechanism for cross-modal modulation in the sensory cortex
 Mégevand et al., 2020 ; Mercier et al., 2013 ). 

.3.3. Challenges, recommendations and reporting advice 

.3.3.1. Distinguishing oscillations from activity in a canonical band.

ime-frequency analyses allow activity at neighboring frequencies
o be visualized and thereby are informative for distinguishing be-
ween general spectral magnitude or power changes in fixed canon-
cal EEG bands versus the presence of specific oscillations (i.e. nar-
ow band activity of a periodic, rhythmic nature) ( Donoghue et al.,
021 ; Lopes da Silva, 2013 ). There is a growing literature that posits
hat some oscillatory phenomena are non-stationary, infrequent, and
ursty ( Jones, 2016 ) and that non-oscillatory periods are dominated
y what is referred to as “aperiodic ” activity ( Donoghue et al., 2020 ;
erster et al., 2022 ) that is itself dynamically modulated by task states
 Podvalny et al., 2017 ), is likely physiologically relevant ( Gao et al.,
017 ) and can be related to behavior ( Brookshire, 2021 ; Wolpert and
allon-Baudry, 2021 ). 

.3.3.2. Examining magnitude change and phase modulation. Time-
requency decomposition provides both magnitude and phase as a func-
ion of time and frequency. To dissociate induced responses from evoked
esponses (i.e., same phase across trials), we recommend considering
oth in relation to each other by visualizing them side by side. Beyond
 more complete characterization of the brain response ( Watrous et al.,
015 ), grasping the bigger picture permits to reveal mathematically or
hysiologically questionable scenarios. For instance, some baselining
hoices (e.g., time-period method) can result in a decrease in magni-
ude accompanied by a phase-reset at the same frequency. Such a result
s difficult to interpret from a physiological point of view, as it would
ean that, across trials, the magnitude of local neural activity decreases

nd at the same time becomes more synchronized. Also, the potential
onsequences of the experimental design on the baseline activity should
e considered when assuming the baseline to be “neutral ” relative to the
ctive period of interest (see also the last paragraph of section 4.3.3.3 ).
ore specifically, some unlikely scenarios can be due to the reference

cheme. In the example above, the decrease in power and the phase-
eset at the same frequency can originate from different channels, with
heir signal being mixed by the use of a specific reference scheme. This
xample underlies the interest of comparing results obtained with dif-
erent reference montages. 

.3.3.3. Baselining signal magnitude. It is common to investigate
requency-specific increases or decreases in magnitude related to a given
ognitive process. Measuring modulation over time usually involves the
29 
omparison of time-frequency magnitude or power when the process is
ctive versus when it is not active, the latter being referred to as the
baseline ” period. Once a proper baseline period has been defined, a
umber of approaches are commonly used, although there is no con-
ensus. While baselining signal magnitude is not specific to iEEG, it is
 cornerstone of time-frequency analysis that should be minutely con-
idered. Various methods commonly used in such analysis are described
ere (see Table 1 and Figs. 12 and 13 ). 

Absolute baseline. This method consists in subtracting for each fre-
uency the mean magnitude over the baseline from the period of inter-
st; the result is therefore expressed in the original units (e.g., 𝜇V 

2 ). This
pproach assumes that the task-induced magnitude or power adds lin-
arly to the baseline power and equally across frequencies. While this is
ot a problem per se, it should be kept in mind that, due to the 1/f fall-
ff, some task-induced absolute magnitude increases can be stronger at
ow-frequencies (see Fig. 13 ). Notice that this approach leads to differ-
nt outcomes when applied on magnitude or on power because of their
onlinear relationship (e.g., when the power doubles the magnitude in-
reases by one unit, making change in higher frequencies more visible
ith power than with amplitude). 

Z-scoring baseline. Here the absolute baseline is further divided by
he standard deviation of the magnitude/power over the baseline period.
he result corresponds to Z-values that can be conveniently interpreted
s standard scores. Note here that the result depends on baseline vari-
nce (SNR) which might not be equal across frequencies. Thus, what
an be seen as an equal increase in power at two frequencies can be due
o a real increase with respect to baseline at one frequency, while being
ue to a lower variance in the baseline at the other frequency without
enuine increase with respect to the baseline. Only in the case where
he variance is proportional across frequencies, the z-scoring baseline
ompensates for the 1/f frequency fall-off (see Section 4.3.3.4 ). 

Relative baseline. This approach relies on a gain model, where the
eriod of interest is divided by the baseline mean and the result is ex-
ressed in percentage. With this method, event-related increase and de-
rease with respect to baseline are not treated equally: after baselining
ata-values are positively skewed: while task-induced decrease range
rom 0 to 1 (underestimation), task-induced increase range from 1 to
 infinite (overestimation). 

Log-transform baseline. Another way to correct for the 1/f fall-off is
o express the relative magnitude or power compared to the baseline
n decibel (dB) using a log-transform. As for the previous approaches,
he log-transform does not lead to the same outcomes when applied on
agnitude or on power (due to their nonlinear relationship, see above).

Absolute-relative baseline (relative change). This method involves
rst subtracting the mean baseline activity and then dividing by the
ean baseline activity. This approach has the advantage of centering the
agnitude before expressing it in percentage, which avoids the asymme-

ry introduced when the signal is not centered first (as with the relative
aseline). 

Normed baseline. This method involves first subtracting the mean
aseline activity and then dividing by the sum of the magnitude or
ower at each data point and the mean baseline activity over the base-
ine period. This approach is similar to the absolute-relative baseline. 

A remaining question is whether the baseline correction should be
erformed at the single trial level and/or on the average. That issue
as been assessed in two studies, which showed that both should be
ombined to minimize the contribution of outliers ( Grandchamp and
elorme, 2011 ; Hu et al., 2014 ). 

When choosing the baseline period, the temporal leakage of the time-
requency decomposition has to be kept in mind, otherwise the risk is
hat post-onset activity contributes to the baseline estimate over the pre-
nset period. Due to the length of the window used to estimate the time-
requency magnitude or power, the estimated power immediately before
 stimulus can be affected by oscillatory processes occurring after that
timulus. To avoid any overlap between the baseline period and the win-
ow of interest, we recommend using a baseline period that ends before
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Table 1 

Baselining methods used in time-frequency analysis. A can be read as “active ” and stands for the time-frequency resolved magnitude or power in 
the period of interest. B stands for the baseline period. An overscore indicates taking the mean over the time in the baseline; the standard-deviation 
𝜎 is also computed over the time in the baseline. 

Absolute baseline Z-scoring baseline Relative baseline Log-transform baseline Absolute-relative baseline Normed baseline 

Equation 𝐴 − �̄� ( 𝐴 − ̄𝐵 ) 
𝜎𝐵 

𝐴 

�̄� 
10 ⋅ 𝑙𝑜𝑔10( 𝐴 

�̄� 
) 𝐴 − ̄𝐵 

�̄� 

𝐴 − ̄𝐵 
𝐴 + ̄𝐵 

Units 𝜇V 2 or 𝜇V 2 /Hz dimensionless (z-score) % dB % % 

Limits (- ∞, + ∞) (- ∞ , + ∞) [0 , + ∞) (- ∞, + ∞) (- ∞, + ∞) (- ∞, + ∞) 

Fig. 13. Baseline correction and time frequency representation. 
The same time-frequency representation of power is depicted with different baselining methods computed from -1 sec to -0.5 s. Within a frequency range (orange) 
and two time ranges of interest (purple and red), the mean and the mean-absolute-deviation are depicted at the bottom and on the side. The choice of the baseline 
method enhances/reduces the visibility of particular features in the data (for instance the 1/f effect, see Sections 4.3.3.3 and 4.3.3.4 ). 
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ny post-onset leakage (e.g., three cycles at 8 Hz = 375 ms, activity at
ime 0 ms backward leaks to –187.5 ms, therefore the baseline should
e taken before). 

The notion of “baseline correcting ” or “normalization ” has different
eanings depending on the background of the researcher and/or the

xperimental paradigm. Here, we would adopt the notion that the base-
ine can initially be considered as any other condition. A baseline may
e seen as ‘neutral’ with regard to an ‘active’ condition, but not with
egard to the state of the brain. The brain is never fully switched off
n the baseline period: when the experimenter presents a stimulus, this
dds input to an already active system and the experimenter measures
he subsequent interplay between the ongoing activity and that event.
he baseline state of the brain can therefore influence the processing
f an incoming stimulus, memory performance, the making of a deci-
ion, the construct of a prediction or a motor response ( Benedetto et al.,
020 ; Fiebelkorn and Kastner, 2019 ; Makeig et al., 2004 ; Mayer et al.,
016 ; Norman et al., 2017 ; Schroeder et al., 2010 ; VanRullen, 2016 ). It
ollows that the relationship between the response to an event and the
aseline preceding it, is not as symmetric as an ‘active’ versus a ‘passive’
eriod. We recommend bearing in mind this symmetry (i.e., the base-
ine being another condition) or asymmetry (i.e., the baseline having a
ausal effect on the processing of an event), especially as most of the ap-
roaches described above are asymmetric, except the absolute baseline
nd the log-transform baseline. That is, inverting the baseline-condition
 p  

30 
nd the condition-of-interest is in most cases not equivalent to flipping
he colormap of the time-frequency representation. 

.3.3.4. 1/f drop-off and broadband analysis. The power spectral den-
ity of neural signals is roughly inversely proportional to the frequency
nd follows a 1/f decrease (see ( Donoghue et al., 2020 ; He et al., 2010 ;
iller et al., 2009 ; Milstein et al., 2009 ; Samaha and Cohen, 2022 ;

higalov et al., 2017 , 2015 ). As different frequency bands contain sig-
atures of different neural processes, some analyses focus on a single
r a limited number of discrete frequency bands, rather than the en-
ire spectrum. The choice can be driven by canonical frequencies from
he literature, or be data-driven (e.g., by identifying individual frequen-
ies where the power peaks or where the shape exceeds the 1/f spec-
rum). For instance, high-frequency activity (e.g., 50 Hz to 150 Hz) is
ften considered as a proxy of population-level local spiking activity
 Le Van Quyen et al., 2010 ; Mukamel et al., 2005 ; Ray et al., 2008 ).
et, broadband high-frequency activity and multi-unit activity index
ifferent features across layers ( Leszczy ń ski et al., 2020 ), furthermore
roadband high-frequency can overlap with narrow-band oscillations
 Arnulfo et al., 2020 ; Hermes et al., 2015 ). In the example of high-
requency activity, the result of an analysis conducted over the whole
igh frequencies range at once, is dominated by the lowest frequen-
ies. Disentangling broadband, 1/f, signal changes can be difficult. The
henomenon can be obscured at high frequencies by the noise floor in-
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roduced by the amplifier system, and at low frequencies by coexistent
scillations ( Miller et al., 2014 ). 

When analyzing a wide range of frequencies, we recommend giv-
ng a similar weight to high and low-frequencies e.g., by normalizing
ach frequency before processing or averaging them or by “whitening ”
he PSD (as an example see ( Groppe et al., 2013 ; Roehri et al., 2021 ;
idal et al., 2010 ). Note that simply filtering the signal to perform a
roadband analysis is not optimal; the characteristic of the signal is
etter described with a dedicated (time-)frequency analysis. Last, when
 broadband analysis is conducted, we recommend further analyzing
eighboring frequencies to assess the frequency specificity of the stud-
ed neural process. As a complement to methods that correct or adjust
or the 1/f drop-off, there are several emerging approaches for explicitly
odeling and parameterizing it. Several of these approaches —such as
OSC ( Hughes et al., 2012 ), eBOSC ( Kosciessa et al., 2020 ), and IRASA
 Wen and Liu, 2016 ) —focus on modeling the 1/f drop-off in order to sep-
rate it from oscillations in order to better analyze oscillatory activity.
ther approaches, such as spectral parameterization ( Donoghue et al.,
020 ) conceive of the 1/f-like activity as a physiologically relevant sig-
al that should be explicitly parameterized into its total broadband
ower, spectral exponent or slope, and a “knee ” frequency, the latter
f which describes the point where the 1/f drop-off occurs ( Miller et al.,
009 ). This approach defines the 1/f-like activity as an aperiodic signal
hat arises from the total postsynaptic and transmembrane currents that
nderlie the local field potential and iEEG signal ( Buzsáki et al., 2012 ).
n this view, the total broadband power is related to total synaptic in-
uts, as highlighted above, while the power spectral exponent and knee
rise as a natural consequence of the fact that the local currents expo-
entially rise and decay in time ( Manning et al., 2009 ; Miller, 2010 ).
his double-exponential in the time domain manifests as a knee and ex-
onential decay in the frequency domain; as the relative contributions
f e.g., excitatory and inhibitory currents into a region change, so too
oes the knee frequency and spectral exponent ( Gao et al., 2017,2020 ).

.3.3.5. Phase across frequencies. The phase of a wide frequency band
as little physiological meaning, as it mixes-up phases from oscillations
t different frequencies. Thus, we recommend avoiding averaging phase
cross frequencies. 

.3.3.6. Phase quantification. Even if a phase estimate relies on good
NR, like with iEEG, the quantification of phase consistency across tri-
ls, or across time, is biased by the number of samples (i.e., the consis-
ency is overestimated for too few trials). Sample size bias is inherent
o the computation of any metric reflecting the magnitude of a vector
ike the Phase Concentration Index ( Vinck et al., 2010 ). Such a metric
lways has non-zero positive values and is greater for a low number of
bservations. To circumvent this issue, an option is to compute every
ossible phase angle difference between all the trials, which leads to
 distribution of pairwise circular differences next evaluated for non-
niformity around the circle (as proposed in ( Gulbinaite et al., 2017 )
rom the Pairwise Phase Consistency ( Vinck et al., 2010 )). Practically,
f the phase angles of all single trials are similar, the distribution of ev-
ry combination of paired-trial phase differences should not be random
ut rather tends towards zero degree. Thus, this combinatorial approach
s making the most of single trials to be less subjected to small sample
ias. When comparing the phase consistency across trials between con-
itions, equating the number of trials for the two conditions is a more
imple way to elude the sample size bias. Nonetheless this must be a
rerequisite when comparing conditions. 

.3.3.7. Influence of the reference on phase angle estimate. An ambiguity
n the phase estimate comes from the reference as the phase angle of a
ignal is defined relative to the signal at the reference (i.e., 0 degree, see
 Shirhatti et al., 2016 )). With EEG, the use of the same reference mon-
age across participants favors the correspondence of the phase angle
stimate within the population. With iEEG, even if the same reference
31 
ontage is used across participants, the peculiarity of electrode loca-
ions makes the phase angle hardly comparable between participants.
oreover, at the individual level, the phase angle estimate changes
hen the reference montage is changed (see comment on ERP phase

eversal in Section 4.2.2 , and Fig. 12 ). Changing the reference montage
hifts the angle of the phase estimate, and can introduce some noise in
he estimate (e.g., if the signal at the reference is artifactual or modu-
ated by an experimental factor). Thus, as the angle is arbitrary, analysis
hould focus on phase angle relationships across trials or across time.
e also recommend performing the time-frequency decomposition for

hase analysis twice: once with a local reference scheme and once with
 monopolar reference, to assert if the electrode(s) used as reference
s/are ‘neutral’ phase wise or, in contrast, if it/they show(s) some phase
ngle consistency (see panel E in Fig. 12 ). 

.3.3.8. The reference and the estimate of signal magnitude/power. Sig-
al magnitude is impacted by the reference montage, as it represents
he magnitude difference between a given electrode and the reference
lectrode(s) in the frequency domain ( Shirhatti et al., 2016 ). Also, it is
ritical to make sure that the signal(s) used as reference is neither ar-
ifacted or modulated by experimental factor(s), which would then be
ixed with the signal(s) of interest. We recommend looking at the same
ataset with different reference montages to verify that the electrode(s)
sed as reference do(es) not contaminate the signal, enabling one to
nderstand the spatial features of the referenced signal(s) (see Fig. 12 ).

.3.4. Data visualization 
• When plotting color-coded data, such as time-frequency responses,

the choice of the colormap can lead to misleading effects. A colormap
with a non-isoluminance/hue gradient (e.g., jet/rainbow colormap)
can introduce illusory boundaries that are not present when the same
data is plotted using a black and white colormap ( Cooper et al.,
2021 ). We recommend choosing an isoluminant color map (e.g., ‘bat-
low’) to avoid result misinterpretation (for examples and an in-depth
discussion see ( Crameri et al., 2020 )). 

• When visually comparing a time-frequency response across frequen-
cies, it is necessary to correct for the 1/f fall-off; otherwise the great-
est modulations measured in the low frequencies bury the more mod-
est modulations measured in the higher frequencies (see Section
4.3.3.4 ). Frequency specific re-scaling requires baseline correction
and we recommend the absolute relative or z-score approach to
avoid a bias in the visualization (see previous section and Fig. 13 ). 

• The visualization of a time-frequency response that is averaged over
multiple trials does not provide variance estimates across the trials.
As all display dimensions are already used (i.e., x-axis for time, y-
axis for frequencies and color for the magnitude or power or phase
consistency), one solution is to plot the mean magnitude or power
(or phase consistency) and its variance, computed per frequency over
time, on the side of the time-frequency map, for the baseline and for
the active period (see Fig. 13 ). When focusing on a specific frequency
band, a 2D heat map depicts inter-trial variance over time either for
the magnitude or the phase, like an ERP-image (see Section 4.2.3 ).
That is, trials are stacked above each other and eventually sorted by
a variable of interest (e.g., a behavioral variable, see the figure 10
in Dubarry et al., 2022, or ( Ossandón et al., 2012 )). 

.4. Connectivity analysis 

.4.1. Introduction 

Following the connectome perspective, which aims at defining the
tructural connectivity underlying brain networks ( Sporns et al., 2005 ),
he dynome perspective proposes to investigate the dynamic interac-
ions at play in brain networks ( Kopell et al., 2014 ). This perspec-
ive posits a particular emphasis on neural oscillations and on relation-
hips between the fine temporal structures of distributed neural activity
 Sadaghiani et al., 2022 ; Siegel et al., 2012 ). Despite the limited and
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on-systematic coverage of iEEG, its high spatial and temporal resolu-
ion make it very suited to study such interactions. A large variety of
onnectivity measures have been proposed to detect long-range neural
nteractions, which are typically computed as bi-variate measures be-
ween pairs of iEEG channels. Connectivity measures can be split into
wo main classes: functional connectivity measures that are correlative
nd directed/effective connectivity measures that model causal relation-
hips. Within each class, different measures applied to the same data
an yield very different connectivity patterns ( Strahnen et al., 2021 ;
ang et al., 2014 ). It is therefore important to understand which aspect

f neural coupling is quantified by each measure (e.g., coupling between
agnitudes or between phases). The coupling mechanisms considered

re so diverse that so far no single connectivity measure has emerged
s the tool of choice. A comprehensive review of different connectiv-
ty measures can be found in a number of dedicated didactic reviews
 Bastos and Schoffelen, 2015 ; Greenblatt et al., 2012 ; O’Neill et al.,
018 ). The following section primarily introduces the main approaches
sed so far and some of the improvements to them that aim to resolve
pecific issues. 

.4.2. Functional connectivity 

.4.2.1. Background. One of the most intuitive connectivity measures is
he correlation between amplitude envelopes of two signals ( Bruns et al.,
000 ). This assesses the temporal correspondence in the magnitude fluc-
uations in a given frequency band in two electrodes. For instance, high-
requency activity (HFA) between 50 and 150 Hz is thought to represent
 proxy of population-level spiking activity for neurons (( Buzsáki et al.,
012 ) and see Section 4.3.3.4 ); therefore one can assume that two dis-
ant neural populations cooperating to process information should have
FA fluctuations that are correlated in time ( Fries, 2005 ; Vidal et al.,
012 ). 

As the excitability of neurons is modulated by sub-threshold fluc-
uations in cell-membrane potentials, the phase of ongoing oscillations
an contribute to the exchange of information between distant groups
f neurons ( Fries, 2015 ; Varela et al., 2001 ). Rather than looking at
agnitude (amplitude or power) correlations, the Phase-Locking Value

PLV) can be used to estimate phase synchronization. The PLV quantifies
cross trials or time the phase angle difference between two signals for
 given latency and frequency window. When computed across trials,
LV measures if the phase difference between two signals is consistent
cross trials with respect to the event that defines the trials (i.e, the out-
ut is a mean across trials per time point). When the PLV is computed
ver time, the metric assesses the stability over time of the phase differ-
nce between the two signals (i.e., the output is a mean over time per
rial). PLV values range between 0 (for totally random) and 1 (for per-
ect phase-locking). It is the bivariate homologue of the univariate index
f phase consistency (see Section 4.3 ) ( Lachaux et al., 1999 ; Tass et al.,
998 ). 

The dichotomy between amplitude and phase illustrates the intri-
acy of connectivity analysis and the relevance to inscribe any investi-
ation in a physiologically grounded theoretical framework supporting
ommunication in brain networks. Amplitude coupling and phase cou-
ling lead to different but nevertheless non-exclusive measures. Distant
oupling mechanisms might cause oscillations to rise and decay at the
ame time in two neural populations, with or without precise phase re-
ationships. This illustrates that the application of different connectivity
easures can provide a more comprehensive view of the coupling mech-

nisms within brain networks ( Engel et al., 2013 ). 
Coherency and coherence provide a mixed measure of amplitude and

hase correlations. Coherency and coherence are based on the standard-
zed cross-spectrum of two complex signals across time or trials. When
xpressed as a complex number, it is usually named coherency; taking
he magnitude of coherency leads to the coherence coefficient. Ranging
rom 0 to 1, it quantifies the correlation in the frequency domain, taking
oth amplitude and phase consistency into account. Thus, coherence ap-
ears similar to PLV modulo signal magnitude: coherence considers both
32 
mplitude and phase consistency, while PLV is only sensitive to phase
onsistency. However, as any phase estimate depends on the amplitudes
f the sine and cosine components, the PLV does depend on signal mag-
itude and SNR. Given a certain amount of noise, signals with a larger
agnitude will result in a better phase estimate, therefore higher PLV

alues ( Bastos and Schoffelen, 2015 ). Weighting events by their respec-
ive magnitudes can obscure possibly meaningful low amplitude events
ontaining weak but genuine phase synchronization (see modeling study
y ( Hurtado et al., 2004 )). 

When getting started with connectivity analysis we recommend us-
ng either magnitude correlation, as it gives a straightforward and in-
uitive measure especially when analyzing HFA activity, or coherence
or broader analysis scopes and when exploratory analysis is conducted.
nce these initial measures have resulted in more explicit expectations
r hypotheses of connectivity, other measures can be used to further
haracterize the underlying magnitude or phase related physiological
echanisms and address potential biases. 

.4.2.2. Advanced methods to work out potential biases. There are vari-
us aspects of the data and of the analysis of underlying activity that
an cause spurious or biased estimates of basic connectivity measures.
dditional methods have been developed to address these issues. 

Sample size bias. Functional connectivity estimates (just like the
hase consistency measure, see Section 4.3.2 ) that are based on the mag-
itude of an averaged complex vector are dependent on the sample size
ven with high SNR (i.e., the number of vectors/trials that are aver-
ged). The Pairwise Phase Consistency (PPC) index addresses this issue
y computing the distribution of all pairwise phase angles differences,
nd tests for non-uniformity ( Vinck et al., 2010 ). This measure does not
est for consistency over all the trials (like the PLV) but across each pos-
ible pair of trials. By exploiting the combinatorial data over trials, PPC
s more sensitive to true positives, less sensitive to false negatives and
urns out to be equivalent to the squared PLV. PPC is therefore recom-
ended to control for sample size bias. When the research question is to

ompare connectivity estimates across conditions, the sample size bias
an also be addressed by stratifying the data (i.e., to equate the number
f trials in the conditions). With this approach, if the number of trials is
ow, the estimate (i.e., the mean vector) for the two conditions should
e equally inflated. 

The common input problem. One common criticism is that most con-
ectivity measures fail to distinguish direct and indirect interactions be-
ween neural populations (i.e., two populations driven by a common in-
ut would also be highly correlated if they are not directly connected).
he partial coherence was proposed to remove the contribution of pu-
ative common inputs ( Rosenberg et al., 1998 ). However, partial coher-
nce requires data from potential common inputs. In the case of spatially
parsely sampled iEEG, those common sources may lie far from any elec-
rodes. Yet, it can be used in some instances to estimate whether an in-
rease in connectivity is due to a common artifact picked up by several
lectrodes. There the use of a ‘neutral’ electrode (i.e., with respect to the
tudied cognitive process) capturing the common artifact permits test-
ng if the connectivity measure between two ‘active’ electrodes is due to
he common artifact. 

The passive volume conduction problem. Another source of spurious
orrelation between signals is volume conduction when two recording
lectrodes capture, with no delay, a common biophysical activity. Com-
ared to M/EEG, iEEG is less prone to such effects due to the focal
pecificity of the implanted electrodes, especially when a local refer-
nce montage is used (see Section 3.4 ). It is worth mentioning that sev-
ral connectivity measures have been designed to reduce the effect of
olume conduction. These are based on the notion that a physiological
oupling mechanism between distant sources should impose a delay in
nformation transmission, and therefore a time lag between correlated
ignals, whereas volume conduction is instantaneous. One approach is
o only consider the imaginary part of Coherency ( Nolte et al., 2004 )
nd discard contributions along the real axis; this removes zero (in-
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hase) and anti-phase contributions to the signal. Similarly, the Phase
ag Index (PLI) measures the asymmetry, relative to the real axis, of
he distribution of phase angles differences ( Stam et al., 2007 ). PLI was
urther extended as the Weighted PLI ( Cohen, 2015 ; Vinck et al., 2011 ),
here the sign of the angle difference is scaled by the magnitude of the

maginary component (i.e., the distance from the real axis,). A similar
pproach was developed for power envelopes by orthogonalizing sig-
als, that is to eliminate instantaneous correlation ( Brookes et al., 2010 ;
ipp et al., 2012 ). In practice, these connectivity measures are recom-
ended to characterize the immediacy/delay of connectivity (i.e., phase

ynchronization or magnitude correlation). If the connectivity result is
eplicated with these methods, the finding is strengthened and the lag
an be reported (see next paragraph). Otherwise, the immediacy of the
onnectivity must be reported and/or tests should be performed to find
he origin of a common source (e.g., common reference or artifact, see
revious paragraph and Section 4.4.3 ). 

The temporal precedence problem. When considering two sinusoidal
ignals with a relative time shift between them, it is non-trivial to deter-
ine which of two signals leads or lags. If the two signals with a constant

ime delay are not merely constant oscillations but are represented in a
roader frequency range, the phase difference between the two signals
ill increase linearly with the frequency of the oscillations. Building
pon this, the Phase Slope Index quantifies the phase difference over a
ange of frequencies and provides an interpretation of temporal delays
 Nolte et al., 2008 ). As for the correlation between amplitude envelopes,
 straightforward extension is the cross-correlation measure, which fur-
her estimates the lag between the two correlated signals ( Adhikari et al.,
010 ). We recommend these approaches to examine connectivity time-
elay. Moreover, they purposefully back-up data visualization such as
ose plots in the case of phase synchronization or cross-correlogram
n the case of magnitude cross-correlation. While there are promising
ecomposition techniques aimed at disentangling overlapping oscilla-
ions ( Nikulin et al., 2011 ) that have recently been adapted for iEEG
 Schaworonkow and Voytek, 2021 ), great care still needs to be taken
hen interpreting such results. 

.4.3. Directed connectivity 

Given that there is a correlation between the iEEG signals at dis-
ant sites, one can proceed to determine whether one of the neural
ources drives or causes the other. A time difference in functional con-
ectivity by itself is not sufficient to conclude statistical causation and
s often mistakenly interpreted as a causal relationship ( Friston, 2011 ).

hile an exhaustive review of directed/effective connectivity methods
s beyond the scope of this paper, we mention the most common ap-
roaches used in electrophysiology. Model-based directed connectivity
ncludes measures of Wiener-Granger causality ( Bressler and Seth, 2011 ;
ya et al., 2007 ) or directed transfer function ( Kami ń ski and Bli-
owska, 1991 ; Korzeniewska et al., 2008 ). Model-free methods derived
rom information theory (e.g., Mutual Information ( Ince et al., 2017 ;
raskov et al., 2004 )) include transfer entropy ( Schreiber, 2000 ), Phase

ransfer entropy ( Lobier et al., 2014 ) or Feature-specific Information
ransfer ( Bím et al., 2019 ). As the common input problem also applies to
ausal measures, partial approaches were developed to disambiguate the
ole of auxiliary node(s) in the assessment of the causal link between the
wo nodes of interest. These methodologies include the partial directed
oherence ( Baccalá and Sameshima, 2001 ), partial/conditional Granger
ausality ( Ding et al., 2006 ; Guo et al., 2008 ; Wen et al., 2013 ), or the
artial information decomposition ( Wibral et al., 2017 ). While these
ethods have been less exploited in iEEG research due to the sparse spa-

ial sampling and only partial coverage of the brain, multivariate autore-
ressive models include and extend the bivariate model, thus allowing
ausal inference at the full network scale ( Ku ś et al., 2004 ). Compared
o functional connectivity analysis, effective connectivity analysis leads
o more complete models of the large-scale cognitive networks, with de-
ailed causal relationships and information spreads between brain areas.
33 
We advise iEEG researchers to test the validity of the methods on
imulated data prior to their application on acquired datasets. We also
ecommend comparing the differences between methods’ outputs and
nterpret the results in light of the literature related to the structural
rganization of the network of interest (including its hierarchical orga-
ization). Especially, the benefit remains to be explicit for hypothesis
riven research and sometimes more risky for exploratory research. 

.4.4. Challenges, recommendations and reporting advice 
• The referencing scheme has a major impact on connectivity mea-

sures. A common reference adds a common component to all sig-
nals and therefore can artificially increase connectivity measures
( Bastos and Schoffelen, 2015 ; Fein et al., 1988 ; Guevara et al., 2005 ;
Hu et al., 2010 ). This also applies when connectivity is computed be-
tween two channels that share the same reference, for example with
a bipolar reference scheme for three sEEG electrodes resulting in two
neighboring channels. We recommend that each channel included in
the connectivity estimation should be referenced to a different ref-
erence. When this is not possible, a less ideal solution is to contrast
connectivity measures obtained in two different experimental con-
ditions (see for example ( Fell et al., 2001 ; Sehatpour et al., 2008 )),
or before and after an event of interest. In that case, the artificial in-
flation of connectivity is included in the comparison. Note that this
solution assumes that the common component increases the connec-
tivity measure similarly in the two conditions, or before and after the
event of interest. As this assumption cannot be tested, results should
be interpreted with caution and this potential pitfall of the analysis
should be stated in the reporting. 

• Stationarity is one of the assumptions underlying the computation
of connectivity over time or trials. When it is plausible that some
jitter introduces variability, it can be critical to temporally re-align
the data to the feature at the origin of the jitter. For instance, if an
increase of phase synchronization is due to motor preparation, align-
ing the trials to the response times makes the phase synchronization
visible, which otherwise may be absent if the trials are aligned to
the stimulus onset (e.g., ( Mercier et al. 2015 )). 

• Both magnitude-based and phase-based connectivity measures are
affected by SNR. In practice, the connectivity measure between two
signals decreases when one of them is contaminated by strong noise,
but increases if both signals are contaminated by the same noise
source. Typically, we recommend comparing connectivity measures
between conditions with similar SNR. One way to estimate SNR is
to compute a variance estimate for each signal (see Section 4.2.2 ). 

• Similarly, connectivity measures are dependent on the number of
trials used in the computation. For instance, if there are fewer trials
in one condition, the connectivity estimate is likely more biased as
compared to another condition with more trials. Similar to phase
quantification (see Section 4.3.3.6 ), here we recommend using the
same amount of trials to compute the connectivity measure for two
conditions that are to be compared. This is easily done by randomly
drawing a subsection of trials, based on the lowest number of trials
between conditions. 

• Removing instantaneous interaction to circumvent passive volume
conduction discards genuine in-phase or anti-phase interactions (i.e.,
at an angle of 0 or 180 degrees). To assess instantaneous interaction
some controls exist, such as comparing between conditions (which
assumes that passive volume conduction is identical between con-
ditions), cross frequency comparisons as passive volume conduction
is not entirely frequency specific (i.e., if an effect is not frequency
specific it can be due to broadband passive volume conduction), or
the use of a partial connectivity measure. 

• When applying directed connectivity measure, special consideration
should be taken regarding (pre)processing steps (e.g., artifact re-
moval, re-referencing or filtering) as they can lead to causal artifacts
by introducing temporal correlation or disrupting time series (see for
further details ( Florin et al., 2010 ; Seth, 2010 )). 



M.R. Mercier, A.-S. Dubarry, F. Tadel et al. NeuroImage 260 (2022) 119438 

 

 

 

4

 

t  

(  

a  

i  

W  

d  

a  

s  

c  

S  

t  

p  

F  

p  

t  

u  

b  

p  

s  

g  

(  

i  

d  

A  

g

4

 

a  

o  

w  

n  

p  

o  

(  

t

4

4

 

a  

g  

(  

s  

b  

f  

i  

v  

o  

f  

l  

f  

o  

w  

p  

a  

A  

p  

n  

fl  

2  

h  

c  

W  

t  

s  

c  

C  

o  

i  

F  

4

 

p  

c  

t  

s  

T  

d  

i  

i  

l  

d  

e  

a  

t  

h  

2

5

5

 

c  

M  

a  

b  

c  

fi  

a  

c  

g  

v  

i  

r  

c  

S
 

s  

i  

r  

o  

p  

r  

t  

l  

t  

s  

e

• Some causal inference often hypothesizes ideal unidirectional inter-
actions while many network connections are bidirectional. Also, di-
rected connectivity measurement should be performed in both di-
rections to be able to assess cross-talk between signals. 

.4.5. Data visualization 

The result of a complete bivariate connectivity analysis is a graph, in
he sense of a mathematical structure used to model pairwise relations
i.e. graph theory approach). With bivariate connectivity measure, such
 graph quantifies the strength of the connections ( “edges ”) between
EEG channels ( “nodes ”) used to compute the connectivity measure.

here functional connectivity provides only a global measure (i.e., non-
irectional) for each pair of nodes, effective connectivity also provides
 directionality for those connections. Graph theoretical measures can
ubsequently be used to characterize properties of brain interaction ar-
hitecture at the network level ( Bassett and Sporns, 2017 ; Bullmore and
porns, 2012 ; Sporns and Betzel, 2016 ). From a visualization perspec-
ive, rather than depicting connectivity measure results as “a spaghetti
lot ”, graph theory is an efficient way to sum up connectivity results.
or instance, graph theory measures allow defining local/central hubs,
ath redundancies or time-dependent organization. One obvious limita-
ion of iEEG is the sparse spatial sampling in single individuals. A global
nderstanding of brain-level networks can therefore only be achieved
y combining the connectivity measure graphs over a large number of
articipants (see as an example ( Betzel et al., 2019 )). Yet, another con-
traint relates to the localization of the electrodes. Either, because the
ranularity of some parcel(s) may exceed the spatial specificity of iEEG,
i.e., channels with different response profiles are projected and grouped
nto a wide parcel); or because some electrodes can be surrounded by
ifferent tissues which obscure spatial specificity (e.g., white matter).
s such, limitations should be acknowledged when drawing a network-
raph and when computing some graph metrics. 

.4.6. Statistical consideration 

Considering the rich repertoire of methods to compute functional
nd effective connectivity, one obvious pitfall is to “try them all ” until
ne provides “interesting ” results that are consistent with the ongoing
orking hypothesis. Good research practices dictate to also report all
egative results, as (i) the multiplication of attempts was part of the
erformed research, (ii) negative results provide insights about the type
f connectivity measure supporting the studied cognitive process, and
iii) repetition of assessments has to be taken into account in the statis-
ics (i.e multiple comparison problem). 

.5. Cross-frequency coupling analysis 

.5.1. Background 

Because iEEG offers both high temporal and spatial specificity,
dvanced iEEG analysis faces a multiscale challenge that is to inte-
rate neural activity across different temporal and/or spatial scales
 Engel et al., 2013 ). For instance, many iEEG studies analyze and report
eparately task-related effects in different frequency bands (theta, alpha,
eta, gamma), which might (mis)leadingly indicate that the different
requency components of iEEG signals are categorical and functionally
ndependent from each other. Cross-frequency coupling (CFC) was de-
eloped to assess relationships between frequency bands, either locally
r over some distance (i.e., CFC computed between electrodes). It of-
ers a methodological framework that can bridge local computation and
ong-range functional connectivity. To assess the local hierarchy across
requency bands or the efficacy of communication on the modulation
f local neural activity ( Hyafil et al., 2015 ), four main CFC sketches
ere proposed ( Jensen and Colgin, 2007 ): power to power, phase to
hase (Palva et al., Siegel et al), phase to frequency ( Colgin et al., 2009 )
nd phase to amplitude ( Canolty et al., 2006 ). Among those, Phase
34 
mplitude Coupling (PAC) has attracted attention due to a plausible
hysiological mechanism with the phase of low frequencies reflecting
eural excitability and the magnitude or power of high frequencies re-
ecting local neural activity ( Canolty and Knight, 2010 ; Jacobs et al.,
007 ; Rutishauser et al., 2010 ). PAC has been proposed to represent a
ierarchy across oscillatory activity ( Lakatos et al., 2005 ), leading to
ompelling neuronal computation such as phase coding ( Lisman, 2005 ;
atrous et al., 2015 ). In this framework, the dynamic of interaction be-

ween frequencies represents how oscillations emerge from the intrin-
ic local activity or are imposed by another network. Altogether CFC
an be computed at an electrode as well as between electrodes, making
FC a connectivity measure integrating time and space. Several meth-
ds exist to compute CFC that have been reviewed and compared in
nstructive publications ( Canolty et al., 2012 ; Cohen, 2017 ; Dvorak and
enton, 2014 ; Miller et al., 2012 ; Penny et al., 2008 ; Tort et al., 2010 ).

.5.2. Challenges, recommendations and reporting advice 

The estimation and correct interpretation of cross-frequency cou-
ling faces multiple methodological challenges and requires thorough
ontrols in the analysis ( Aru et al., 2015 ). For instance, nonstationari-
ies in the signal, due to spectral correlations (i.e., harmonics), introduce
purious cross-frequencies coupling ( Lozano-Soldevilla et al., 2016 ).
his can be due to the non-sinusoidal morphology of the periodic signals
ue to sharp signal edges or asymmetrical waveforms, or due to filter-
ng ( Kramer and Eden, 2013 ; Scheffer-Teixeira and Tort, 2016 ). There
s growing evidence that these non-sinusoidal morphologies are physio-
ogical ( Cole and Voytek, 2017 ; Sherman et al., 2016 ) and are altered in
isease states, such as Parkinson’s disease, which can manifest as appar-
nt CFC ( Cole et al., 2017 ). Because of this, it is recommended that CFC
nalyses be complemented by time-domain approaches that can quan-
ify these non-sinusoidal morphologies ( Cole and Voytek, 2019 ) and to
elp better identify multi-rhythm CFC from apparent CFC ( Vaz et al.,
017 ). 

. Statistics 

.1. Introduction 

When interpreting iEEG signal analysis and/or testing the signifi-
ance of a research hypothesis, most statistical methods are shared with
/EEG. However, iEEG is remarkable for its (i) high SNR and (ii) sparse

nd variable spatial sampling across participants, which leads to a num-
er of particularities in the statistical approach that we address in this
hapter. First, the combination of the high SNR and high spatial speci-
city substantiate iEEG observation(s) established in a single participant
nd value the publication of single case studies (as compared with single
ase M/EEG study conducted in a healthy participant). Second, when a
roup of participants is considered to generalize results, the sparse and
ariable sampling requires defining some equivalence between record-
ng sites, which may or not be defined a priori (i.e., hypothesis driven
egion of interest (ROI)). This equivalence relies on the electrode lo-
alization and related anatomical/spatial normalization processes (see
ection 2 ). 

No consensus has emerged within the iEEG community regarding a
tandard statistical procedure, yet from the various practices described
n the literature, two issues stand out that we will address: the type of
esearch conducted (hypothesis driven vs. exploratory) and the number
f participants. In the following, prior to moving into the specific as-
ects of iEEG, we first provide a general reflection on how the type of
esearch relates to the particularities of statistics in iEEG. Second, from
he literature we review the spectrum of approaches, we posit the chal-
enge of generalizing findings from one or multiple iEEG participants
o the population, and stress the importance of relating group analy-
is to individual analysis. Finally, we present concrete ways to combine
lectrodes over multiple participants. 
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Fig. 14. Distinction and interaction between prediction, i.e., hypothesis based confirmatory research, and postdiction or exploratory research. 
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.2. Exploratory versus hypothesis-driven research 

Dictated by the clinical dimension of iEEG (epilepsy prevalence, sur-
ical planning, selection of participants...), the sparse spatial sampling
nd multiple comparison problem often motivates researchers to define
OIs, as is typical in fMRI research. Only electrodes placed in the cho-
en area(s) are investigated and participants without electrodes in these
OIs are excluded. Conversely, other investigations are conducted on

he whole brain without any prior regions of interest; in these cases all
lectrodes available in all participants are investigated. These practices
eflect two general scientific research approaches: hypothesis-driven
nd exploratory ( Fig. 14 ). In this section, after elaborating on these con-
epts, we put them in perspective within the framework of iEEG research
nd related statistical considerations. 

.2.1. The types of research conducted 

Scientific research is based on a fundamental dissociation between
xploratory research (a.k.a postdiction) and hypothesis-driven research
a.k.a. prediction). Discoveries stem from data-driven exploratory re-
earch that makes few, if any, prior assumptions. The investigation
ims to make observations, build a model from these observations, and
enerate new questions and hypotheses. Next, the hypotheses or mod-
ls have to be empirically tested according to a dedicated protocol.
ere comes the hypothesis-driven approach, where the investigation

s planned prior to observing a newly acquired dataset. The hypoth-
sis/model that was stated beforehand is validated (or not) based on
he data, and can be accepted or (partially) rejected and modified (see
ig. 14 ). 

It is often the case that during a hypothesis-driven study, some ex-
loration also happens, as the researcher might notice an interesting
attern that warrants investigation in a follow-up study. It is gener-
lly admitted that scientific knowledge builds on this recursive loop
etween prediction and postdiction ( Nosek et al., 2018 ), but the dis-
inction is not always explicitly made. The need for a critical distinction
as recently attracted attention in the field of cognitive neuroscience, as
ixing the two types of research lies at the roots of circular reasoning

 Kriegeskorte et al., 2009 ), post-hoc theorizing ( Kerr, 1998 ) and other
ognitive biases that impact good research practices, reproducibility and
cientific credibility. 
35 
Acknowledging the distinction between exploratory and hypothesis-
riven research is important at the onset of any research project: 

– Within the multidisciplinary iEEG research team that contributes dif-
ferent perspectives to a project: When a research proposal is dis-
cussed, the research type (exploratory or hypothesis-driven) should
be explicitly stated. “Work in progress ” meetings are propitious to
verify that the project remains aligned with the initial plan, or to
identify that an initially hypothesis-driven project turns into or leads
to an exploratory project. 

– Within the framework of preregistered study: In recent years, with
the aim to tackle the replication crisis and to recognize the foun-
dation of hypothesis-driven research, registered reports were im-
plemented to distinguish a priori planned analysis from unplanned
or post-hoc analyses. Among others fostered by the Open-Science
Framework (see 18 ), the principle relies on depositing or pre-
registering a manuscript that details the hypotheses, methods, and
planned analysis of a study prior to it being conducted. Several cog-
nitive neuroscience journals have implemented the format of prereg-
istered articles: after review and in principle acceptance, the study
protocol is registered as a manuscript and data can be collected; fol-
lowing analysis, the report with the results is submitted to the same
journal and is subjected to a reviewing process that does not focus
on the outcomes but only on it adhering to the preregistration (for
a guideline see ( Paul et al., 2021 )). This style of work is particularly
suited for hypothesis-driven iEEG research, considering the time it
can take to record data from a sufficiently large group of patients. 

Because of the sparse spatial sampling combined with the high speci-
city and the high sensitivity, iEEG data is more prone to be explored at
he individual participant level (c.f., the seminal work by ( Penfield and
asmussen, 1950 )). Even if only a few electrodes are localized consis-

ently in a handful of iEEG participants, their investigation can never-
heless result in serendipitous findings. In contrast to iEEG, M/EEG data
rom a single research participant often has a SNR that is too low to
raw clear inferences and consequently M/EEG data is commonly ac-

https://osf.io/
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uired for a group of participants in well-controlled hypothesis-driven
esearch. 

At the larger scale, science advances through the alternation of ex-
loratory and hypothesis-driven research; something that can be ex-
loited within a single study using a cross-validation procedure that
issociates the two research types. Using a first (pilot) dataset that is
lready acquired, its exploratory analysis provides a hypothesis that is
ubsequently tested on a second dataset that remains to be recorded,
r that is recorded but not yet analyzed (here the pilot dataset is
ot to be included in the subsequent analysis). Analyzing pilot data
rior to the acquisition of the remaining dataset allows some time
o get a similar electrode placement for the remaining dataset. As
uch, the reported choice of predefined ROI prevents circular analy-
is. The second dataset validates the hypothesis generated by the ex-
loration of the first dataset. This procedure can be adapted when
he dataset for an entire group is already available by simply split-
ing participants into an exploratory and validation group. Then, data
rom the validation cohort is held out from the initial analysis (per-
ormed on the exploratory cohort) and is used solely to validate the
ypothesis/model. 

This dichotomy, or perspective, is fundamental considering the gen-
ral context of iEEG research, which is prone to selection bias (see
ections 1.2.5 and 1.3.3 ). The limited recording time with the partic-
pant and the richness of the data often motivate the use of anatomical
nd/or functional criteria to select participants and/or electrodes. Typi-
ally, this choice can stem from the anatomical location of the electrodes
nd/or the working hypothesis guided by independent data collected
rom the same patients (e.g., fMRI performed prior to the implanta-
ion) or by the literature (e.g., ( Lachaux et al., 2006 ) where ROIs are
efined based on independent MRI studies). The decision to record a
iven protocol in a specific patient can also be motivated by the func-
ional response to a ‘localizer’ (see Section 1.2.4 ). In the case of complex
nalysis leading to a large amount of data (e.g., directed connectivity),
 subset of electrodes can be selected on the basis of their signal features
etermined beforehand (e.g., by contrasting conditions, by using para-
etric regression or by using an informed spatial filter). In any case, it

s a good research practice to document the choice of ROI to avoid a
election bias in the interpretation of the results. Conversely, if a proto-
ol is run after checking that there was some response to the paradigm,
he absence of acknowledgment in the recruitment would lead to cir-
ular reasoning: results are seen because it was known that they were
here. 

.2.2. Descriptive statistics and inferential statistics 

Although not systematic in practice, the two types of research are
ommonly associated with different statistical approaches: exploratory
esearch mainly relies on descriptive statistics, and hypothesis-driven
esearch requires inferential statistics. Descriptive statistics summarize
uantitative measures of the data, such as the central tendency (e.g.,
ean or median) along with measures of dispersion (e.g., variance, me-
ian absolute deviation, quantiles). As in M/EEG, the descriptive metrics
re valuable to data visualization, whereas inferential analysis is com-
only based on null-hypothesis significance testing ( Pernet, 2016 ) or
ecision-making, where the p-value cannot exist without a hypothesis.
ome hypotheses are phrased prior to looking at the data, some after
ooking at the data. In the latter case, the researcher is not controlling
he potential errors in the inferential decision. 

Although the focus is often on the resulting p-value and the binary
ecision of significance, it is a good research practice to further provide
he magnitude of the effect (i.e., effect size) and its precision (i.e., confi-
ence interval) ( Groppe, 2017 ). These measures are complementary to
ignificance testing, as they set the weight on a quantitative dimension
f the inference: how large (effect size) and how certain (interval esti-
ate) it is. In addition to bringing a different view to interpreting the
ata, they permit better inference: by avoiding over confident claims
rom inadequate samples and improving comparisons of results ( Calin-
36 
ageman and Cumming, 2019 ). Last, the effect size estimate grounds
umulative evidence and permits meta-analysis. For these reasons, com-
uting and reporting effect size and confidence intervals are now being
dopted in scientific journals ( Bernard, 2019 ). 

.2.3. Challenges, recommendations and reporting advice 
• We recommend documenting the progress of the iEEG project to

keep track of its evolution and track the changes from the original
plan. Starting with the rationale of the conducted research and the
anticipated analysis/result; then the recording of participants and
eventual selection; the analysis conducted with the unanticipated
adaptation such as new ROIs; all the results found, even the unex-
pected ones. This strategy helps to distinguish when some part of the
project departs (e.g., from hypothesis-driven to exploratory analysis)
or when some new information comes into play and influences deci-
sions (e.g., feed-back from a colleague regarding another experiment
run on the same participants). 

• Papers reporting the results of iEEG studies should explicitly state
in their introduction which a priori hypotheses will be tested (if
any), whether post-hoc hypotheses will be tested, and whether re-
sults from exploratory analysis will be reported. 

• In ROI studies, sites outside the ROI might implicitly be considered as
not showing the effect under investigation. Whether this conclusion
can be drawn depends on whether those other regions were actually
tested. To avoid an incorrect interpretation of the reported results,
we recommend explicitly stating whether sites not included in the
ROIs were tested and, in the case they were tested, to report the cor-
responding results (i.e., the non-ROI sites showing and not showing
the effect of interest). While it could be argued that in hypothesis-
driven ROI studies, sites outside the ROI relate to exploratory analy-
sis, the use of a "negative-control" ROI allows showing that the effect
is ROI-selective. To that aim, we recommend systematically select-
ing a "negative-control" ROI to verify the spatial specificity of the
result(s) (i.e., by testing for a ROI x condition interaction). 

• Assessing a statistical difference between conditions must be done
directly on the data from the two conditions, without corrections
or normalizations that would reduce sensitivity or that would cause
effects to appear differently. For instance, baseline correcting time-
frequency analyses can hide differences present in the baseline win-
dow and make them appear in the post-stimulus window. 

• Assumption of statistical tests should be tested and reported (for
guidance see ( Wilcox and Rousselet, 2018 )). For instance, paramet-
ric tests require verifying the type of distribution; in many cases they
are not suitable for phase analysis (e.g., phase consistency across
trials, due to the asymmetry and the bounds of the measure, see
Section 4.3.2 and 4.3.3 ). 

• When an iEEG study is published, we recommend sharing analy-
sis code and making data available (conditional on the participants’
consent, see Section 1.4.8 ). The reuse of data is valuable for repli-
cation purposes and for extending previously reported findings. It
should be acknowledged that data sharing might come with some
hidden risks: the multiplication of statistical tests and double dip-
ping / circular reasoning. When the same data is re-analyzed, some
tests are repeated without correction for multiple comparisons and
with an inflated risk of false positives. Knowing what to look for
can influence analysis processes in order to find again the initially
postulated effect. To reduce these risks, we recommend in follow-up
studies to take previous analyses into account. 

.3. The spectrum of practices 

The literature of iEEG research describes a wide spectrum of prac-
ices, ranging from single case studies to investigations that include sev-
ral tens of participants. Consequently, there are a myriad of statisti-
al approaches. The scientific aims of a particular study but also the
ractical opportunities influence which path is chosen: either strongly
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onservative or more liberal. For instance, a clinically oriented study
n a single patient going for surgical brain resection necessitates other
isk/benefit considerations than a study that aims to generalize a cor-
elation between cognition and brain activity to the healthy popula-
ion. iEEG research practices can be considered from the perspective
f quality (e.g., a single case is scrutinized or an investigation of a
roup with a very specific focus) or quantity (e.g., a big-data approach)
see ( Tibon et al., 2022 ) for further discussion on small versus large
cale studies and its implications for the interpretation of research
ndings). 

From the perspective of an ideal neuroscientific or cognitive exper-
mental design, the researcher would like to have a large group of par-
icipants (i.e., “N = many ”) with largely consistent recordings, to be able
o draw inferences that generalize to the population rather than being
imited to the small sample. However, as the researcher is dealing with
atients, it can also happen that recordings are only available in a single
atient; these findings can still be shared as a single case (i.e., “N = 1 ”)
eport. Finally, it can happen due to limited participant/patient avail-
bility, clinical or other experimental constraints that the sample size
s larger than one, but not large enough to consider it a proper group
tudy. In the following, we summarize the spectrum of practices (or-
ered by the number of participants) and underline their strengths and
eaknesses. 

.3.1. Single case studies 

The format of single case reports is historically linked to clinical
ractice, where the singularity of a medical case is reported to the com-
unity, pending replication. Single case reports in iEEG permit to pro-

ide, and/or to take into account, numerous peculiarities of the individ-
al beyond its status of patient. It can be motivated by the rareness
f electrodes placement and/or electrode type (e.g., prototype used
n ( Saleh et al., 2010 )), the rareness of the patient’s specific skill set
e.g., a case study in a musician with iEEG electrodes ( Martin et al.,
018 )), the richness of the data available for the same participant
e.g., longitudinal study, PET, fMRI, electro-cortical stimulation, e.g.,
 Bruns and Eckhorn, 2004 ; Mégevand et al., 2014 ; Schippers et al.,
021 )) or the wish to focus on the applicability/relevance of a se-
ies of methods applied on the human brain ( Brovelli et al., 2005 ;
oses et al., 2021 ). 

From the perspective of cognitive neuroscience studies, the analy-
is is performed on multiple trials and eventually validated through a
est-retest procedure across two distinct datasets (for a discussion on
nter-individual variability see ( Jeffery et al., 2018 )). While supported
t the individual level by iEEG sensitivity (i.e., SNR), the main limi-
ation of single case studies is the difficulty to generalize the result to
he population and the significance of a single case study is reached
hen converging evidence from multiple patients (with various etiolo-
ies or foci) assure some generalisability. Yet, a thorough investigation
f a single case permits to reach a high level of qualitative description,
otentially leading to a “black swan ” effect: an observation made for
he first time can lead to a breakthrough. Therefore, a single case study
ust be well documented (i.e., including with meta-data), to permit

oth replication and the re-use of the data in future meta-analyses (see
ecommandation in Section 1.4.8 ). 

.3.2. Multiple cases studies 

To generalize findings from an individual and thus establish common
eatures at the population level, the strategy of single case studies can
e repeated over multiple participants across which the same effect(s)
s (are) tested. Equivalence between participants’ recording sites is illus-
rated in every individual brain and/or determined in reference to a nor-
alized space (e.g., MNI) or an atlas (see Sections 2 and 5.4 ) and possi-

ly supplemented with some recorded functional response (see Sections
.2.4 and 5.3.3 ). There are two statistical approaches commonly used:
ither the analysis is performed and reported at the level of single par-
icipants (i.e., trials being the repeated measures) and the results cor-
37 
oborated, or the trials are pooled across participants to create a ‘meta’
articipant. 

The first approach resembles most non-human primate (NHP) stud-
es on old world monkeys, where often two individuals are used to
ross-validate results from data recorded over many sessions within
he same region in each individual. With human iEEG the number
f participants tends to be larger, but with more variation in the
lacement of electrodes. The large number of sessions in NHP stud-
es provide strong statistical power to individual data analyses. With
uman iEEG, time constraints do not allow recording a very large
mount of data and consequently the inferential or descriptive meta-
nalyses performed over the individual results can differ from that
f a NHP study. An option is to combine p-values across partici-
ants ( Demerath, 1949 ) ( Darlington and Hayes, 2000 ; Demerath, 1949 ;
isher, 1970 ; Whitlock, 2005 ). The different methods have been com-
ared ( Bailey and Gribskov, 1998 ; Heard and Rubin-Delanchy, 2018 ;
oughin, 2004 ; Manolov and Solanas, 2012 ; Winkler et al., 2016 ;
on et al., 2009 ) to highlight their characteristics (e.g., sensitivity,
ore or less conservative) and the prerequisites of their use (e.g., inde-
endence between the combined p -values). This approach for multiple
ases study presents the advantage of describing individuals as well as
ssessing the representativity of the findings across the participants (for
ritical discussion see Ince et al., 2022, and for examples see Lochy et
l., 2018, Rupp et al., 2022). 

In the second approach (i.e., the ‘meta’ participant), the trials from
ll participants are pooled and treated as if they were recorded from
ne participant. The statistic is similar to fixed-effect analysis, where
he true effect size is assumed to be the same across participants and
he only source of variation is presumed to be the measurement error.
s any source of variability across participants (e.g., the pattern of brain
esponse, the electrode localization, the number of trials per participant)
ould have a critical impact on the results, this ‘meta’ participant ap-
roach would require assessing the homogeneity across participants by
ooking at individual responses and at individual electrode locations be-
ore pooling all the data together. Critically, with this approach it fol-
ows that the inference is restricted to that population of participants.
herefore, this approach is no longer recommended in iEEG studies be-
ause it mixes intra-individual and inter-individual variance Null hy-
othesis significance testing can be performed within individual partic-
pants and then the prevalence of that effect in the population can be
nferred from the proportion of participants showing an effect, see the
ayesian method proposed by ( Ince et al., 2021 ). 

.3.3. Group studies 

In a group study, statistical analysis is performed at the population
evel like in M/EEG studies. The only difference relates to the set of chan-
els included in the analysis. Because electrode positions vary between
articipants, only electrodes with equivalent positions between partici-
ants shall be included in the analysis. Equivalence between electrodes
elies on individuals’ brain registration to a normalized space (which
hen might be used for labeling in the individual space, see Section 2 and
.4 ). Then electrode coordinates or brain parcels are used to aggregate
lectrodes and participants are considered as independent measures.
here, the statistic is similar to random-effect analysis, the true effect
ize is assumed to vary across participants, each representing a random
ample of effect sizes, and the sources of variation are measurement
rror and response magnitude over participants. It follows that the in-
erence is not restricted to that population. 

Group studies require a commitment to the assumed spatial scale at
hich electrodes can be grouped, e.g., an anatomically defined ROI,
hich almost inevitably sacrifices spatial specificity that is available
n the single participant level (see below). They critically rely on
he procedure used to aggregate electrodes across participants (Rev-
ll et al., 2022). Hence, group studies may be considered less de-
ailed as compared to the multiple cases approach. Here, we there-
ore also recommend providing quantitative estimates to assess the
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imilarity/variability across participants within the assumed spatial
cale (e.g., as in Fig. 15 from the free software HiBoP 19 , also avail-
ble as an online platform 

20 , or in the MIA software ( Dubarry et al.
022 )). Other approaches support both fixed- and random-effect mod-
ls to take into account inter-individual variability (e.g., Frites 21 toolbox
 Combrisson et al., 2021 ), see also Section 6.9.1 )). 

.3.4. Insights about the necessary number of participants 

In cognitive neuroscience, a good practice consists in establishing
 priori how many participants should be included in a study to sup-
ort an exploratory study or to obtain a specific statistical power in
 hypothesis-driven study. Similarly to M/EEG studies, a power analy-
is (and forthcoming result robustness) is more difficult when there are
any different analytical measures, each coming with different effect

izes that may vary between frequencies, regions, etc., which becomes
ore complicated if several of these measures are combined. In iEEG,

he complexity of the answer stems from the association of four aspects
f iEEG: the SNR, the spatial specificity, the spatial sparsity of the sam-
ling that is variable across patients and the possible pathological phys-
ology. 

Concretely, iEEG is so spatially specific that it is not rare to observe
 task-induced response pattern on one recording site that is absent at a
eighboring site just a few millimeters away. Considering the high SNR,
he effect on that electrode can outclass the criteria for significance with
oth a large effect size and a high confidence interval by several orders
f magnitude. With such an effect that is clear in that participant, the
uestion is then whether it generalizes to other participants and toward
he population. iEEG research also needs to deal with the complexity re-
ated to the precise anatomy. Interpreting results at the group level and
eneralizing to the population implies defining the homology of brain
egions and reporting phenomena at a scale that is coarser than that of
he individuals’ observations, similar as it is for instance done in EEG
o report on a specific ERP component such as a P300 at a specific elec-
rode and latency. Yet, one should keep in mind that the validity of the
implification depends on the granularity of the anatomical parcellation
hat is used. This can be compared to smoothing of data along other di-
ensions: too little smoothing highlights the interindividual variability
hich then might be interpreted as noise, whereas too much smoothing
ashes out the effects (Revell et al., 2022). The right level of smoothness

s an empirical question: establishing the relationship between anatomy
nd function with iEEG implies a detailed participant-level anatomical
nvestigation, and to go back-and-forth between group-level and indi-
idual analysis (even when many participants have been recorded). 

Because the electrode positions are variable across patients, record-
ng at sufficiently similar locations in multiple participants requires
nough participants and hence time to collect the complete dataset.
hether a sufficiently large sample can be collected depends on whether

hat particular cortical location is frequently targeted by intracranial
urgery. The feasibility to acquire data from identical electrode loca-
ions is further reduced when studying coupling between cortical areas,
s in that case both electrodes comprising a pair need to be consistently
ocated. Thus, in some cases, it may seem unreasonable to expect iEEG
tudies to display perfectly identical functional responses in more than
 few participants. However, the association of high specificity and high
ensitivity legitimates iEEG findings from a (few) participant(s), which
an be reported as case(s) study (i.e., with a number of participants that
ould not be endorsed in M/EEG). 

Last, because iEEG relies on the recording of a brain with epilepic
ctivity, a frequent criticism states that no iEEG study can ever claim
hat its conclusion is a general property of the healthy human brain. To
ssert that an observation is not incidental and/or due to the medical
19 https://github.com/hbp-HiBoP/HiBoP 
20 https://www.humanbrainproject.eu/en/medicine/human-intracerebral- 
eg-platform/ 
21 https://brainets.github.io/frites/index.html# 

 

 

 

 

 

 

38 
ondition of the participant, it is at least necessary to show that the
ffect of interest is not particular to one patient, with a particular type of
pilepsy or cortical (re)configuration. In this case, two participants with
ompletely different epileptic profiles are a primer to generalization. In
act, the replication in two participants echoes the requirements of NHP
lectrophysiological studies, which often report results obtained in two
pecimens (this comparison is further bolstered by the LFP analogy).
eyond two participants, replication across more participants is then
more convincing ” that the results are replicable. That is, it increases the
ikelihood that if other researchers record from the exact same cortical
ocation in the same paradigm, they will observe the reported effect. For
hat reason, in order to guide the interpretation and inform robustness,
e recommend always reporting the number of participants recorded in

he exact same region and showing / not showing the effect of interest.
dditionally, comparing behavior between patients and healthy controls
an serve as a check whether the observed brain activity correlated with
his behavior is likely to reflect the normal function of the brain area(s)
nder study. 

.3.5. Challenges, recommendations and reporting advice 
• The review of the spectrum of practices shows a gradation from ob-

servation made at the single participant level to group studies allow-
ing generalization to the population. With the recent rise of open-
data, it has become easier for a researcher to complement data of
a single case with data published by another researcher, facilitating
replication to scale up findings to multiple cases or even to gener-
alize from a group. Good iEEG practices must favor the prerequisite
for combining knowledge. For that reason we recommend always
preparing iEEG data so that any single participant can be added with-
out further effort in a larger study (even if it might at first be intended
as a single case report). Information needed to aggregate electrodes
across participants (i.e., individual MRI and electrode coordinates)
must be accessible to allow future use of the data (see Section 1.4.8 ).

• Combining data (e.g., across research centers) does not necessarily
imply improving statistical power or result robustness. The corner-
stone is the harmonization of approaches between centers (e.g., in
data acquisition, preprocessing and use of complementary informa-
tion): it can be more effective to combine a small number of high
quality datasets than to use all available data sets (see the con-
text of non-human primate neuroimaging, Autio et al., NeuroImage
2021). 

• We recommend always including detailed information about indi-
vidual participants when possible: (i) the implantation schemes, (ii)
seizure onset zone, (iii) handedness, (iv) type of epilepsy, (v) possible
brain lesion, malformation or previous resection, (vi) neuropsycho-
logical impairments, (vii) post-implantation status (e.g., seizure-free
after resection). 

• Given iEEG sensitivity and specificity (i.e., high SNR and spatial
specificity), a finding that is not significant at the group level but
that is replicated in a subset of the participants can be a serendipi-
tous finding and therefore worth reporting as a non-significant ob-
servation of interest. 

• Some statistical approaches (e.g., combining p-values or correcting
for multiple comparisons) imply some prerequisite(s) such as the
(in)dependence of the measures (e.g., iEEG channels). Data’s pre-
requisite(s) inherent to the use of a given statistical method should
be explicitly stated. 

• Although correction for multiple comparisons is required to con-
trol the number of false positives (type-I errors), there is currently
no good way to deal with how type-II error rates are affected by
the spatial sparsity (e.g., the density of surrounding contacts be-
ing different for each brain location), the difference between work-
ing with a volume-based or a surface-based approach and the re-
lated dependence between electrodes. Acknowledging the poten-
tial limit of the statistical approach and providing related infor-

https://github.com/hbp-HiBoP/HiBoP
https://www.humanbrainproject.eu/en/medicine/human-intracerebral-eeg-platform/
https://brainets.github.io/frites/index.html\043
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Fig. 15. Combining group-level and patient-level anatomical analysis. 
Group-level functional activations show HFA response components at specific latencies. This allows the definition of a Region of Interest (ROI) for further investigation. 
Panel A shows a strong group-level (n = 67) HFA response in the basal temporal cortex 400 ms after the display of a written word during a reading task contrasting 
attended vs. ignored words. Panel B shows a group representation of all iEEG sites in the ROI in the left temporal lobe (colored dots), across all patients. Subsequently, 
each site can be visualized onto a 3D representation of the corresponding individual brain (panel C), to understand how the strength of the response depends on its 
precise localization relative to specific individual anatomical landmarks, such as the lingual gyrus. Repeating the same procedure for all subjects and sites within the 
ROI leads to a detailed anatomical characterization of iEEG sites with a homogenous functional response (visualizations and analysis were made with HiBoP). 

39 
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mation should be part of the iEEG good practice to assist future
replication. 

.4. Combining recording sites across participants 

Combining data across participants implies expressing individual
articipants’ electrode locations in a space that is common for all par-
icipants (see Section 2 ) and consequently aggregating electrodes. This
rocedure faces two main challenges. The first challenge is the tailored
urgical placement of electrodes in each participant. The second chal-
enge is the variability in each individual’s brain anatomy and underly-
ng brain function. 

To combine data across participants, three main approaches are fol-
owed. The first relies only on spatial normalization, which can either
e volume based or surface based. It results in a table with the coor-
inates ([x y z] positions in mm) in a normalized space (e.g., MNI) for
ach electrode. In the second approach, the normalization is combined
ith a parcellation (atlas based or geometrically based), where the la-
els are mapped to the electrodes. It results in a table containing a list
f electrode names and corresponding labels (i.e., name of the parcel).
hese two approaches can be further complemented using functional in-
ormation (e.g., a localizer task). In the following sections, we describe
he different approaches and discuss their advantages and weaknesses,
specially regarding the challenges raised by individuals’ peculiarities. 

.4.1. Based on coordinates 

Once the brain and electrode locations of each participant are reg-
stered in a standardized space (e.g., MNI, see Section 2.3 ), the elec-
rodes with similar coordinates can be compared between participants.
 simple way is to aggregate electrodes based on their distances to each
ther. However, this approach neglects anatomical information, for in-
tance by aggregating electrodes located on two opposite sides of a sul-
us while not aggregating more distant electrodes lying on the same
yrus. To circumvent this issue, aggregating based on electrode coordi-
ates has been sometimes completed by considering broad anatomical
andmarks, such as cortical lobes or gyri (see next Section). That is to
ggregate electrodes close to each other and visually belonging to a ROI.
hile refined as compared to a pure distance-based approach, this alter-

ative often relies on a subjective appreciation of the ROIs which does
ot favor replicability and remains coarse, especially for those unini-
iated in brain anatomy. Nevertheless, working with electrode coordi-
ates facilitates comparison between studies, especially when it comes
o combining single cases. 

• In single case reports we recommend providing electrode coordi-
nates in a normalized space (e.g., MNI, including the exact reference
template space and the procedure for normalization and electrode
mapping, see Section 2.3.2 ) to make further meta-analysis possible.
Electrode coordinates should ideally be complemented with a visu-
alization of their anatomical location in the individual’s brain. 

.4.2. Based on labels 

A finer and more objective means to combine electrodes across par-
icipants is to make use of a parcellation by aggregating electrodes be-
onging to the same parcel (see Sections 2.3 and 2.4 ). Parcellation can
ither be derived from an atlas projected on a template brain, or based
n a geometrical parcellation of a template brain. The parcels are then
efined by the parcellation granularity (i.e., the number and the size
f the parcels). When the parcellation is atlas-based, parcels are further
nformed by the atlas feature(s) (e.g., anatomical, functional). 

• For multiple case studies and group studies, we recommend aggre-
gating electrodes on the basis of the anatomical information defined
by a parcellation and to report all information regarding the proce-
dure applied to label the electrodes (i.e., registration, electrode map-
ping, parcellation reference and probabilistic approach, as described
in Section 2.4.2 ). Because there are more ways to define parcels than
40 
there are brain templates, aggregating electrodes using labels adds
variability in the literature (Revell et al., 2022). However, this ap-
proach relies better on brain anatomy than aggregating using coor-
dinates. 

.4.2.1. Atlas based. Registration of the individual’s space to a normal-
zed space allows the researcher to deal with electrode positions in both
he normalized space and the individual space. The transformation of
he electrodes from individual to normalized space maps the electrodes
o the related atlas parcellation(s); inversely, the transformation also
ermits mapping the atlas parcellation to a delineation of the individ-
al’s brain (see Section 2.3 and 2.4 ). In both cases, the electrode posi-
ions are labeled based on the parcellation and therefore can be aggre-
ated across participants. The two approaches lead to similar results as
oth approaches rely on the same transformation. The normalized space
s evidently convenient to visualize electrodes from different partici-
ants on the same template brain. However, there are two advantages
o going back to individual space. First, it offers the possibility to visu-
lly check that the atlas parcellation is correctly mapped and translated
nto the individual delineation. Individual peculiarity in brain anatomy
s not rare ( Zilles et al., 1997 ) and not always well handled by regis-
ration algorithms. For instance, Heschl’s gyrus is duplicated in a large
ortion of the healthy population ( Marie et al., 2015 ). Second, visualiz-
ng electrodes in their original individual space facilitates evaluating if
n electrode is fully or partly belonging to a given parcel. Third, a sig-
ificant subset of participants may have brain anomalies which might
ot be well handled by normalization algorithm and need to be visually
hecked (see Section 2.3.2 ) 

To map ECoG electrodes, we recommend working with the tissue de-
cribed as a mesh (i.e., surface) because grids/strips lie on the surface of
he cortex. In practice, when an ECoG strip is inserted between the two
emispheres, working with a surface takes into account the fact that the
trip of electrodes are only facing one hemisphere. This type of mapping
s less suitable for sEEG because these depth electrodes are located in-
ide the brain, therefore the tissue must be described as a volume (i.e.,
oxels). An sEEG electrode records activity from the various cortical lo-
ations in its 3D vicinity, therefore it is not recommended to project
t to one point (or one parcel) of the cortical surface (e.g., located be-
ween two sulci, an electrode records activity from both of them). Last,
ome sEEG shafts penetrate the cortical sheet to target deep subcortical
tructure(s). Because volume-based mapping relies on volume deforma-
ion of the whole brain (i.e., not only on the cortex but also subcortical
egions), it is more appropriate for mapping sEEG electrodes on a tem-
late brain and for labeling sEEG electrodes (see recommendations in
ections 2.4.2 and 2.5 ). 

Electrode localization implies some uncertainty inherent to the pro-
edure itself (see Section 2 ). To take into account this uncertainty and
he fact that the surface or the volume of an electrode (respectively,
n ECoG and in sEEG) can span more than one parcel of an atlas, we
ncourage the use of a probabilistic approach in electrode labeling to
uide the aggregating of electrodes (see Sections 2.4.2 and 5.4.4 ). 

.4.2.2. Geometrically defined. Prior to the development and
idespread availability of digital atlases, iEEG researchers used to
elineate an individual’s brain and to combine recording sites manually
 Allison et al., 1994 ; Halgren et al., 1994 ; McCarthy et al., 1995 ;
uce et al., 1999 ). For instance, electrodes located in/over the gyrus
nterior to the central sulcus were labeled ‘motor cortex’, while the
nes in/over the gyrus posterior to the central sulcus were labeled ‘so-
atosensory cortex’. This precise but tedious hand-made labeling was

uided by human brain anatomy atlases such as that of Talairach and
ournoux (1988) or Brodmann Korbinian (1909) . With the digital era,
utomation led to a faster labeling procedure, but possibly also to an
verconfidence in the automated results. This becomes more striking
hen the spatial precision of the electrodes is at a scale that does not
atch the atlas. First, when an electrode is at the border of two parcels,
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 binary classification (e.g., this electrode belongs to parcel A but not
o parcel B) overlooks the approximation due to the individual’s brain
ormalization and overlooks the influence of local passive spread of
he signals (see probabilistic approach in Section 2.4.2 ). Second, the
ranularity of the atlas can vary with brain regions and depends on the
riginal atlas authors’ goals and data used to build the atlas. This may
ead to some brain regions that are more finely parcellated than others.
onsequently, parcels are not equal in size which makes some parcels
ore likely to be associated with the electrodes. 

To objectify geometrical structure homology, Trotta and colleagues
ame up with a solution example in the context of ECoG by defining iso-
etric surface-based parcels on the brain template to then adjust them

o the individual’s cortical anatomy ( Trotta et al., 2018 ). The sampling
f the standardized surface with parcels permits the investigator to es-
ablish a correspondence between sets of vertices across participants and
hus makes it possible to aggregate electrode data over parcels for com-
arison across participants. 

The method introduced by Trotta and colleagues highlights how dif-
cult it is to perform the aggregation of data across participants, and
specially the relation between mapping electrodes to parcels and the
assive signal spread that affects the spatial selectivity of the electrodes.
hen the cortical sheet is projected onto a sphere, two neighboring gyri

re further away as they are separated by the sulcus in between them,
hich misrepresents the actual distance between the gyri that is rele-
ant from the point of view of passive signal spread. Furthermore, this
ethod exemplifies the arbitrary spatial scale at which data is aggre-

ated (going from electrodes to parcels), allowing for flexibility in par-
el size. Combined with the uncertainty in electrode localization (e.g.,
n electrode that spans a sulcus can be assigned to two different gyri),
he spatial scale at which data is analyzed results in non-trivial conse-
uences for estimates of connectivity and for statistical analysis, as some
lectrodes may be assigned to two parcels whereas other electrodes are
nly assigned to a single parcel. Thus, practically it leads to dependency
etween some parcels, but not between some others (see Section 5.4.4 ).

.4.3. Based on a functional response or localizer 

From a functional perspective, even when electrodes are located at
 similar location, slight differences in brain folding and/or brain or-
anization may explain brain response variability across participants.
hen electrodes are combined across participants, some functional cor-

espondence is assumed or expected between electrodes. Yet, the risk of
ot examining the results from the single participant analysis is to over-
ook inter-participant functional differences within parcels and inter-
articipant functional similarities between parcels. The aggregation of
lectrodes can be functionally informed to take interindividual variabil-
ty in anatomy and functional organization into account. While aggre-
ating electrodes only on the basis of functional responses may not be
ppropriate, functional responses can complement the coordinate-based
r label-based aggregation. For instance, if two electrodes from two par-
icipants are localized at a distance of more than a few millimeters in
 standardized space or in neighboring parcels, they are unlikely to be
ggregated on the basis of their anatomical location. If they do show
he same response pattern (defined on neural activity or on iES result,
ee Section 1.2.4 ), it makes sense to aggregate them as their identical
esponse suggests their functional correspondence. 

However, this flexibility must come with precaution to avoid dou-
le dipping. Aggregating electrodes using functional responses should
ot be performed using the statistical effect of the response of interest,
ut to adjust an anatomically-informed aggregation (e.g., probabilistic
pproach in electrode labeling, see Section 2.4.2 ). Here, the use of an
ndependent or orthogonal functional localizer avoids such bias as the
unctional response is defined on a different set of data than the one
nvestigated. For instance, if the research question relates to face pro-
essing in the fusiform gyrus, running a functional localizer helps to
elect in each participant the electrode, located in the vicinity of the
usiform gyrus, that shows the highest SNR in response to faces. In any
41 
ase, when a functional response is used to aggregate electrodes, it has
o be reported. 

.4.4. Challenges, recommendations and reporting advice 
• In practice, we recommend making the most of the different ap-

proaches to aggregate electrodes across participants. 
– First, the aggregation must be based on anatomy as it is the

primary objective feature of electrode location. This step corre-
sponds to the labeling of the electrodes (either atlas parcellation
or geometric parcellation). 

– Second, for each participant the electrodes must be visualized in
individual space together with the individual’s delineation and
compared to electrode mapping in the normalized space with the
template brain delineation. This sanity check permits adjusting
electrode labeling to individual anatomical fine peculiarities and
to eventually correct the normalization (e.g., an electrode that is
located on a specific gyrus in single participant space, may end
up at the other side of a sulcus in normalized space). 

– Third, the adjustment can be guided thanks to a probabilistic ap-
proach in the labeling (see Section 2.4.2 ) and may be informed
by functional data that have to be orthogonal/independent to the
effect of interest. For instance, if an electrode is on the edge of
a parcel but its centroid is outside, it can be reasonable to incor-
porate this electrode to that parcel, especially if the response is
more similar to the ones observed in that parcel in other partici-
pants. 

• The granularity of a parcellation is critical when iEEG data is aggre-
gated across participants. The number of recorded participants being
limited, one can try to use wider regions/parcels which increases the
chance of matching electrode locations over participants. However,
as part of the iEEG signal is confined to a few millimeters, compil-
ing results in regions/parcels with larger size lessens its specificity.
Thus, the size of the ROI indicates how a given effect (e.g., brain
response) is highly focal or spans a wide region. More generally, we
recommend defining the level of granularity or the choice of an atlas
in link with the research question. 

• As epilepsy is more prevalent and epilepsy surgery more likely to
be successful in some regions (e.g., temporal lobe), electrode den-
sity varies over the brain making some regions/parcels more likely
to host electrodes and thus more likely used for analysis. Thus, in
iEEG, aggregating electrodes across participants faces sampling vari-
ability in spatially sparse data. That is, electrode density varies over
each participant’s brain and between participants, making partici-
pants unlikely to contribute equally to the group analysis. 
– We recommend considering the potential confounding effect of

having a different number of electrodes per parcel over partic-
ipants. These confounding effects depend on the quantification
of the effect, e.g., for ERPs averaged over electrodes there is no
amplitude bias, whereas such a bias can be present if non-linear
measures are applied. As with any selection of data points, if
some electrode(s) is (are) selected as representative of a given
parcel, it should be motivated by the research objective and re-
ported. Overall, such selection process introduces many degrees
of freedom (e.g., which possibly valuable data is thrown out)
and only applies to statistical scenarios where inter-electrode and
inter-participant variance cannot be separately accounted for.
However, using a nested model may in principle be enough to ac-
count for multiple electrodes per participant (see Section 6.9.1 ).

– In multiple case studies and in group studies, we also recommend
reporting the density of electrodes per region/parcel to inform
about the spatial sampling bias at the population level. This can
be achieved by depicting electrode distributions over the brain
with a color code to indicate which electrodes are aggregated to-
gether across participants (see also Section 2.5 ). If the electrode
density is different over different brain regions, that should be ac-
knowledged and reported, as the statistical results from a densely
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sampled region will be more robust and are more likely to be
representative of the population than those from poorly sampled
regions. 

– Conversely, in the case where electrodes from all participants
are considered together to create a ‘meta participant’ (as in a
multiple cases study, see Section 5.3.2 ), some disparity may arise
with some participants contributing more than others. While the
‘meta participant’ is not recommended, if this approach would
be followed it would require reporting the contribution of each
participant, for instance by plotting all electrodes in a normalized
space with a color code for each participant. 

• The variability of brain responses is part of the richness of iEEG data
and reflects differences in brain organization. We recommend visu-
alizing the individual response patterns when combining electrodes
across participants and to estimate the variance across the combined
response. As an example, slight variability in the placement of an
electrode within the active cortical area or the choice of the refer-
ence could result in an ERP polarity reversal across participants (see
Section 4.2.2 ). This illustrates the relevance of visualizing individual
data before averaging across individuals. 

• Parcels from the same participant are not independent for statisti-
cal purposes, and even less when the method used to combine elec-
trodes allows for redundancy (i.e., an electrode is mapped to dif-
ferent parcels). This lack of independence must be kept in mind for
statistical analysis, especially in the case of connectivity measures
as it introduces artificial correlation between parcels. Furthermore,
the dependence between parcels should be taken into account in the
choice of a method to combine p-values (see Section 5.3.2 ) or when
correcting for multiple comparisons ( Groppe et al., 2011 ). 

• As discussed in Section 2.5 , electrode projection should not be con-
fused with functional data interpolation. The projection of electrodes
permits linking recording sites to the anatomy, and combining sites
across participants. The interpolation of the functional outcomes of
the iEEG analysis is useful for visualization, yet it is not recom-
mended for grouping data across participants. 

.5. Data visualization 

• The graphical representation of the statistical results is at the
heart of good research practices as it conveys/summarizes both
the interpretation of the analysis and the quality of the assessment
( Rousselet et al., 2016 ). For that reason we recommend provid-
ing as much information as possible about the distribution (e.g.,
confidence intervals, individual/single trials data, in experimental
design with paired comparisons one should provide the distribu-
tion of pairwise differences; for an example see the figure 1 in
( Rousselet et al., 2016 ), for illustrations of statistical summaries see
( Wickham, 2016 ) 22 , for further discussion see ( Weissgerber et al.,
2015 )). Some of this functionality is available in the “R Analysis
and Visualization of iEEG" (RAVE) software (see the figure 4 in
( Magnotti, 2020 )) and in the MIA toolbox (see the figure 10 in
Dubarry et al. 2022 ). 

• The depiction of iEEG results as a volume or on the surface implies in
most cases an interpolation in space (otherwise the data is barely vis-
ible as it is limited to the single voxel corresponding to the electrode
centroid). The extent of that projection should take into account pas-
sive signal spread (see Section 2.4.2 ) and should be reported as it can
visually bias the representation of density-sparsity of the electrode
(see Sections 2.5 and 5.4.4 ). 

• When all patients from a group study have been combined in a nor-
malized space, we recommend going back-and-forth between the
global picture and its individual components. That is, to first ex-
plore the data/result in a 4D representation (i.e., space and time) to
22 https://ggplot2-book.org/statistical-summaries.html e
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reveal potential ROI and corresponding single electrodes, and then
zoom in on each individual’s response profile accompanied by the
individual’s localization (see Fig. 15 from the free software HiBoP 23 

available as an online platform 

24 , HiBoP is designed specifically to
combine group-level and single patient-level analysis). 

. Perspectives 

The previous sections of this article show the current state of iEEG re-
earch. In this section we present where we envision research in iEEG to
e in ten years from now. In the last decade, iEEG research progressed
n many ways, but the directions that were taken might not only be
he ones that were anticipated ten years ago. Inherited from the global
endency to set a parallel between scientific advancement and techni-
al/methodological progress, anticipations on iEEG progress commonly
end to overlook what can be done with what is already accessible.

hile it is certain that the use of new technologies energizes discov-
ries, achievements are also reached thanks to a better organization of
urrent resources ( Frith, 2020 ; Salo and Heikkinen, 2018 ; Stengers and
uecke, 2018 ). Also when it comes to envisaging the most promising

teps forward on the basis of what they were ten years ago, it is reason-
ble to assert that technology indirectly fuels iEEG research as much as
irectly (e.g., big data servers versus micro-electrodes). 

Probably the most remarkable advance of the last decade is the
pread of the use of iEEG for fundamental research. Together with
he multiplication of iEEG research centers, a multitude of tools have
een published and shared with the community. In the same vein, the
mergence of open science and the realization of its utility for both
he researcher and the common good had fostered the sharing of data
nd methods. Beside, while the use of new techniques such as micro-
lectrodes tends to be restricted to some specialized centers, it has
rought a cardinal perspective in cognitive neuroscience linking both
patial scales and investigations across species. 

.1. Strengthen patient-centered collaborative work 

In the next few years, the trend is likely to see a larger number of
enters implanting patients, which might reduce the number of patients
mplanted in some established centers. Yet, the overall number of pa-
ients participating in research is expected to continue to increase as
ell as the tendency to see the implantations being more individually-

ailored. Another tendency among current iEEG centers, pertains to a
ove from ECoG to sEEG, possibly due to the procedural morbidity of
CoG ( Jehi et al., 2021 ; Tandon et al., 2019 ). In the long run, a possible
cenario that must be envisaged is a decrease in the number of acutely
mplanted patients, thanks to improved diagnostics and treatment for
pilepsy. This positive medical perspective should motivate the storage
nd the sharing of structured data, to make the most out of the cur-
ent opportunity to directly record from the human brain (at least for
CoG data if it becomes rare). Concurrently, we may see an increase
n the use of chronic implants to complement, or replace, pharmaceuti-
al treatment; an approach which offers opportunities for longitudinal
ecordings ( Henin et al., 2019 ; Aghajan et al., 2017 ; Meisenhelter et al.,
019 ; Rao et al., 2017 ; Topalovic et al., 2020 ) and naturalistic neuro-
cience (see Section 6.5 ). These scenarios are more likely to occur if
ollaborative work is strengthened and if good practices are placed at
he heart of iEEG research. It follows that in the near future we expect
o see a more efficient use of the current iEEG resources at two lev-
ls: between research centers with an expansion to the Open Science
ramework, and within iEEG centers with more synergistic interactions
etween the clinic and the research ( Fig. 2 ). 
23 https://github.com/hbp-HiBoP/HiBoP 
24 https://www.humanbrainproject.eu/en/medicine/human-intracerebral- 
eg-platform/ 

https://ggplot2-book.org/statistical-summaries.html
https://github.com/hbp-HiBoP/HiBoP
https://www.humanbrainproject.eu/en/medicine/human-intracerebral-eeg-platform/
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n  
.2. Transparent reporting and data sharing 

The rationale for good research practices encompass a wide spectrum
f motives. On the one hand research is a common good supported by
ublic funding, which implies duties such as openness and credibility;
n the other hand scientific standards and publication guidelines force
s to be critical about what we do (McKiernan et al., 2010, Nosek et al.,
015). At minimum, good research practices include clear reporting as
ell as the sharing of data and analysis scripts to allow replication (i.e.,

he same results are found if the same data is analyzed the same way). 
Recent initiatives for reproducible M/EEG research promote good

ractices in reporting by defining recommendations and warning on is-
ues related to data analysis ( Keil et al., 2022 , ; Pernet et al., 2020 ). It
ight be argued that the high spatial sensitivity and high SNR of iEEG
ake iEEG results less dependent on the choice of an analysis method.

or instance there is potentially less ambiguity about localizing neural
ctivity as compared to the use of M/EEG: with iEEG the measure does
ot depend on a specific inverse solution algorithm. Yet, it is crucial to
pecify how data were processed, especially for referencing and for nor-
alizing the individual brain getting coordinates in a normalized space.

ollowing the M/EEG initiatives, and anticipating the need to grant fu-
ure iEEG research, the present guidelines aim at paving the way for
ood practices in iEEG. 

Replicable research implies publishing with sufficient detail to make
he study/data reusable. It relies also on open data sharing that must
ollow a community-driven organizational framework to make data un-
erstandable. To serve that purpose the Brain Imaging Data Structure
pecification (BIDS) was created for MEG ( Niso et al., 2018 ), for EEG
 Pernet et al., 2019 ) and subsequently extended to human intracra-
ial electrophysiology ( Holdgraf et al., 2019 ). For now, the iEEG BIDS
pecification and examples mainly relate to the technical aspects of the
ecording and not so much the clinical aspects of the participants. In
he future, we anticipate the iEEG community will extend the existing
IDS raw format and define BIDS derivatives (e.g., with clinical anno-
ations and details on lesions and impairments), in line with Fig. 2 that
ndicates the interaction between the clinical and research team. We
ope that this article will encourage and prime the definition of these
mprovements to BIDS. 

As an aftermath of BIDS systematization, we foresee the multiplica-
ion of open access local iEEG libraries (e.g., see 25 , 26 ( Miller, 2019 )
r ( Berezutskaya et al., 2022 )). Akin to the ERP-core for EEG (see 27 ),
he BrainMap (see 28 ) and Brain Activity Atlas (see 29 ) for fMRI, we
urther expect the emergence of online meta-databases that will permit
xamining iEEG results from studies that investigated a certain topic
nd/or a specific part of the brain. The ERP-core is a free online re-
ource for human ERP research building upon the standardization of
RP paradigms and analysis protocols across studies ( Kappenman et al.,
021 ). The BrainMap is a database of published functional and struc-
ural neuroimaging experiments ( Vanasse et al., 2018 ) and the Brain
ctivity atlas (BAA) is a battery of functional localizers in a large cohort
f healthy adults using task-evoked fMRI (see also Yarkoni et al., 2010).
imilarly, a recent initiative, the Human Intracranial EEG Platform, is
n open-source platform designed for large scale and optimized collec-
ion, storage, curation, sharing and analysis of multiscale human iEEG
ata at the international level (see 30 and 31 ). 

Such meta-database resources will be an efficient way to re-use data,
nd transfer what has been done from one study to another by differ-
25 http://memory.psych.upenn.edu/Data 
26 https://searchworks.stanford.edu/view/zk881ps0522 
27 https://github.com/lucklab/ERP _ CORE 
28 http://brainmap.org/ 
29 http://www.brainactivityatlas.org/ 
30 https://www.humanbrainproject.eu/en/medicine/human-intracerebral- 
eg-platform/ 
31 https://ebrains.eu/ 
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nt members of the iEEG community. iEEG databases should not be re-
tricted to group studies but also open to single-case studies. It will help
est reproducibility (e.g., if there is a channel at a given location what
an we expect to record there?), as well as going back and forth between
n individual and a population (i.e. taking into account the richness of
ata variability). Open databases will be pertinent to combine multiple
atasets from different protocols to disambiguate/complement results.
ast, knowing “what is happening where ” helps to refine hypothesis-
riven research (e.g., to select an experiment with regard to electrode
ocalization, to build some priors in a Bayesian perspective) and it can
eveal the “holes in the map ” (i.e., foster exploratory research). 

As Open Science practices become more common in general, we ex-
ect this to positively impact the sharing of knowledge in iEEG practices.
haring common iEEG artifacts is one concrete example that would ben-
fit the community (see Sections 1.4.4 , 1.4.5 and 3.3 ). Many researchers
ave gained experience with identifying artifacts in iEEG data, but
his knowledge/expertise remains available in somewhat isolated form
ithin smaller communities of researchers (e.g., in a local research lab).
 shared database of iEEG artifact templates (both physiological, e.g.,
pikes, and non-physiological), contributed to by different researchers,
ould be a valuable resource for the community, and especially for the

raining of early stage researchers in iEEG analyses. Ideally, in this ‘at-
as’, the iEEG signal would be accompanied by other types of record-
ng to validate the artifacts (e.g., EOG or EMG recordings) and to bet-
er understand iEEG physiology (i.e. passive field spread). An interest
or artifact-contaminated data also applies when developing new data
nalysis methods. For instance, for machine learning approaches both
positive" and "negative" data samples are needed to prevent bias in clas-
ification results (see Section 6.9.2 ). In the making of such database(s),
he contribution by various researchers would align with the concept of
team science" and a live database format would allow information to
e updated and improved, differently from the static format of regular
eer-reviewed publications. 

While iEEG can be considered a niche, and as such might be over-
ooked by researchers working with other approaches, it provides an in-
omparable opportunity to cross-validate results through a multimodal
pproach. In the next decade, we anticipate more translational work
etween approaches (e.g., iEEG and fMRI), as well as within iEEG
e.g., passive recording and electrical stimulation) and with the deep-
rain approach used in movement disorders ( de Hemptinne et al., 2015 ;
ittle et al., 2021 ). With a great deal of precautions regarding ethical is-
ues (see Section 1.4.8 ), clinical information available about the partic-
pants (e.g., electrostimulation, multiscale recordings) may be incorpo-
ated, thereby creating multimodal databases similar to those available
n the fields of MRI (see for instance the Allen institute initiative, see 32 ).
he results of these may fuel brain modeling such as in the Virtual brain
roject 33 or biophysical models based on iEEG signal model (see 34 and
 Medani et al., 2021 )). Last, this multimodal approach is also likely to go
eyond imaging data in humans, like interspecies cross-scale measures
 Paulk et al., 2021 ) or the use of additional big data such as genetics
 Gao et al., 2020 ). 

.3. Bringing together the clinic and the research 

Bringing together clinicians and researchers creates many opportu-
ities for future research, given their overlapping interests and comple-
entary skills. As participants usually participate in several studies, in

ddition to the standard clinical procedures, it makes sense to share and
iscuss findings collectively; in much the same way as clinical meetings
ften discuss single patients. It is obviously beneficial for the patient,
ecause an exhaustive knowledge of task-induced brain activations can
32 https://portal.brain-map.org/ 
33 https://www.thevirtualbrain.org/tvb/zwei 
34 https://simnibs.github.io/simnibs/build/html/index.html 

http://memory.psych.upenn.edu/Data
https://searchworks.stanford.edu/view/zk881ps0522
https://github.com/lucklab/ERP_CORE
http://brainmap.org/
http://www.brainactivityatlas.org/
https://www.humanbrainproject.eu/en/medicine/human-intracerebral-eeg-platform/
https://ebrains.eu/
https://portal.brain-map.org/
https://www.thevirtualbrain.org/tvb/zwei
https://simnibs.github.io/simnibs/build/html/index.html
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omplement or guide functional mapping ( Crone et al., 1998b , 1998a ;
inai et al., 2005 ). It is also desirable for research teams, who might use
bservations made in that patient in other cognitive paradigms to dis-
riminate between alternative interpretations of their own results. Last
ut not least, the synergy between clinical and neuroscientific exper-
ise is needed to address the complex relationship between pathology
nd cognition, for instance the effect of epileptic activity on cognition.
onetheless, non-clinically validated research (e.g., task, methods) en-

ails a risk if it influences clinical decision making. Clinicians need to be
ware/informed of the validation-status of any research result. Research
hould not modify the clinical electrode placement plan and it should
e always clear to the patient that participation in research is not part
f the clinical routine (e.g., by itself it should not guide surgery away
rom major functional networks as it is not certain that it would prevent
ost-surgical cognitive deficits). 

The medical expertise is unique for iEEG as the clinic is by essence
ultimodal and multidisciplinary. Clinicians start the exploration of the
atient before the implantation with different approaches (e.g., semi-
logy, surface recording, imaging, see Section 1.2.1 ). Knowledge about
he medical history, pre-op imaging, and iES can potentially shed a light
n the results of some research protocols, for instance, when epileptic
tatus influences cognitive performance, to the reorganization of some
rain functions or to the effect of direct electrical stimulation. 

In parallel, researchers in iEEG can encourage technical and method-
logical development in the clinic. For instance by pursuing higher stan-
ards in data quality, by encouraging the clinical validation and use of
igh-density probes, or by motivating the application of advanced signal
rocessing. In the past decade, common iEEG hardware has not changed
ignificantly (i.e., amplifiers and electrodes). Considering the recent
echnical advances with cochlear implants, peripheral nerve recording-
timulation, or deep-brain-stimulation, we see some potential in tech-
ical modernization and we anticipate a convergence of clinical and
esearch sides to meet the same standards (e.g., technical and method-
logical) for a mutual benefit. 

.4. Innovations in electrodes 

A brief review of the technical innovations of the last decades shows
hat many electrode prototypes have been developed but that their use
as been limited to few hospitals/centers ( Engel et al., 2005 ). For in-
tance, the multipronged temporal pole electrode array developed to
arget the temporopolar cortex ( Abel et al., 2014 ). Another example is
he depth-strip hybrid operculo-insular electrode that was developed
o investigate perisylvian/insular refractory epilepsy ( Bouthillier et al.,
012 ), and whereas this hybrid sEEG-ECoG approach on the same
robe was interesting, it did not disseminate in the iEEG commu-
ity. Cross-scale measurements, however, have had a long history in
EEG. Already in the nineties, a model of hybrid depth electrodes
hat included high-impedance bipolar contacts between low-impedance
EEG contacts allowed the recording of both single neuron spikes and
FPs ( Howard et al., 1996 ). Since then, different configurations of
EEG probes for single-unit, multi-unit and LFP recording have be-
ome more common ( Pothof et al., 2016 ). The two most famous of
hich are the Behnke-Fried microwires inserted through the macro-

lectrode shaft and protruding from the tip of a depth sEEG macro-
lectrode ( Fried et al., 1997 ; Lehongre et al., 2022 ); and the high den-
ity ECoG grids with smaller contacts which increase spatial density of
he implant ( Bleichner et al., 2016 ; Branco et al., 2017 ; Flinker et al.,
011 ; Muller et al., 2016 ; Ramsey et al., 2018 ). The study of epilep-
iform activity has been further facilitated by the use of dense two-
imensional cortical microelectrode arrays ( Schevon et al., 2008 ) and
aminar probes to drive current source density from multi-unit activity
ecorded across cortical layers ( Csercsa et al., 2010 ; Dougherty et al.,
019 ; Halgren et al., 2015 , 2019 ). Laminar ‘optodes’ have also been
eveloped to compare the fine hemodynamic response with laminar
ource current density and multi-units activity ( Keller et al., 2009 ).
44 
ast, sEEG recording was used to perform microdialysis by means of
 probe inserted through the lumen of the depth, which permitted to di-
ectly sample extracellular neurotransmitter concentration in midbrain
 Fried et al., 2001 ). The aftermath of these advances on iEEG probes is
wofold. First, they show that technological developments in the field of
EEG may serve the clinical cause. Second, they led to important findings
n cognitive neuroscience, especially in domains where animal research
as its limits (e.g., language function). 

We anticipate that, in the next decade, technical developments will
ainly focus on a quantitative orientation with an increase in the elec-

rode density per probe or grid ( Chang, 2015 ; Schippers et al., 2021 ).
s for now, the dissemination of the multiscale probes and probes with
igher spatial density beyond the centers where they were developed,
s to be expected only if a clear benefit for the patient is established. For
nstance, the use of multiscale electrodes may spread if it contributes to
icro-surgical intervention which in return must lead to an improve-
ent of epilepsy treatment (i.e., diminish epileptic seizure and lessen

he risk of brain function deficit as compared to a classic intervention).
n direct link with the progress in electrode specification (e.g., micro-
lectrodes), the acquisition set-up should reach higher standards, espe-
ially regarding the acquisition sampling rate to allow seeing single unit
ctivity. The main limits to this renewal of the materials being the cost
or the hospital and the regulatory issues (e.g., onerous approval, insur-
nce coverage). 

.5. Naturalistic neuroscience and discovery science 

Major neuroscientific conclusions can be reached by investigating
eural activity during unconstrained behavior and in naturalistic con-
itions ( di Pellegrino et al., 1992 ; Glanz et al., 2018 ; Hamilton and
uth, 2020 ; Matusz et al., 2019 ; Rizzolatti and Fabbri-Destro, 2010 ).
et, two factors must coexist to make such a discovery possible: 1) high
NR recordings, with reliable neural responses at a single-trial level
even during free movements); 2) high spatiotemporal resolution, to
apture the immediate effect of environmental events or behaviors. iEEG
ffers such properties and is therefore suited to investigate the neural ba-
is of realistic behavior ( Del Vecchio et al., 2020 ; Podvalny et al., 2017 ).
hese characteristics are also critical when considering the development
f close-loop experimental settings ( Branco et al., 2018a ; Zelmann et al.,
020 ), and related foreseen technological applications for brain com-
uter interface ( Moran, 2010 ). Because iEEG appears as the tool of
hoice for observation-driven ’discovery neuroscience’ ( Genon et al.,
018 ), we forecast that research with ecological approaches will spread
n upcoming years. 

The prospect of seeing an increase of ecological iEEG research
s fostered by the emergence of active wireless devices (i.e., ampli-
er/transmitter implants) for epilepsy monitoring. We predict that these
lectrodes will have a drastic impact on iEEG research for three rea-
ons. First, the SNR of iEEG is good enough to extract meaningful neural
ignals in unique situations (e.g., single trials, individual movements).
econd, iEEG is relatively immune to most artifacts that contaminate
calp signals when participants perform daily life activities (but see
ecommendations in Section 3.3 ). Last, iEEG does not imply strict re-
trictions on the participants’ motor behavior, in contrast with non-
nvasive recordings (e.g., fMRI, MEG), for which strict technical aspects
revent unconstrained exploratory neuroscience (e.g., supine position,
imited space exploration, altered visual feedback). In that regard, the
ecent development of wireless iEEG and chronic recordings from im-
lanted devices opens endless perspectives to naturalistic neuroscience
 Aghajan et al., 2017 ; Meisenhelter et al., 2019 ; Stangl et al., 2021 ;
opalovic et al., 2020 ) and will likely recast the clinical monitoring.
ontinuous iEEG monitoring is a unique opportunity to study human
rain activity as it happens in daily life (e.g., active reading, conversa-
ion) and not only in link with the pathological activity. For researchers,
t permits testing, in ecological situations, the validity of functional in-
erpretations drawn from ’classic’ lab experiments (see the BrainTV ap-
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34 https://f-tract.eu/atlas/ 
roach ( Jerbi et al., 2009b ; Lachaux et al., 2007b ) or the BCI2000 ap-
roach ( Schalk et al., 2008 )). Surely, wireless devices will require clini-
al approval, which might be facilitated by the fact that: (i) it permits a
ontinuous recording, even when the patient has to move in the hospi-
al, (ii) wireless devices reduce movement related artifact thanks to the
bsence of cables/headbox, (iii) the risk of infection is lowered due to
he absence of transcutaneous wires. 

The ability of participants to report their subjective experience opens
 whole new universe of possibilities, as changes of neural activity can
e related not only to externally-triggered events but also to internally-
enerated ones (see for example the investigation of spatially sparse
ut action specific brain activation during real-life orofacial motor be-
avior captured with the audiovisual monitoring system ( Kern et al.,
019 )). This requires that patients have access to their own neural ac-
ivity in real-time, to detect systematic relationships with their own
erceived mental events (such as emotions, mental images, verbalized
houghts, etc.). iEEG offers that opportunity, and a set-up for such neuro-
henomenological investigation has already been proposed more than a
ecade ago ( Jerbi et al., 2009b ; Lachaux et al., 2007b ). We believe that
n the future, this kind of approach will spread in most iEEG centers
s more and more groups seek to investigate the neural grounding of
aturalistic behavior (including covert mental acts) and the ecological
alidity of conclusions obtained in constrained laboratory conditions. To
o beyond a mere collection of unrelated anecdotes, one could envision
hat a set of patients are recorded - with the video - during a systematic
equence of natural behaviors under the guidance of an experimenter.
here the research would simply engage the patients in a scripted set
f activities, as in neuropsychological evaluation. To make the most of
his approach, we anticipate that iEEG databases will incorporate video
ecording of natural behavior by means of techniques to replace the pa-
ient with an avatar. Finally, the development of live/online-analysis
ill permit a closed-loop approach ( Zelmann et al., 2020 ), which will

mprove research investigations by optimizing stimulation approaches
sing neurally informed personalized targets, as well as direct electrical
timulation protocols and neuromodulatory therapies. 

.6. Electrical stimulation used for research purposes 

Intracranial electrical stimulations (iES) are used clinically to map
he organization of functional and epileptic networks in the patient’s
rain (see Section 1.2.4.1 ). iES consists of either a high-frequency train
f 50 or 60 Hz stimulation lasting a couple of seconds (HFS), or of a se-
ies of individual pulses sent typically every second (LFS). Historically,
he two types of iES can be traced to the two iEEG approaches: HFS was
rst implemented in ECoG ( Penfield and Boldrey, 1937 ) and LFS in sEEG
 George et al., 2020 ). Each iES type has its advantages; for example,
FS is more effective to induce seizures, with LFS the false positives are

are, and the brief stimulation artifact in LFS allows visualizing the evo-
ution of induced discharges ( Kovac et al., 2016 ; Mouthaan et al., 2016 ;
unari et al., 1993 ; Valentín et al., 2005 ; Zangaladze et al., 2008 ). Also,

here is a large variability in the use of iES from center to center, which
s further increased by contextual factors: the interference of iES with
 cognitive process manifest during active engagement of that process,
n some instances the effect of iES varies with the timing relative to
n external stimuli ( Keller et al., 2017 ), and different brain regions do
ot have the same responsiveness ( Murphey et al., 2009 ; Trevisi et al.,
018 ) (see Section 1.2.4.1 ). In line with our forecast of increased in-
eraction between clinic and research, we expect further developments
elated to iES (see next paragraphs): first the exploitation for research
urposes of iES data stemming from clinical procedure (i.e., functional
apping), second in the application of iES during research protocol. In

urn, these developments will contribute to a better understanding of
he neurophysiology of iES (i.e., the links between ES specs and the un-
erlying electrophysiological outcomes), and to define standards for iES
arameters (e.g., current amplitude, duration of the HFS stimulation,
nter-stimulation-interval of the LFS). 
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When an electrical pulse (LFS) is applied at a given iEEG site, this
an generate an evoked potential (ERP) at iEEG sites that are anatomi-
ally connected to the stimulated site ( David et al., 2010 ; Keller et al.,
014 ; Matsumoto et al., 2004 ), such iES related potential (iESRP) is also
eferred to as Cortico-Cortical Evoked Potentials (CCEP). Analyses of the
atency and the amplitude of such iESRPs provide a measure of connec-
ivity between the two sites (see Sections 4.4.1 and 4.4.2 ) and permit
rawing neural networks of the patient’s brain. Using a ROI-like ap-
roach, this method permits grouping sites over different patients which
ie within the same brain region and are connected to the same target
egions. Using this approach on iEEG data over different centers, and
riginally acquired for clinical purposes, a large-scale open initiative
as resulted in the construction of a Functional Brain Tractography at-
as 34 ( Trebaul et al., 2018 ). Until now, due to the lasting HFS artifacts,
he investigation of data with high-frequency train stimulation (HFS) re-
ains less investigated ( Barborica et al., 2022 ; Perrone ‐Bertolotti et al.,
020 ). Yet, considering the amount of HFS datasets existing in iEEG
enters, and more generally of any iES, we anticipate HFS data to be
xploited similarly (e.g., to construct HFS based connectivity atlasses)
nd expect further investigations comparing stimulation types, and be-
ween iES based atlases and structural connectivity ( Crocker et al., 2021 ;
onos et al., 2016 ; Silverstein et al., 2020 ). 

During the functional mapping in clinic, it is common to observe
hat iES impacts cognition by either eliciting or impairing a process (see
ection 1.2.4.1 ), such as the perception of a stimulus (e.g., disruption
f face recognition, hallucination of a place), enhancing ( Ezzyat et al.,
018 ) or disrupting memory ( Goyal et al., 2018 ; Jacobs et al., 2016 ), or
otor behavior (e.g., speech arrest, eye movement). In link with some

esearch questions, iES has been utilized to establish causal inference,
ot only to relate a structure and a function but also to assess the neu-
ophysiological basis underlying a cognitive process. For instance, iES
as used to mimic local neural activity ( Jacobs et al., 2012 ), which

an in turn modulate behavioral performance ( Alagapan et al., 2019 ;
ucewicz et al., 2018 ; Suthana et al., 2012 ; Titiz et al., 2017 ) in a

ask specific manner ( Hansen et al., 2018 ; Jun et al., 2020 ), and/or
hape network dynamics ( Beauchamp et al., 2012 ; Fell et al., 2013 ;
hambhati et al., 2019 ; Kim et al., 2018 ; Solomon et al., 2018 , Her-
ero et al., 2021). However, these investigations remain sparse. Because
ES is the only approach allowing interplay with neural activity in hu-
ans with millimeter spatial specificity, we forecast a growing interest

or the use of iES during research paradigms. 

.7. From iEEG to the neuroscience of brain lesions 

An increasingly diffuse approach in the drug-resistant focal
pilepsy surgery is represented by sEEG-guided Radiofrequency-
hermocoagulation (RFTC), i.e. a set of small focal cortical lesions in-
ormed by the sEEG recordings that are performed as a therapeutic op-
ion immediately before the sEEG electrode removal ( Bourdillon et al.,
017 ; Cossu et al., 2015 ; Dimova et al., 2017 ). Beyond their relevant
linical value ( Cossu et al., 2015 ), such a procedure may offer a solution
o a longstanding issue in the neuroscience of brain lesions. Indeed, a
ajor goal of system neuroscience is the comprehensive understanding

f the structural, functional and connectional modifications following
rain lesions. However, the impossibility to compare the post-lesional
ecordings with pre-lesional ones prevented the achievement of mecha-
istic insights into post-lesional processes like adaptive neuroplasticity
nd diaschisis ( Fornito et al., 2015 ). 

In this realm, the effects of controlled lesions can be assessed with
patially resolved electrophysiological recordings and compared to pre-
esional measurements within the same individual ( Russo et al., 2021 ).
ollowing this principle, Russo et al (2021) demonstrated that after
FTC, not only the perilesional area presented an increased delta activ-

https://f-tract.eu/atlas/
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ty whose amplitude rapidly decayed with distance, but also that sleep-
ike slow waves were prominent in the perilesional areas but could also
ercolate through a network of connected areas as predicted by individ-
al patterns of long-range effective connectivity. 

Despite the application of RFTC being solely guided by clinical pur-
oses, the collection of pre- and post-lesional iEEG data might enrich and
omplement the current knowledge about brain functions with causal,
ocal and well-localized evidence. 

.8. Exploiting white matter signals 

In the case of sEEG, about 30-40% of implanted electrodes ex-
lore the white matter (WM) ( Mercier et al., 2017 ). To date, these
ignals have been used mostly to compose the reference channel (see
ections 1.4.2 and 3.3.2.2 ), yet the value of the WM signals is still un-
erexplored. In a recent study, Mercier and coworkers showed that, once
ccounted for the backpropagation and volume conduction effects from
he nearby cortical electrodes, the signals recorded from white mat-
er tracts can also reflect neuronal communication between distant re-
ions of cortex through WM fiber tracts, with small but positive cross-
orrelation time lag values. Similar conclusions were obtained by Rizzi
nd colleagues ( Rizzi et al., 2021 ), who showed that the WM record-
ngs increase in the gamma band power along visual stimulations fol-
owing the neuroanatomical distribution of the optical radiation accord-
ng to both in-vivo and ex-vivo investigations. Furthermore, even in this
tudy the timing observed in the leads intersecting the optical radia-
ion differed from that observed in the other leads exploring the WM
r the gray matter leads, reinforcing the notion that the sEEG signal
ollected from WM leads has peculiar features related to the functional
ole of the networks incorporating the specific fibers. Studies have also
nvestigated WM contacts using intracranial electrical stimulation (iES,
ee Sections 1.2.4.1 and 6.6 ), and showed the relevance of electrically
timulating WM to defined functional connectivity in brain networks
 Koubeissi et al., 2013 ; Solomon et al., 2018 ). 

Such a picture opens up to two main points to be considered in the
esign of an iEEG experiment and the analysis of the relative data. On
ne hand, WM leads cannot be defined as being neutral regardless of the
eural processes that will be engaged in the patient; consequently, WM
ontact(s) that compose the reference should not only be anatomically
dentified but also characterized according to functional criteria (e.g.,
inimum variance, see Section 3.3.2.2). On the other hand, the large

mount of data regularly collected from WM leads in sEEG recordings
rovides valuable information to describe the anatomical and functional
orrelates of several WM bundles. Given their coherence with tractogra-
hy and anatomical data, these studies would contribute to characterize
he human connectome with an innovative source of information, com-
lementing the neuroimaging techniques with a four-dimensional (i.e.,
pace and time), time-dependent characterization of WM structures. 

.9. Advances analysis methods 

.9.1. Mixed-effects multilevel analysis to take into account spatial sparsity

The field of iEEG increasingly acknowledges the importance of ap-
ropriately modeling the correlation structure of the data, e.g., that
lectrodes should not simply be pooled across participants in statisti-
al group analyses. Improperly accounting for the correlation structure,
.g., that electrodes within an ROI will be more correlated within a
articipant than between participants, can lead to an inflation of Type
 errors ( Yu et al., 2021 ). So-called linear mixed effects (LME) mod-
ls provide a flexible statistical framework that allows for group anal-
ses and the correlation structure of the data. Such models include
oth fixed effects, such as experimental conditions, which are constant
cross individuals, as well as random effects, which refer to factors that
ake into account variability between participants or observations (see
ection 5.3 ). Furthermore, they allow the inclusion of nested random
46 
ffect factors, which allow explicit hierarchical grouping of observa-
ions ( Galbraith et al., 2010 ; Krzywinski et al., 2014 ), e.g., electrodes
ithin a participant. Thereby, such analyses are guarded against in-
ividual participants (or electrodes) driving the effects. Furthermore,
hey can easily account for sparse, missing, or unequal numbers of
lectrodes per ROI. Additionally, by nature of being a random effects
nalysis, the results are readily generalizable beyond the participants
nder study. For these reasons, this type of statistical analysis is be-
oming increasingly prevalent in iEEG studies (e.g., Golan et al. 2016 ,
adipasaoglu et al. 2014 , Schwiedrzik et al. 2018 ). LME models are
traightforwardly implemented in R, e.g., in the well known LME pack-
ge ( Bates et al., 2015 ), as well as in recent versions of MATLAB (some
lternatives exist in Python, for iEEG see ( Combrisson et al., 2021 )).
owever, LME modeling is not without caveats. For example, it remains
n unresolved question whether to model the data with the maximal
andom effect structure allowed by the experimental design, which in-
ludes random intercepts and random slopes for all within experimental
actors, or to target specific statistical hypotheses with more parsimo-
ious models. 

.9.2. Multivariate analysis and machine learning 

Like in MRI and M/EEG ( Haynes, 2015 ; King and Dehaene, 2014 ;
itchie et al., 2019 ), multivariate analysis benefits from the high dimen-
ionality of iEEG data because it combines information from all available
eatures (e.g., electrodes and time/frequency points). Moreover, this ap-
roach provides a means to deal with the varying sensitivity of the iEEG
ignal across channels (see Section 3.3.4 ). 

Supervised learning methods (using, among others, multivariate pat-
ern analysis, linear discriminant analysis or support vector machine),
re generally based on a cross-validation procedure (for an introduction
ee: ( Blankertz et al., 2011 ; Grootswagers et al., 2017 ; Guggenmos et al.,
018 )). The algorithm initially classifies experimental conditions on
 subset of the data by defining decoding weights assigned to each
eature (e.g., electrode); the weights reflecting how a feature con-
ributed to maximizing the decoding. Subsequently, it decodes con-
itions in another subset of the data and provides decoding scores
 Anumanchipalli et al., 2019 ; Moses et al., 2021 ; Pasley et al., 2012 ).
ecoding analysis can be run on processed data (e.g., frequency anal-
sis), not necessitating a-priori assumptions on specific data features
e.g., frequency range of interest) and allowing for different brain re-
ions (or electrodes) having relevant information in different frequency
ands ( Baroni et al., 2020 ; Combrisson et al., 2017 ; Henin et al., 2021 ;
emi et al., 2022 ; Ter Wal et al., 2020 ). This permits to caracterise
nterplay in functional networks (see Section 4.4 and 4.5 ). However,
aution is required to reach the full potential of these methods and to
void pitfalls ( Combrisson and Jerbi, 2015 ). For instance, interpreting
he weights is not straightforward. While their transformation back into
ctivation patterns should permit identifying features that distinguish
xperimental conditions, in some cases it can be misleading (e.g., if a
eature provides information about the noise which turns out to help
he decoding). How to combine data from multiple participants is also
 matter of debate and, as for other types of analyses, no consensus
merged until now (see Section 5 ). 

Multivariate analysis of iEEG data is nonetheless at an early stage
nd we expect a spread in its application to iEEG research, as well as
he adoption of other machine learning methods such as time-varying
ynamic Bayesian network ( Collard et al., 2016 ) and deep neural net-
orks ( Li et al., 2022 ). 

.10. Network dynamics 

Brain functions can overlap in time and/or space. iEEG offers the
nique possibility of obtaining electrophysiological recordings with
igh temporal and spatial resolution (ms over a volume of mm 

3 ). This
llowed researchers to overcome the “Heisenberg principle ” of non-
nvasive neuroimaging and recording techniques, i.e., the impossibility
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f having both spatially resolved and dynamic profiles of functioning
rain networks (see Sections 4.4 , 4.5 and ( Avanzini et al., 2016 )). 

Thanks to iEEG, four-dimensional maps (spatial coordinates plus
he time dimension) and networks are now increasingly considered
s elements to understand brain activity in fundamental neuroscience
 Johnson and Knight, 2015 ; Nakai et al., 2019 ; Wang et al., 2021 )
nd clinical neuroscience ( Bartolomei et al., 2017 ; Burns et al., 2014 ;
aufs, 2012 ; Stam, 2014 ). The time course of activity (either in terms
f amplitude, in terms of spectral magnitude or phase) provides a piv-
tal factor to make a distinction among different functional implemen-
ations of processes in these networks. Such an analytical approach has
een successfully applied to studies of conscious perception, in which
EEG revealed that sustained, tonic high-frequency responses are re-
uired to make the patient consciously perceive visual ( Fisch et al.,
009 ) and somatosensory ( Del Vecchio et al., 2021 ) stimulations. As
he majority of neurons have multidimensional response properties,
heir ensemble activity leads to representations in a high-dimensional
pace ( Gothard, 2020 ). Highly-resolved temporal features of network
esponse allow for the identification of and distinguishing between func-
ional roles ( Del Vecchio and Avanzini, 2020 ). We see value in fur-
her subdividing the temporal domain into multiple scales (e.g., mil-
iseconds, days/weeks, age), each reflecting and indexing different neu-
al processes (e.g., brain dynamics, plasticity and learning, aging, see
 Sonoda et al., 2021 )). 

. Glossary 

To ensure a consistent nomenclature throughout the manuscript and
ith other guidelines (e.g., iEEG BIDS and M/EEG COBIDAS), we here
rovide a short summary of terms related to iEEG research. 

• Patient, research participant, and subject: After being informed
about the research goals and the fact that the research does not aim
to contribute to, but will also not impeach, the clinical procedures,
the patient may give consent to participate in the research study
and from that moment on becomes a participant. This is similar to
a healthy person that volunteers or signs up for a study: after that
person receives information about the research protocol and she/he
consents, that person becomes a participant. Patient stresses the clin-
ical side, participant the experimental side. The term ‘subject’ relates
to being (passively) subjected to experimental manipulations; it is a
term that we prefer to avoid, as we prefer to highlight the role of an
active contributor and stakeholder in the research. 

• Epileptogenic zone: The region(s) that is (are) necessary and suf-
ficient for initiating seizures and whose removal (or disconnec-
tion) is indispensable for complete abolition of seizures ( Jehi, 2018 ;
Lüders et al., 2019 ; Rosenow et al., 2016 ; Talairach and Ban-
caud, 1966 ). 

• Seizure onset zone: The region(s) from which clinical seizures are
initiated. Because the overlap of the seizure onset zone (identified
by iEEG measurements) and the epileptogenic zone can be imper-
fect, surgical resection of the seizure onset zone may be insuffi-
cient to achieve lasting seizure freedom ( Jehi, 2018 ; Rosenow and
Lüders, 2001 ). 

• Seizure semiology and symptomatogenic zone: The symptoms ex-
perienced by the patient, and the clinical features that they display,
during a seizure. The seizure semiology is related to the concept of
the symptomatogenic zone ( Rosenow and Lüders, 2001 ), which does
not necessarily coincide with the seizure onset zone. 

• Interictal epileptiform discharge and irritative zone: A brief pat-
tern of EEG activity that is used as a marker of epilepsy in epilepsy
patients. Interictal epileptiform discharges originate in the irritative
zone ( Rosenow and Lüders, 2001 ). As their name implies, interictal
epileptiform discharges are distinct from seizures. Here, we avoid the
commonly-used term “epileptic spikes ” to prevent confusion with
neuronal spiking (i.e. action potentials). 
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• Pre/post-implantation imaging: Medical images acquired before
and after surgical placement of the iEEG implants to allow an accu-
rate representation of the implants’ placement with respect to inter-
nal brain structures. The post-implantation imaging provides the lo-
cation of individual recording electrode contacts of the implant. Be-
cause the implants create imaging artifacts, post-implantation imag-
ing is generally combined with pre-implantation imaging which
allows for a high quality rendering of the anatomy. Pre/post-
implantation comparison also allows to assess post-implant tissue
displacement due to edema or any injury due to the implant; in the
latter case, pre/post-implantation imaging can be further completed
with a post-explantation scan (i.e., after the electrode implants have
been removed). This is also known as pre/post-surgical scan and
post-explantation scan, where surgery refers to the implantation. The
scans can be MRI and/or X-ray CT. 

• Atlas: An atlas is the result of mapping 3D information (such as
population density) on a geometrical template (description + de-
lineation). The represented information can be continuous (such as
the amount of rain that falls) but is often restricted to a spatial de-
lineation and geographic description (e.g., roads, cities, municipali-
ties). The results of such a mapping can be considered an atlas once
they are shared with the purpose of re-use for another dataset. An
atlas is helpful to visualize and interpret spatial information. 

• Parcellation: Delineation of brain regions on the basis of anatomical
and/or functional information. A given parcellation is generally de-
fined on an atlas. If an individual brain is geometrically co-registered
with the atlas, it is possible to project the parcellation on the indi-
vidual brain. 

• Individual space: This refers to a 3-D cartesian coordinate system
where the direction of the axes and the origin of the coordinate sys-
tem (i.e., the point [0, 0, 0]) is defined in relation to anatomical land-
marks of the individual (i.e., the single person whose brain activity
is being measured). The relationship of these landmarks is preserved
across different people, but the relative distances between them is
different. The most common example of this in the brain would be a
coordinate system defined by the anterior & posterior commissures
and the brain’s midline. This is sometimes also referred to as the “na-
tive ” space or coordinate system, but here we avoid that to prevent
confusion with the device coordinate system where the direction of
the axes and the origin are expressed relative to the scanner (i.e., the
center of the gradient coils in case of MRI). 

• iEEG implant / probe / shaft / grid / strip: There are two
main types of intracranial electroencephalography (iEEG) im-
plants (a.k.a. intracranial probes): stereo-encephalographic implants
(sEEG) are stereotactically inserted intraparenchymal semi-rigid
electrode shafts with multiple contacts whose endpoints target par-
ticular anatomical structures within the brain itself (e.g., hippocam-
pus), while contacts along the shaft typically target cortical areas.
sEEG probes are sited through boreholes drilled through the skull.
Electrocorticographic implants (ECoG) consist of either electrode ar-
rays arranged in grids (2D) or strips (1D) that are inserted below the
dura mater to line the surface of the brain. 

• Electrodes and electrode contacts: The term was introduced in
physics to name an electrical conductor used to make contact with a
nonmetallic part of a circuit. Therefore it refers to the sensor that is
in contact with the recorded tissue. In ECoG, individual sensors are
arranged in arrays in grid or strip configuration. These individual
sensors can also be called electrode contacts. A semi-rigid sEEG shaft
houses multiple electrode-contacts. 

• Site: In this manuscript we use it as the physical location where an
electrode is located on or in the brain. 

• Channel: A single signal from an amplifier or transducer that is dig-
itally sampled. For iEEG this is the output of the analog-to-digital
(ADC) conversion from the amplified voltage difference between an
electrode contact of interest and a reference electrode. A channel
does not have to correspond to a single site or physical electrode.
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For instance in the case of a bipolar reference: one electrode is re-
referenced to its neighbor, the result is generally considered as a
channel that is virtually located at mid-distance between the two
electrodes. 

• Signal: A time series of the data being recorded by an analog-digital
converter, which can include both brain and non-brain activity. Af-
ter recording to disk, the signal is subjected to offline preprocessing
and analysis with the aim to increase the signal feature(s) related to
neural activity. 

• Acquisition or recording: Storing a signal for either online or of-
fline analysis. 

• Impedance: Electrical impedance is the resistance to electric cur-
rent (which is the flow of electric charge), or to changes in electric
current for capacitive and inductive impedance. The impedance is
of relevance in biopotential measurements, as it impacts the signal
quality. A distinction must be made for the impedance of the differ-
ent elements that play a role in the signal acquisition. There is the
impedance of the biological tissue, the impedance of the interface be-
tween the tissue and the electrode, the impedance of the electrodes
and the wires, and that of the electronic components in the amplifier.
Different brain tissues have different impedances, which can vary
with tissue integrity (e.g., inflammation) and over time ( Sillay et al.,
2013 ). 

• Volume conduction: Volume conduction refers to the passive signal
spread in the conductive tissues and can be modeled with Maxwell’s
equations. It is sometimes called passive ‘propagation’; in French it
is sometimes referred to as ‘diffusion’ (which is technically not ap-
propriate when it comes to electricity). In this manuscript we restrict
the use of ‘propagation’ for the active biochemical processes at the
synapses and along the cell membrane of neurons. 

• Active propagation: Biochemical processes corresponding to the
propagating electrical impulse traveling along the cell membrane
of neurons and nerve fibers. 

• Activity: The biochemical neural activity can be split into postsy-
naptic potentials (at the dendrites) and action potentials (along the
axon). Local Field Potentials recorded with iEEG originate mostly
from the postsynaptic potentials; an LFP is the sum of these synchro-
nized inputs that passively spreads and contributes to the signal de-
tected on the electrode. From a neural perspective, post-synaptic po-
tentials are graded potentials (i.e. synaptic potentials, subthreshold
oscillations…) that initiate or inhibit action potentials. Action po-
tentials travel along the nerve fiber (i.e., axon). As the neuron mem-
brane depolarization-repolarization lasts a few milliseconds, measur-
ing action potential requires higher frequency sampling than LFPs
(generally > 10 kHz) and therefore dedicated equipment (e.g., am-
plifier, micro-electrode). 

• Reference scheme or montage: Reference scheme (or reference
montage) refers to the way the online or offline referencing between
electrode pairs is performed to amplify, record and/or visualize the
potential differences. In a ‘unipolar’ reference scheme one electrode
is used as the reference for all other electrodes. In a ‘bipolar’ scheme
each electrode is referenced to a neighboring electrode. In a common
average reference scheme all electrodes are referenced to the aver-
age of all electrodes. It is also possible to have composite reference
schemes. The term ‘multipolar’ is to be avoided. 

• Spatial resolution: In the field of neurophysiology, the term "spatial
resolution ” can pertain to various aspects that are somehow related:
spatial specificity for picking up different physiological sources,
(spatial) density of the recording electrodes, the spatial extent of
a single electrode (i.e., the electrode contact size), and the (spatial)
coverage. Rather than using “spatial resolution ” in the manuscript,
we prefer to explicitly use these specific terms where applicable. Spa-
tial specificity can be defined as “the ability to extract independent
time course estimates of electrical brain activity from two separate
brain locations in close proximity" (from ( Brookes et al., 2010 )). The
(spatial) density of the recording relates to the distance between
48 
recording sites, like in the commonly used expression “high density
EEG ”. 
The electrode contact size relates to the spatial extent of the
electrode-electrolyte interface over which the biopotential is inte-
grated. Small electrodes pick up focal (spatially specific) activity,
whereas large electrodes average over a larger area. 
The (spatial) coverage refers to the extent of the samping relative to
the whole brain (e.g., unilateral/bilateral implant, number of lobes
or sublobar region covered). This can be compared to MRI, where
the coverage can be configured as a few slices, the whole brain, or
even the whole head. 
An analogy can be drawn to the field of digital photography where
spatial resolution depends not only on the number of pixels in the
CCD chip, but also on the optical characteristics of the lens (the focal
length and aperture) and on the focus of the lens. We employ the
term spatial resolution to refer to the spatial specificity, as with iEEG
the sampling is always sparse, while the signal can be focused to
achieve high spatial specificity (i.e., through re-referencing). In the
photography analogy, spatial coverage refers to the field-of-view. 

• Time-frequency decomposition and time-frequency representa-

tion: the decomposition refers to the process (analysis), the repre-
sentation refers to the outcome of that process (figure, statistics…).
More generally in this manuscript we mostly consider the method-
ological aspects and try to use specific terminology and avoid gen-
eral terms, such as: “activity ” (unless it refers to the actual neural
activity, not the signal that is being analyzed) or “measures ” (not
specific enough, unless it relates to the signal itself or to a metric).
Other terms could be appropriate when considering the actual activ-
ity, for instance Event-Related Synchronization/Desynchronization
(ERS/ERD), or Event Related Spectral Perturbation (ERSP). Those
terms relate to, or suggest, an active neural process, whereas the re-
sults of a time-frequency analysis can be flat, and a change in activity
only revealed after baseline correction. Finally, some terminology re-
lates more specifically to the kind of analysis that was performed, for
example Event-Related Band Power (ERBP) which is a time-locked
analysis focusing on the power in a given frequency band. 

• Oscillations or brain rhythms: The terms “oscillation ” or
“rhythms ” generally are used to reflect the periodic changes in the
measured voltages. These were the earliest observed phenomena in
neuroelectrophysiology, and can generally be seen in the raw trace.
Spectral analysis can reveal distinct peaks in the power that are
indicated with greek-letter names (e.g., delta, theta, alpha, beta,
gamma). It is useful to consider the distinction between the neu-
rophysiological mechanisms (e.g., brain rhythms), the signals that
are recorded, and the results of an analysis on those signals (e.g.,
oscillation from Fourier transform). 

• Aperiodic and broadband activity: In contrast to commonly-
described oscillations or rhythms centered at a specific frequency,
there are also signal features that have no specific timescale and do
not have a periodic structure. The raw voltage traces of these changes
appear as shifts in the random-walk aspects of the signal that are of-
ten treated as “background noise ”. Careful parameterization of these
broadband signals —often using Fourier-domain approaches that ex-
tract spectrally wide features —provides another avenue for analyz-
ing the data in a manner that provides physiological insights not
captured by oscillations. 

• Non-sinusoidal oscillation: Common analysis approaches as often
implemented (e.g., Fourier- or wavelet-based approaches) decom-
pose the signal into mixtures of simple sine and cosine components
of different frequencies. However, most neural oscillations are not
sinusoidal; rather they exhibit a rich variety of periodic waveforms
that can include the the classic mu-shaped rhythm in somatosensory
cortex, V-shaped alpha oscillations in visual cortex, and sawtooth-
shaped beta oscillations in motor cortex or theta oscillations in hip-
pocampus. These non-sinusoidal features are easily overlooked using
common approaches or confounded for cross-frequency coupling,
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despite the fact that they might carry critical physiological infor-
mation. 

• Non-stationarity: This characterizes a time series whose statis-
tical properties are not stable over time. In iEEG analysis this
most commonly refers to oscillations, where oscillation power, fre-
quency, and phase are dynamic and change over time. This is espe-
cially important given that many oscillations are “bursty ”—where
non-oscillatory periods are dominated by “aperiodic activity ”—and
where narrow band filtering can give the appearance of a stable os-
cillation where one might not exist. 

• Baseline: The baseline is a concept that relates to signal processing,
data visualization and statistics. Considering preprocessing and ERP
analysis, the baseline window refers to the time interval (often pre-
stimulus) in which the baseline DC offset is estimated; this estimate
can be used to subtract the constant potential offset. Rather than re-
ferring to this as baseline correction, in this manuscript we prefer
the term DC offset removal. In time-frequency analysis the baseline
window refers to the time interval in which the background spectral
activity is estimated, and this period may vary depending on analysis
type. The estimated spectral activity can be used in visualization and
statistical assessment to express the change with respect to the base-
line background oscillatory activity (the foreground being the one of
interest). Generally, we think of baseline periods as those where no
defined task or process is taking place. However, the brain is never
quiescent, so the expectation of the experimenter is that the effect
of undefined (ongoing) brain activity is removed due to averaging,
revealing the effect of the defined task or process. 
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