
© The Author(s) 2021. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com

Cerebral Cortex, 2021;00: 1–15

https://doi.org/10.1093/cercor/bhab304
Original Article

O R I G I N A L A R T I C L E

Hippocampal Representations of Event Structure
and Temporal Context during Episodic Temporal
Order Memory
Chuqi Liu1, Zhifang Ye1,2, Chuansheng Chen3, Nikolai Axmacher1,4 and
Gui Xue1

1State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute of Brain Research,
Beijing Normal University, Beijing 100875, PR China, 2Department of Psychology, University of Oregon, Eugene,
OR 97403, USA, 3Department of Psychological Science, University of California, Irvine, CA 92697, USA and
4Department of Neuropsychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University
Bochum, Bochum 44801, Germany

Address correspondence to Gui Xue. Email: gxue@bnu.edu.cn

Abstract

The hippocampus plays an important role in representing spatial locations and sequences and in transforming
representations. How these representational structures and operations support memory for the temporal order of random
items is still poorly understood. We addressed this question by leveraging the method of loci, a powerful mnemonic
strategy for temporal order memory that particularly recruits hippocampus-dependent computations of spatial locations
and associations. Applying representational similarity analysis to functional magnetic resonance imaging activation
patterns revealed that hippocampal subfields contained representations of multiple features of sequence structure,
including spatial locations, location distance, and sequence boundaries, as well as episodic-like temporal context. Critically,
the hippocampal CA1 exhibited spatial transformation of representational patterns, showing lower pattern similarity for
items in same locations than closely matched different locations during retrieval, whereas the CA23DG exhibited
sequential transformation of representational patterns, showing lower pattern similarity for items in near locations than in
far locations during encoding. These transformations enabled the encoding of multiple items in the same location and
disambiguation of adjacent items. Our results suggest that the hippocampus can flexibly reconfigure multiplexed event
structure representations to support accurate temporal order memory.

Key words: event structure, hippocampal subfields, method of loci, temporal context reinstatement, temporal order
memory

Introduction

Episodic memory is inherently structured according to the
temporal order of experiences (Tulving 1985). As the core brain
structure for spatial navigation and episodic memory, the
hippocampus and surrounding areas of the medial temporal
lobe (MTL) have been consistently implicated in spatial and

temporal coding in rodents and humans (Eichenbaum 2014;
Davachi and DuBrow 2015; Ranganath and Hsieh 2016).
In particular, the hippocampal–entorhinal system supports
representations of temporally ordered events via sequential
activation of spatially tuned cells (Buzsáki and Llinás 2017),
suggesting that space and time can be unified into a common
internal coding scheme.
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Recent rodent research has revealed 2 types of temporal
order representation in the hippocampal–entorhinal system:
The representations of stable event sequence increased in
well-practiced structured events, and the temporal flow that
is formed automatically with one-shot learning (Tsao et al.
2018). Human functional imaging studies have implicated the
hippocampus and the anterior-lateral entorhinal cortex (alEC)
in the representation of event structure (Deuker et al. 2016;
Bellmund et al. 2019), and recall of temporal order of real-life
events from a movie (Montchal et al. 2019). Although temporal
context binding has been consistently implicated in temporal
order judgment (Howard and Kahana 2002; Howard et al. 2005;
Ezzyat and Davachi 2014; Jenkins and Ranganath 2016), little is
known regarding how the learned event structure can be used
as a scaffold to support effective temporal order memory.

This question is critical for the understanding of human tem-
poral order memory, because people are generally bad at one-
shot, episodic-like temporal order memory for random events,
perhaps because the contextual drifts may be rather nonlinear
and unstable. By contrast, learned event structures may be used
to dramatically boost performance. In fact, ancient Greek and
Roman orators had long realized that linking novel material to
sequential locations along a familiar and well-organized route
could significantly improve temporal order memory (Roediger
1980). Since then, this mnemonic strategy, called the method of
loci or memory palace, has been commonly used by memory
experts and athletes (Maguire et al. 2003). Several studies have
shown that the method of loci primarily engages spatial and
associative processes in the MTL (Maguire et al. 2003; Fellner
et al. 2016; Dresler et al. 2017), as well as the interaction between
the hippocampus and caudate (Müller et al. 2018).

The current study aimed to examine the hippocampal
spatiotemporal representations while subjects were using
the method of loci for temporal order memory. First, we
would predict that the temporal context and spatial sequence
(including spatial location and sequence order) were encoded
in the same hippocampal–entorhinal system, which would
be late reactivated during retrieval as suggested by a recent
rodent study (Tsao et al. 2018). Second, in order to differentiate
temporally adjacent items, some representational transforma-
tions of temporal information would be necessary. Finally, since
in practice each location is usually used for multiple items,
precise temporal order memory of multiple items in the same
location would require strong temporal context coding and/or
transformations of spatial representations. We tested these
hypotheses by combining the ancient mnemonic strategy of
the method of loci and representational similarity analysis
(RSA) of functional magnetic resonance imaging (fMRI) data. Our
study revealed multiplexed representations of event structure
containing spatial location, sequential order and boundary, and
temporal context in the human hippocampus. More critically,
the event structure representations in the hippocampus
exhibited representational transformations in spatial and
sequential patterns, suggesting that the hippocampus may
flexibly reconfigure event representations to optimize temporal
order memory.

Materials and Methods
Participants

Twenty-nine college students (10 males; ages 18–24 years, mean
age = 20.3 years) participated in this experiment. All of them

were healthy, had normal or corrected-to-normal vision, and no
history of psychiatric of neurological diseases. None of them
had experience or practice with the method of loci before the
experiment. Two additional subjects were also recruited but
removed from final analysis (one did not finish the scan session
and one had extremely low memory performance with less than
2% remembered trials). Written consent was obtained from each
participant after a full explanation of the study procedure. The
study was approved by the Institutional Review Boards at Beijing
Normal University and the Center for MRI Research at Peking
University.

Experimental Stimuli

The stimuli consisted of 270 two-character Chinese words that
were randomly divided into 9 lists of 30 words each. Sixty words
were used in the baseline test (2 lists), 150 in practice sessions (5
lists), and 60 in the scanning session (2 lists). All words describe
common objects (e.g., broom), animals (e.g., crow), fruits (e.g.,
lemon), or vegetables (e.g., onion). The same word lists were used
in each session and the orders of the words were randomized
across subjects.

Experimental Procedure

Subjects completed 5 experimental sessions across 5 consec-
utive days (Fig. 1A). On day 1, they finished 2 rounds of the
temporal order task without using the method of loci, which
served as the baseline. Immediately after the task, they were
trained with the method of loci mnemonic by watching a 2-h
video developed by our lab (see below). On day 2, they were asked
to review the method and apply it in the subsequent temporal
order task. Only one round of the temporal order memory task
was administered (Practice 1). On days 3 and 4, they finished 2
rounds of the temporal order task each day (i.e., Practice 2 and
Practice 3) to further improve their method of loci skills. On day
5, they also completed 2 rounds of the temporal order task in the
fMRI scanner.

Method of Loci
The method of loci uses visualizations of familiar spatial infor-
mation to scaffold the memorization of a sequence of other
information like words or objects. In short, it is carried out by
mentally placing each to-be-remembered item into one specific
familiar location, creating vivid mental associations between
physical locations and the items. In the present experiment, the
same route (i.e., a world map with 10 locations) was introduced
for all subjects to let them follow an identical memory route
(Fig. 1B). During the 2-h video practice session, they were asked
to remember the order of the route and use one landmark for
each location to learn to vividly associate the to-be-remembered
words with the locations, for example, “the Statue of Liberty
in U.S.-apple.” They were free to play back the videos and ask
questions about the strategies. We also asked the subjects to
explain the method in their own words to make sure they
correctly understood. Then they finished several word–location
associations and retrieved the words by imagining that they
walked through the route. Before each practice session and the
scanning session, subjects were asked to rehearse the main
points of the method and wrote down the names of the 10
locations in the correct order. We emphasized that they should
use the landmarks we provided in the later memory task. All
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Figure 1. The method of loci and experimental design. (A) Subjects completed 5 sessions on 5 consecutive days. On day 1, they conducted a baseline test (2 rounds
of the temporal order memory task) and studied the method of loci video for 2 h. On day 2, they reviewed the method of loci method and practiced one round of the

temporal order memory task. On days 3 and 4 and during the fMRI scanning, they finished 2 rounds of the temporal order memory task. (B) Subjects were trained to
remember a sequence of locations and then asked to make associations between these locations and the to-be-learnt words. The same route and landmarks were
used for all subjects, with half landmarks were local symbolic entities (objects) and half were famous scenes. (C) During encoding, subjects studied a list of 30 words
(W1–W30) by mentally associating them with 10 well-trained locations in a fixed order (e.g., the 1st, 11th, and 21st word were associated with location 1). Please note

that the loci map was not presented to the subjects. Each word was presented for 2 s, followed by a 4 s fixation cross. Subjects had 6 s to encode the word. During
retrieval, a studied word was presented for 2 s and subjects were asked to recall the temporal order in the list. They were then asked to indicate its exact temporal
position by moving the red slider on the timeline with the “left” or “right” button in 4 s. Subjects could press the “don’t know” button if they could not remember

the word or its list position. A slow event-related design (14 s/trial) was used for the encoding and retrieval phases. To prevent subjects from further processing the
word, subjects performed a 7.5-s perceptual orientation judgment task after encoding or retrieval each word. The encoding–retrieval cycle was conducted twice in the
scanner with 30 different words in each cycle.

subjects performed 3 practice sessions and reported they could
properly use the strategy before scanning.

Temporal Order Task
Each temporal order task consisted of an encoding task and
a retrieval task (Fig. 1C). The same slow event-related design
(14 s for each trial) was used for the baseline test, the practice
sessions, and the scanning session and for both encoding and
retrieval tasks. During encoding, a fixation cross was presented
for 500 ms, followed by the 2-character Chinese word for 2 s.
Another fixation was presented for 4 s during which subjects
associated the word with the correct location along the path.
After that, they performed a perceptual judgment task for 7.5 s.
A Gabor image tilting 45◦ to the left or the right was presented on
the screen, and subjects were asked to identify the orientation
of the Gabor by pressing 1 of 2 buttons as quickly and accu-
rately as possible. The next Gabor started 100 ms after subjects
responded. In each encoding run, subjects learned 30 words in
7 min. The 30 words were associated with 10 locations in a fixed

order, and thus, each location was associated with 3 words (e.g.,
the 1st, 11th, and 21st word in location 1).

Subjects performed a 6-min working memory task between
encoding and retrieval. During the baseline test and fMRI scan,
a spatial working memory task was used. Each trial started with
a 2-s encoding phase, during which 3–6 dots were sequentially
displayed for 250 ms on different positions of an (invisible) 5 × 5
checker board. After an 8-s delay, a probe was presented and
subjects were asked to judge whether a dot had been presented
in this location during encoding or not. A different working
memory task (comprising a 1-back task of one-digit numbers)
was used in the 3 practice sessions so that subjects would not be
overtrained on the spatial working memory task (which might
confound the comparison of behavioral performance between
baseline and fMRI scan).

During retrieval, each trial started with a fixation cross
shown for 500 ms, followed by a presentation of one of the
studied words for 2 s. A scaled timeline was then presented on
the screen for 4 s, and subjects were asked to indicate the exact
temporal position of the word in the list (i.e., 1–30), by moving
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the red slider on the timeline with the “left” or “right” button.
The slider would keep moving as long as the subjects held the
button down. The initial position of the red slider was randomly
selected but was never the correct position for that word. The
scale and slider would stay on screen for the whole 4-s period,
and the last position of the slider was taken as the response.
Subjects could press a “don’t know” button if they could not
remember the word or its temporal order. Lack of responses
was also categorized as “don’t know.” After the temporal order
judgment, subjects performed the same perceptual judgment
task as in the encoding task for 7.5 s. Each retrieval run also
lasted 7 min. On days 1, 3, 4, and 5 (i.e., during fMRI scan),
subjects performed 2 rounds of encoding and retrieval tasks
with different sets of 30 words, which were also separated by a
working memory task. On day 2, they performed one round. The
whole temporal order task lasted 46 min on days 1, 3, 4, and 5
and 20 min on day 2.

MRI Acquisition
Imaging data were acquired on a 3.0T Siemens Prisma MRI
scanner with a 64-channel head–neck coil at the MRI Center
at Peking University. High-resolution functional images were
acquired using a simultaneous multi-slice EPI sequence (time
repetition [TR]/time echo [TE]/θ = 2000 ms/30 ms/90◦; field of
view [FOV] = 198 mm × 198 mm; matrix = 124 × 124; in-plane
resolution = 1.6 × 1.6 mm; slice thickness = 1.6 mm; GRAPPA
factor = 2; multi-band acceleration factor = 3). Ninety contiguous
axial slices parallel to the AC–PC line were obtained to cover
the whole cerebrum and partial cerebellum. A high-resolution
structural image was acquired for the whole brain using a 3D,
T1-weighted MPRAGE sequence (TR/TE/θ = 2530 ms/2.98 ms/7◦;
FOV = 256 mm × 256 mm; matrix = 256 × 256; slice thick-
ness = 1 mm; GRAPPA factor = 2). A high-resolution T2-weighted
image was also acquired using a T2-SPACE sequence for hip-
pocampus segmentation. The image plane was perpendicular
to the long axis of the hippocampus and covered the whole MTL
region (TR/TE/θ = 13 150 ms/82 ms/150◦; FOV = 220 mm × 220 mm;
matrix = 512 × 512; slice thickness = 1.5 mm; 60 slices). A
field map was acquired for correction of magnetic field
distortions using a Gradient Echo sequence (TR = 767 ms;
θ = 60◦; TE1/TE2 = 4.92 ms/7.38 ms; FOV = 198 mm × 198 mm;
matrix = 124 × 124; slice thickness = 2 mm; 77 slices).

Data Analysis

Image Preprocessing
MRI data were first converted to Brain Imaging Data Structure
format (Gorgolewski et al. 2016). The first 10 volumes before
the task were automatically discarded by the scanner to allow
for T1 stabilization. Image preprocessing was performed using
FMRIPrep v1.4.0 (Esteban et al. 2019). Each T1 volume was cor-
rected for intensity using N4BiasFieldCorrection (Tustison et al.
2010) and skull-stripped using antsBrainExtraction.sh (OASIS
template). Cortical surfaces were reconstructed using FreeSurfer
v6.0.1 (Dale et al. 1999). The T1 volume was then normalized to
the ICBM 152 Nonlinear Asymmetrical template (version 2009c)
through nonlinear registration with the ANTs v2.1.0 (Avants
et al. 2008). Functional data were slice time corrected using
AFNI v16.2.07 (Cox 1996), motion-corrected using FSL’s MCFLIRT
(Jenkinson et al. 2002), and registered to the T1 image using a
boundary-based registration with 9 degrees of freedom (Greve
and Fischl 2009). For univariate analysis, data were spatially
smoothed with a 6-mm full-width-at-half-maximum Gaussian

kernel using FSL’s SUSAN, filtered in the temporal domain using
a nonlinear high-pass filter with a 100 s cutoff, and normal-
ized to Montreal Neurological Institute (MNI) Template space.
The univariate analysis involving the hippocampal subfields
(region of interest [ROI] analysis) and the RSA analysis were con-
ducted in subjects’ native space. For both analyses, slight spatial
smoothing was applied to the data using a 1.6-mm full-width-
at-half-maximum Gaussian kernel and filtered in the temporal
domain using a nonlinear high-pass filter with a 100 s cutoff in
order to obtain both high signal-to-noise ratio and anatomical
specificity.

Hippocampal Subfields Segmentation
The hippocampus and surrounding MTL areas were segmented
into CA1, CA2, CA3, DG, EC, and parahippocampal cortex
(PHC) using the automatic segmentation of hippocampal
subfields (ASHS) toolbox with the UPenn atlas (Yushkevich
et al. 2015). Anatomical masks segmented by ASHS were
coregistered to the functional image for further analyses. CA2,
CA3, and DG were combined (i.e., CA23DG) because they could
not be unambiguously distinguished. This method has been
successfully used in previous studies with similar scanning
parameters (e.g., Hindy et al. 2016; Sone et al. 2016; Xiao et al.
2017; Bender et al. 2018; Cong et al. 2018; Dimsdale-Zucker
et al. 2018; Kok and Turk-Browne 2018). The ASHS algorithms
showed reliable subfield segmentation among the studies. To
further examine the functional specificity of EC subregions, we
segmented the EC into alEC and posterior-medial EC (pmEC),
using the masks from a previous publication (Maass et al. 2015).
These masks were resampled and aligned into subjects’ native
space, using nonlinear registration tool ANTs (v2.1.0). They
were then intersected with the EC masks generated by ASHS to
improve segmentation precision. As a result, our ROIs included
CA1, CA23DG, alEC, pmEC, and PHC (1.6 mm3 resolution, num-
bers of voxels: CA1 = 683.93 ± 74.31; CA23DG = 440.76 ± 55.52;
alEC = 93.45 ± 17.99; pmEC = 63.90 ± 13.00; PHC = 514.59 ± 83.70).
Two experimenters visually verified the accuracy of the
segmentation.

Univariate Analysis
Models were constructed using the general linear model within
the FILM (version 6.00) module of FSL. For both the encoding
and retrieval tasks, 2 types of trials were modeled: remembered
and forgotten trials. We excluded trials with a temporal error
of 1 position, as it was unclear whether these errors were due
to inaccurate memory or response errors. The “unsure” trials
and orientation trials from both encoding and retrieval were
modeled as regressors of no interest. Stimuli were modeled at
the onset of presentation with a duration of 2 s. The above
regressors were convolved with a double gamma hemodynamic
response function. Six movement parameters and the frame-
wise displacement (FD) were modeled as confound regressors.
Additional censor regressors were included for each volume
with a FD greater than 0.3 mm. Each run was modeled separately
in the first-level analysis. Cross-run averages for each contrast
image were created for each subject using a fixed-effects model.
These contrast images were then used for group analyses with
a random-effects model. Group images were thresholded using
cluster detection statistics, with a height threshold of z > 2.3
and a cluster probability of P < 0.05, corrected for whole-brain
multiple comparisons using Gaussian Random Field Theory.
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Region of Interest Analysis
We conducted the percent signal change analysis within the
predefined ROIs in the subject’s native space. Parameter esti-
mates (β values) of remembered and forgotten trials from the
GLM were each averaged across all voxels in a given ROI for
each subject. Percent signal changes were calculated using the
following formula: (β/mean) × ppheight × 100%, where ppheight
is the peak height of the hemodynamic response versus the
baseline level of activity (Mumford 2007).

Single-Trial Response Estimations
Single-trial response estimations were done using the least-
square separate method for each functional run (Mumford et al.
2012). Each trial was estimated in a separate GLM, in which the
given trial was modeled as a separate regressor, whereas all the
remaining trials were modeled as another regressor. Again, stim-
uli were modeled at the onset of presentation with a duration
of 2 s, and each regressor was convolved with a double gamma
hemodynamic response function. The 6 movement parameters
and FD were included in each GLM as confound regressors.
Additional censor regressors were included for each volume
with a FD greater than 0.3 mm. This resulted in a single β image
for each trial, which was used for the representational similarity
analysis.

Representational Similarity Analysis
RSA (Kriegeskorte et al. 2008) was used to determine the neural
pattern similarity between trial pairs from different conditions.
The neural pattern similarities could be calculated between
encoding–encoding, retrieval–retrieval, or encoding–retrieval
tasks, using images from the same or different runs. The main
analysis focused on examining similarities within predefined
ROIs (CA1, CA23DG, alEC, pmEC, and PHC). Each trial’s β values
from the single-trial response estimations within the ROI were
extracted. The Fisher Z-transformed Pearson’s correlations
across trials were used as the index of neural pattern similarity.
These similarities were then grouped and averaged based on the
spatial location, sequence distance, and temporal distance for
further statistical analysis. We used all trials for the encoding
task but only included remembered trials for the retrieval
task to make sure the correct context representations were
reinstated. To test group-level significance, paired t-tests or
repeated measures analyses of variance (ANOVAs) were used
and reported (see Statistical Analysis). We also conducted
nonparametric permutation tests for group-level significance
and the results remained significant.

Whole-Brain Searchlight Analysis
In order to examine the effect beyond our predefined ROIs, a
whole-brain searchlight analysis was conducted (Kriegeskorte
et al. 2006). Each searchlight was defined as a spherical cluster in
the subject’s native space with a radius of 3 voxels (4.8 mm, 123
voxels in total) surrounding a target voxel. The neural pattern
similarity difference of interest was calculated within the sphere
and assigned to the center voxel. All contrast maps of all sub-
jects were transformed into MNI space and entered into group
analysis using nonparametric permutation for inference on the
statistical map. Nonparametric permutations were conducted
by Randomise in FSL with 5000 permutations. The significance
of the derived statistical map was determined by the threshold-
free cluster enhancement algorithm with P < 0.05 (whole-brain
FWE corrected) (Smith and Nichols 2009).

Statistical Analysis

All paired t-tests and repeated measures ANOVAs in our analysis
were 2-tailed and conducted by the afex package using type III
sums of squares and using Greenhouse–Geisser correction to
correct the degrees of freedom if necessary in R 3.6.1. Error bars
in figures denote within-subject standard errors. They were cal-
culated using the Cousineau–Morey–O’Brien method (Cousineau
and O’Brien 2014). FDR correction was performed to correct for
multiple comparisons across the multiple ROIs.

Results
Behavioral Results

Behavioral analyses showed that across the practice sessions,
temporal order memory performance improved dramati-
cally across days (F(3.43, 95.97) = 60.04, P < 0.0001, η2 = 0.50)
(Supplementary Fig. 1A), consistent with previous observations
that the method of loci can quickly improve temporal order
memory (Dresler et al. 2017; Wagner et al. 2021). During the
fMRI scanning, the overall accuracy was 49.9% (Fig. 2A). Post hoc
t-tests (Tukey HSD) revealed that although the accuracy during
scanning was slightly lower than during the last practice session
(61.9%, t(28) = −4.04, P = 0.003, Cohen’s d = 0.75), probably due to
the restricted learning environment and noise in the scanner, it
was significantly higher than during baseline (19.5%, t(28) = 8.41,
P < 0.001, Cohen’s d = 1.56) and the first practice session (28.5%,
t(28) = 6.12, P < 0.001, Cohen’s d = 1.14). It should be noted that
although we could not conclusively state that the method of
loci improved temporal order memory due to the lack of a strict
control condition, the high behavioral precision enabled us to
examine the hippocampal representations that support precise
temporal order memory.

We further examined the behavioral pattern to ensure that
subjects were actually using the method of loci. First, if they
were relying on the locations to encode the temporal order of
the studied items, we would predict recency and primacy effects
based on the 10 locations. In contrast, if subjects were encoding
the items serially without the method of loci, we would predict
that the recency and primacy effects would be based on the
overall list of 30 items. Second, if the subjects used the method
of loci and 3 words were encoded for each location, we would
expect their accuracy to decrease from the first set of 10 words
to the second and third sets because of an increasing load at
each location (i.e., the fan effect) (Anderson 1974). Finally, we
would also expect significant within-location swap errors (i.e.,
confusion of items that were 10 or 20 positions apart). The
fan effect and within-location swap errors should not occur if
subjects did not use the method of loci.

To test these hypotheses, we conducted ANOVAs on the
behavioral performance during the fMRI scanning as a function
of run (subjects finished 2 runs of 30 words), set of words
(1–3), and serial position (initial: locations 1–4; middle: loca-
tions 5–7; final: locations 8–10). Since we did not find a sig-
nificant main effect of run (F(1, 28) = 2.14, P = 0.155) or inter-
actions with run (Fs < 3.12, Ps > 0.05), the 2 runs were com-
bined for the following analyses (Fig. 2B). Consistent with our
hypotheses, a 2-way ANOVA revealed significant main effects
of set (F(1.99, 55.61) = 24.82, P < 0.0001, η2 = 0.14) (Fig. 2C) and
serial position (F(1.91, 53.43) = 7.84, P = 0.001, η2 = 0.05) (Fig. 2D),
but importantly, no set by serial position interaction (F(3.23,
90.42) = 0.30, P = 0.842). Planned post hoc t-tests indicated that
memory performance decreased from set 1 to set 3 (ts > 2.74,
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Figure 2. Behavioral results during the fMRI scan. (A) Proportions of remembered, forgotten, and unsure trials during fMRI scanning. The dashed line shows the chance
level (3.33%). (B) Mean accuracy for each location. (C) Mean accuracy for each set. There was a significant fan or load effect, that is, memory performance decreased
when more items were associated with the same location. The dashed line shows the chance level (3.33%). (D) Mean accuracy for different serial positions of the
locations (initial: locations 1–4; middle: locations 5–7; final: locations 8–10). There were significant recency and primacy effects across the 10 locations. The dashed

line shows the chance level (3.33%). Each dot represents one subject and the bars represent group means. Error bars indicate averaged within-subject standard errors.
∗∗P < 0.01. ∗∗∗P < 0.001. (E) The pattern of response errors. Most errors occurred between adjacent locations, followed by within-location swap errors, as indicated by
the arrows.

Ps < 0.05, Cohen’s ds > 0.53), showing a clear fan effect (Fig. 2C).
In addition, there were significant recency (final vs. middle,
t(28) = 2.82, P = 0.004, Cohen’s d = 0.52) and primacy effects (ini-
tial vs. middle, t(28) = 3.81, P < 0.001, Cohen’s d = 0.71) (Fig. 2D).
By examining the pattern of errors, we found that subjects were
most likely to confuse items between adjacent locations (237
trials, 13.62% of total trials), followed by within-location swap
errors (123 trials, 7.07% of total trials) (Fig. 2E). These results
strongly suggest that subjects indeed relied on the 10 locations
to encode the words.

A different pattern of results was found for the behavioral
data during the baseline test. Specifically, we found a signif-
icant set by serial position interaction (F(3.27, 91.47) = 11.11,
P < 0.0001, η2 = 0.11), indicating only a primacy effect in set 1
(initial vs. middle/final, ts > 5.21, Ps < 0.001), but not in sets 2
and 3 (ts < 1.78, Ps > 0.05) (Supplementary Fig. 2C). No significant
within-location swap error was found (Supplementary Fig. 2D).
These results suggest that before practice the 30 words were
encoded into a single list, rather than based on the 10 locations.
Across the baseline and 3 training sessions, the location-based
pattern gradually emerged (Supplementary Figs 2–5), showing
increased ratios of within-location swap errors to overall errors
(Supplementary Fig. 1B). Together, our behavioral data suggest
that subjects effectively learned to use the method of loci to

encode the word order, which not only improved the overall
performance but also changed the behavioral patterns.

fMRI Results

Hippocampal Contributions to Temporal Order Memory
The above behavioral evidence suggests that subjects indeed
used the method of loci strategy to aid memory encoding. We
then turned to the fMRI data to examine how the employment
of this strategy affects activity levels and stimulus-specific
representations in hippocampal subfields. The hippocampus
and surrounding MTL areas were segmented into 5 regions,
including CA1, CA23DG, alEC, pmEC, and PHC (Fig. 3A). The
ROI analysis in subjects’ native space revealed marginally
significant subsequent memory effects (SME) in CA23DG
(t(28) = 2.35, P = 0.026, corrected P = 0.074, Cohen’s d = 0.44)
and PHC (t(28) = 2.29, P = 0.030, corrected P = 0.074, Cohen’s
d = 0.43), with subsequently remembered items showing
greater activity than subsequently forgotten items (Fig. 3B).
Whole-brain univariate analysis in standardized MNI space
revealed a significant SME in the left parahippocampal gyrus,
the left frontal medial cortex, and the left orbital frontal
cortex (FWE-corrected for multiple comparisons), consistent
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Figure 3. ROIs segmentation and univariate effects of temporal memory. (A) Segmentation of hippocampus and adjacent MTL areas. The top 2 panels show an example
of segmentation from one subject, which was overlaid onto the subject’s T2 image (coronal plane). The hippocampus and surrounding MTL areas were segmented into
CA1, CA2, CA3, DG, EC, and PHC using ASHS (Yushkevich et al. 2015). CA2, CA3, and DG were combined because they could not be unambiguously distinguished. The
bottom panel shows an example of an EC segment, which was overlaid onto the subject’s T1 image (sagittal plane). The EC was segmented into alEC and pmEC, based

on published masks (Maass et al. 2015). The masks were resampled and coregistered to each subject’s native space and were further intersected with the EC mask
generated by ASHS to improve precision. (B) SME (remembered > forgotten). (C) Retrieval success effects (remembered > forgotten). Each dot represents one subject
and the bars represent group means. Error bars indicate averaged within-subject standard errors. ∗P < 0.05 uncorrected. ∗∗P < 0.01 uncorrected.

with previous observations (Jenkins and Ranganath 2010;
Supplementary Fig. 6A; Supplementary Table 1).

During retrieval, we found that the CA1 (t(28) = 2.50, P = 0.018,
corrected P = 0.046, Cohen’s d = 0.46) and CA23DG (t(28) = 2.84,
P = 0.008, corrected P = 0.042, Cohen’s d = 0.53) were more active
during remembered than forgotten items (Fig. 3C). Whole-
brain univariate analysis revealed several additional brain
regions for this contrast, including the bilateral supramarginal
gyrus (SMG), bilateral superior parietal lobule (SPL), bilateral
lateral occipital cortex (LOC), and bilateral frontal pole (FP)
(Supplementary Fig. 6B; Supplementary Table 2). No significant
activation was found in the caudate during either encoding or
retrieval.

Previous research has revealed stronger hippocampus and
PHC activities for scenes than for objects (Zeidman and Maguire
2016). Accordingly, we also conducted a 2 (landmark type: objec-
t/scene) × 2 (memory condition: remembered/forgotten) ANOVA
in the ROI analysis. This analysis revealed significant main
effects of landmark type, but no memory by landmark type
interactions (Ps > 0.135) (Supplementary Fig. 7).

Hippocampal Representations of Structured Event Sequences
Having shown the involvement of the hippocampus in temporal
order memory, we further examined the specific hippocampal
representations that supported temporal order memory. In the
method of loci strategy, the routes and landmarks were not

presented to the subjects during either encoding or retrieval.
However, the well-learned mental route could be reactivated and
linked with the to-be-learnt words during encoding and again
reinstated during retrieval. Both the representations of spatial
location and their sequential order/distance are referred as the
representations of event structure, which are acquired via the
repeated practice of the method of loci mnemonics (Bellmund
et al. 2019).

In the first analysis, we examined how the neural pattern
similarity was modulated by the distance between 2 locations
in the well-trained sequence (Deuker et al. 2016; Bellmund
et al. 2019). Note that distance here refers to the ordinal
distance between 2 locations (ranging from 1 to 9) rather than
their Euclidean or geodesic distance in the real world. We
compared the pattern similarity of words that were encoded
at near distance (i.e., ordinal distance = 1), middle distance (i.e.,
2 ≤ ordinal distance ≤3), and far distance (i.e., ordinal distance
>3) (Fig. 4A). Since the locations are different for all pairs, this
contrast between near versus middle versus far pairs revealed
the representation of sequential distance rather than location
identity. This analysis was done across runs, so the pattern
similarity should not be affected by intrinsic autocorrelations
of the blood oxygen level-dependent (BOLD) signal or by
the differences in the temporal context. Based on previous
studies (Deuker et al. 2016; Bellmund et al. 2019), we would
predict greater pattern similarity for near-distance pairs than
far-distance pairs. Alternatively, the near-distance pairs might
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Figure 4. Hippocampal representations of structured location sequences during encoding and retrieval. (A) Schematic depiction of word pairs depending on the distance
of the associated method of loci locations. Words in a pair are always from different runs. Same: same-location pairs; Near: near-distance pairs (ordinal distance = 1);
Middle: middle-distance pairs (2 ≤ ordinal distance ≤ 3); Far: far-distance pairs (ordinal distance > 3). (B) Sequence order representations in CA23DG, but not CA1.

The CA23DG region showed higher pattern similarity for far-distance pairs than near- and middle-distance pairs. (C) Spatial location representations in PHC: higher
similarity for same-location than near-distance pairs during encoding, but reversed pattern during retrieval. (D) Spatial location representations in CA1, but not CA23DG.
Each line represents one subject and the bars represent the group means. Each dot represents one subject and the bars represent the group means. Error bars indicate
averaged within-subject standard errors. ∗P < 0.05; ∗∗P < 0.01.

show lower pattern similarity, so subjects could differentiate the
temporal order of adjacent items.

We found that the CA23DG region showed a main effect of
location distance during encoding (F(1.80,50.49) = 5.40, P = 0.009,
corrected P = 0.047, η2 = 0.03). Post hoc t-tests (Tukey HSD)
showed lower pattern similarity for near-distance pairs than
for far-distance pairs (t(28) = −2.93, P = 0.018, Cohen’s d = 0.54)
and lower pattern similarity for middle-distance pairs than
for far-distance pairs (t(28) =−3.30, P = 0.007, Cohen’s d = 0.61),
but no difference between near- and middle-distance pairs
(t(28) = 0.07, P = 0.998) (Fig. 4B). No significant location distance
effect was found in CA1 (F(1.91, 53.39) = 0.668, P = 0.510) or in
other MTL subfields (Ps > 0.39). The region (CA1 vs. CA23DG)
by location distance interaction was marginally significant
(F(1.64, 45.87) = 3.20, P = 0.060). Note that this result is not
critically dependent on how the near-, middle-, and far-distance
were defined, as similar results were found with different
criteria (Supplementary Fig. 8). A reverse pattern was found in
neocortical regions during encoding, with greater neural pattern
similarity for near-distance pairs than far-distance pairs in the

right occipital pole (OP), bilateral LOC, left SMG/MTG, and left FP
(Supplementary Fig. 9; Supplementary Table 3). No significant
effect of location distance was found during retrieval.

In a second analysis, we were to examine whether the rep-
resentation of spatial locations could be identified in the hip-
pocampal subfields. However, since the spatial locations in the
present study inherently carried temporal information, a com-
parison on the pattern similarity of items in the same loca-
tion with that in different locations was inevitably affected
by their differences in the sequential distance (the sequential
distance for same-location pairs is 0). To minimize the influ-
ence of sequential distance, we compared the pattern similarity
of items sharing the same location across 2 runs (i.e., same-
location pairs) with those encoding adjacent but different loca-
tions (i.e., near-distance pairs, ordinal distance = 1; Fig. 4A). This
analysis could be performed during both encoding and retrieval
(according to the temporal distance during encoding). Again, this
cross-run pattern similarity should not be affected by intrinsic
autocorrelations of the BOLD signal or by the differences in the
temporal context. Based on previous studies on hippocampal
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Hippocampal Representations of Event Structure Liu et al. 9

spatial representation (Chanales et al. 2017; Thavabalasingam
et al. 2018), we could predict greater pattern similarity for same-
location pairs than near-distance pairs. Alternatively, since 3
words were encoded in each locus, the hippocampus might
show lower pattern similarity for same-location pairs than near-
distance pairs, so subjects could avoid within-location swap
errors (Favila et al. 2016).

We found that the PHC showed greater pattern similarity for
same-location pairs than near-distance pairs during encoding
(t(28) = 3.42, P = 0.002, corrected P = 0.010, Cohen’s d = 0.64), while
a reverse pattern was found during retrieval (t(24) = −2.61,
P = 0.015, corrected P = 0.039, Cohen’s d = 0.52; 4 subjects were
excluded from this analysis due to fewer than 10 trials in any
condition, see Supplementary Table 4) (Fig. 4C). Lower pattern
similarity for same-location pairs than near-distance pairs
during retrieval was also found in CA1 (t(24) = −2.81, P = 0.010,
corrected P = 0.039, Cohen’s d = 0.56), but not in CA23DG
(t(24) = 0.37, P = 0.713) (Fig. 4D), and there was a marginally
significant region (CA1 vs. CA23DG) by location interaction
(F(1,24) = 4.07, P = 0.055). Whole-brain searchlight analysis did
not reveal any representation of location identity elsewhere in
the brain.

To summarize, the above analyses revealed that the
hippocampus subfields contained the representation of event
structure: Whereas the CA1 contained information about the
location identity, the CA23DG were sensitive to the sequential
distance of the locations.

Hippocampal Sequence Boundary Effects during Encoding
In addition to spatial location and distance, the location struc-
ture also contains sequence boundaries. Unlike previous studies
where the boundary was introduced by background context
or different sequences (Ezzyat and Davachi 2014; Hsieh et al.
2014), the boundary in the current study was introduced by
the repetition of the location sequence. That is, when the 11th
word was presented, subjects would return to the first location,
which would break the sequence contiguity. As a result, for a
given temporal distance (e.g., 4), we can construct both within-
boundary pairs (e.g., word 6 and word 10) and cross-boundary
pairs (e.g., word 8 and word 12). Please note that the match of
temporal distance would control the effect of autocorrelation of
fMRI BOLD response. Since the items were randomly presented
during retrieval, the temporal sequence was broken and no
sequence boundary was still present; this analysis was only
conducted for the encoding period.

To compare within versus cross-boundary pairs of matching
distances, we analyzed temporal distances of 4–7 ordinal
positions during encoding (Fig. 5A; Supplementary Table 5).
Following a previous study (Ezzyat and Davachi 2014), we
predicted that the similarity of neural representations would
be higher for within-boundary pairs than cross-boundary pairs.
Supporting this hypothesis, this effect was found in both
CA1 (t(28) = 3.70, P < 0.001, corrected P = 0.002, Cohen’s d = 0.69)
and CA23DG (t(28) = 4.37, P < 0.001, corrected P < 0.001, Cohen’s
d = 0.81) (Fig. 5B). This effect was specific to the hippocampus
and did not occur in EC or PHC, or in any other brain region in
the whole-brain analysis.

Hippocampal Temporal Context Reinstatement during Retrieval
The above analyses reveal that hippocampal representational
patterns are modified according to the well-trained structured
location sequence, exhibiting representational transformation

of spatial and sequential information, as well as sequence
boundary effect to aid temporal order memory. In the following
analysis, we further examined whether representations in
hippocampal subfields also support another type of temporal
order, that is, the episodic-like temporal context formed through
one-shot learning. Due to the autocorrelation of the fMRI BOLD
signal, we could not directly compare the representational
similarity of temporally adjacent pairs with more distant pairs.
Instead, previous studies have shown that the episodic-like
temporal context formed during encoding could be reinstated
during retrieval (Manning et al. 2011). We thus could examine
the effects of temporal context during retrieval. In particular,
for a given temporal distance (interval between 2 trials) during
retrieval (TDr, ranging from 1 to 29 trials), we grouped the
pairs, according to their temporal distance during encoding
(TDe), into short (TDe ≤ 3 trials) and long (4 ≤ TDe ≤ 6 trials)
conditions (Fig. 6A). This grouping was motivated by the small
number of trials of each individual distance and by previous
findings that effects of temporal contexts decayed quickly
beyond 3 items (Manning et al. 2011). We restricted the analysis
to correct trials and TDr ≤ 20 trials, as there were very few pairs
for TDr > 20 trials (Supplementary Table 6). Each participant’s
pattern similarity was first averaged according to the 2 TDe
conditions in each TDr and then was averaged across all
the TDrs. We predicted that the brain regions containing
representations of temporal context should show higher pattern
similarity for short-distance pairs than long-distance pairs.
Consistent with this prediction, we found this pattern in CA1
(t(23) = 3.17, P = 0.004, corrected P = 0.021, Cohen’s d = 0.65; 4
subjects were excluded due to fewer than 10 trials in any
condition, and one subject was excluded as an outlier, that is,
2.5 SDs above the mean, see Supplementary Table 7) (Fig. 6B). No
temporal context reinstatement was found in any other brain
region.

Control Analysis: The Hippocampal Representations
Were Not Affected by the Landmark Type or Word
Semantics

We did 2 control analyses to make sure our results were not
confounded by the landmark type or the semantics of words
in the study list. First, since 5 objects and 5 scenes were
used as landmarks, the pattern similarity could be affected
by different pair types (object–object, scene–scene, or object–
scene). However, no significant effects of pair types were found
in any of the above analyses in any hippocampal subregions
(Supplementary Tables 8–12), and the statistics were very
similar whether or not to control the pair types.

Second, in all the above analyses, we only considered
the representation of the event structure and the temporal
context, but not the representations of the word that were
linked into each location, as previous studies did not reveal
strong item representations in the hippocampus. To make sure
the pattern similarity of hippocampal subfields represented
the event structure and temporal context, rather than the
semantic information, we conducted a latent semantic analysis
to generate the semantic similarity matrix of the words, using a
well-trained Chinese word embedding model, Directional Skip-
Gram (Song et al. 2018). Correlating the semantic similarity
with the neural representational similarity (Supplementary
Method and Supplementary Fig. 10A) did not reveal significant
semantic representation in any hippocampal subfield (Ps > 0.05)
(Supplementary Fig. 10B). In addition, all the above results
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Figure 5. Sequence boundary representation during encoding. (A) Schematic depiction of within-boundary and cross-boundary word pairs. The black lines show the

boundaries of the location sequence. (B) Pattern similarity for within-boundary and cross-boundary pairs in CA1 and CA23DG, showing higher pattern similarity for
within-boundary pairs than cross-boundary pairs. Each line represents one subject and the bars represent the group means. Error bars indicate averaged within-subject
standard errors. ∗∗P < 0.01. ∗∗∗P < 0.001.

Figure 6. Temporal context reinstatement during retrieval. (A) Schematic depiction of temporal distance during encoding. For all pairs of trials with a given temporal
distance during retrieval, they could be grouped, based on their temporal distance during encoding, into short-distance (TDe ≤ 3) or long-distance (4 ≤ TDe ≤ 6) pairs.
The pattern similarity for each temporal distance during retrieval was first averaged and then averaged across all temporal distances. (B) Pattern similarity for short

and long TDe pairs during retrieval. The CA1 area showed greater pattern similarity for short-distance pairs than long-distance pairs. Each line represents one subject
and the bars represent the group means. Error bars indicate averaged within-subject standard errors. ∗P < 0.05.

remained unchanged after controlling the semantic similarity.
Interestingly, we found significant semantic representations
during encoding in the ventromedial prefrontal cortex (vmPFC;
r(28) = 0.017, P = 0.032) and a marginally significant effect in the
SPL (r(28) = 0.020, P = 0.063).

Discussion
Inspired by the ancient mnemonics of MOL, the current study
revealed a novel neural mechanism that supports precise
temporal order memory of random events. The specific behavior
patterns (e.g., primacy and recency effect according to the
location sequence, and the high ratio of within-location swap
errors to overall errors) indicated that subjects were correctly
using the method of loci after extensive practices. The neural
data indicate that, in addition to the hippocampal temporal

context binding, the hippocampus also contained event
structure representations during temporal order memory. These
representations were shaped by 2 types of representational
transformation processes acting on spatial locations and
sequential sequences, which were associated with CA1 and
CA23DG, respectively. These results emphasize the multiplexed
and flexible nature of hippocampal representations in the
service of precise temporal order memory.

Hippocampal Representation of Well-Trained Event
Structure

Mounting evidence suggests that the hippocampal–entorhinal
system can explicitly represent spatial sequences. First, the
hippocampal–entorhinal system contains place cells (O’Keefe
and Dostrovsky 1971) and grid cells (Hafting et al. 2005) that
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Hippocampal Representations of Event Structure Liu et al. 11

provide 2 complementary representational metrics of spatial
locations and distances, respectively. Second, the hippocampus
exhibits specific neural mechanisms such as cross-frequency
coupling of high-frequency bursts of activity to the phase of low-
frequency oscillations, which may support the representation
and pairwise binding of event sequences (Jensen and Lisman
2005; Axmacher et al. 2010; Heusser et al. 2016). Third, rodent
studies analyzed activity while animals traveled along with well-
trained spatiotemporal sequences and found that CA1 “time
cells” showed context-specific activities at unique time points
of an experience (MacDonald et al. 2011; MacDonald et al. 2013).
A recent study revealed both types of temporal order represen-
tations, that is, encoding both temporal flow and trial structure,
by the same alEC neurons (Tsao et al. 2018). Interestingly, in
well-trained structured experiences, the encoding of temporal
flow across trials was reduced, whereas the encoding of the trial
structure was increased. Human neuroimaging studies have also
found that both hippocampus (Deuker et al. 2016) and alEC (Bell-
mund et al. 2019) can represent well-studied event sequences
or event maps. The hippocampus exhibits increased activity
during events that violate an expected sequence (Kumaran and
Maguire 2006; Chen et al. 2015) and shows increased within-
sequence similarity and decreased between-sequence similarity
(Kalm et al. 2013), as well as greater pattern similarity between
adjacent items in well-learned object sequences than random
sequences (Hsieh et al. 2014). Finally, the hippocampal represen-
tation is sensitive to sequence boundaries (Ezzyat and Davachi
2014; Hsieh et al. 2014).

Our results significantly extend these observations. First, the
current study revealed all 3 types of event sequence represen-
tations in one single study, including spatial location repre-
sentations, sequential distance representations, and sequence
boundary representations. Together with the representation of
temporal context, our study revealed the rich multiplexing of
spatial, temporal, and sequential representations in the human
hippocampus. This might not be possible without using the
effective method of loci strategy.

Second, unlike previous studies, the loci map was not pre-
sented while subjects were encoding and retrieving the word
list, suggesting that these event structure representations could
be reinstated via conscious memory retrieval, resembling the
spontaneous sequence replay during awake resting state and
sleep in rodents (Skaggs and McNaughton 1996; Karlsson and
Frank 2009) and humans (Kurth-Nelson et al. 2016; Liu et al.
2019). Third, while representations of sequential distance were
restricted to CA23DG, we found significant temporal boundary
effects in both CA1 and CA23DG. This is consistent with the
proposal that both CA1 and CA3 are involved when memo-
ries for events must be held over long intervals (Farovik et al.
2010). Finally, several recent studies have implicated the alEC
in temporal order memory (Tsao et al. 2018; Bellmund et al.
2019; Montchal et al. 2019), by representing the sequential event
structure. The current study mainly found sequence representa-
tions in CA23DG. One obvious characteristic of the current study
is that the sequential event structure was used as a scaffold
for temporal order memory of words, with an emphasis on the
binding of items into a structured context. Consistently, both
human imaging and rodent studies have also implicated the
hippocampus in context coding (Yonelinas et al. 2019). Future
studies should further examine the role of alEC and hippocam-
pal subfields in event structure representations and context
binding.

Representational Transformations during the Use
of the Method of Loci

Strikingly, we found clear evidence of representational trans-
formations for both spatial and sequential information dur-
ing the use of the method of loci. Transformation of spatial
representations was found in CA1 during retrieval, revealing
a pattern that is different from that in PHC during encod-
ing. In the current study, each location was associated with 3
words, and consequently, there were significant within-location
swap errors. To achieve high accuracy, the representations thus
needed to be reconfigured in order to enable the encoding of
multiple items into the same location and yet keep them sepa-
rate. This requirement is similar to that during path disambigua-
tion in both rodents and humans. For example, hippocampal
representations of overlapping routes (Chanales et al. 2017) or
object sequences (Hsieh et al. 2014) become more distinct than
nonoverlapping routes/sequences. A previous rodent study also
revealed that hippocampal neurons encoded different episodes
in a task of overlapping sequences of odors (Ginther et al. 2011).

In addition to spatial representations, we observed signifi-
cant representational transformations for sequences in CA23DG,
a region that has been implicated in temporal pattern separation
before (Madar et al. 2019). Unlikely the previous studies which
found greater pattern similarity for temporally closer items in
both alEC and hippocampus (Deuker et al. 2016; Bellmund et al.
2019), representations of more adjacent representations were
more distinct in CA23DG. This pattern was different from the
temporal context representation in CA1, which showed higher
similarity for temporally adjacent than for more distant items.
Together with the transformations of spatial representation,
our results suggest that hippocampal representations can be
flexibly configured in order to support temporal order memory.
Interestingly, several cortical regions, including the right OP,
bilateral LOC, left SMG/MTG, and left FP, showed greater pattern
similarity to locations with a shorter distance, consistent with
several previous studies (Jenkins and Ranganath 2010; Foudil
et al. 2020). Future studies should further examine how the
hippocampus and neocortical regions work together to support
precise temporal order memory.

The flexible employment and reconfiguration of hippocam-
pal spatial and temporal representations in support of episodic
memory have been frequently reported in the literature. For
example, one study found lower pattern similarity for spatially
near items than spatially far items, but an opposite pattern
for temporal representations (Kyle et al. 2015), whereas another
study found greater pattern similarity for both spatially and
temporally adjacent item pairs (Deuker et al. 2016). Still, the
CA23DG showed lower pattern similarity when both spatial
and temporal information was correctly retrieved (Copara et al.
2014). Another study reported that CA1 showed greater pattern
similarity for trials that shared the same episodic context as
compared to those with different episodic contexts, whereas
CA23DG showed the opposite pattern (Dimsdale-Zucker et al.
2018). Clearly, future studies are required to examine in greater
detail when hippocampal representations match temporal and
spatial distances and when they disentangle these distances.

It should be noted that the isolation of spatial representa-
tions in the current study was achieved by comparing the same-
location pairs with the near-distance pairs. As a result, we could
not completely exclude the possibility that this contrast was also
affected by the differences in sequential distance. Despite this
caveat, we noticed that the CA1 was not sensitive to sequential
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distance, suggesting the differences between the same-location
and near-distance pairs in CA1 were mainly contributed by the
location identity. Future studies could use a sequence with over-
lapping locations to disentangle the representation of spatial
locations and sequential distances.

CA1 Temporal Context Reinstatement and Temporal
Order Memory

The current study revealed clear evidence of temporal context
reinstatement in the hippocampal CA1 area, with greater pat-
tern similarity for item pairs studied at closer as compared
to more distant temporal intervals. According to the temporal
context or temporal drift model (Howard and Kahana 2002;
Howard et al. 2005), an episodic element is “tagged” to the
random and slowly changing neuronal background activity that
is present at the time of encoding (Mankin et al. 2012). This
temporal context is then reinstated during recall and provides
information about the temporal distance by assessing the degree
of disparity between the reinstated and the present neuronal
background activity (Manning et al. 2011). Supporting the role
of hippocampal temporal context in temporal order judgment,
it has been shown that 1) lower hippocampal pattern similar-
ity (i.e., higher representational distinctiveness) was associated
with more accurate temporal order judgments (Jenkins and Ran-
ganath 2016); 2) changes in EC pattern similarity during encod-
ing of a narrative were correlated with later duration estimates
between events (Lositsky et al. 2016); and 3) manipulation of
context shifts by changing background images increased subjec-
tive feelings of temporal distance (Ezzyat and Davachi 2014). Our
results add to this literature by showing hippocampal temporal
context representations when subjects were asked to rely on
existing sequence structure, suggesting that temporal context
binding might be automatic.

Integration of Multiple Representational Formats
Supports Temporal Order Memory

The current studies revealed rich spatial and temporal sequence
coding in the hippocampus in a single memory task. A further
question is how these representations are integrated to support
highly precise episodic-like temporal order memory, which is
usually not possible if not relying on the method of loci strat-
egy. According to the cognitive map theory, the spatial rep-
resentational formats of the hippocampal formation can sup-
port flexible cognition and behavior, including episodic memory
(O’Keefe and Nadel 1978; Bellmund et al. 2018). Accordingly, it
has been found that the same neurons represent information
about both space and time (Kraus et al. 2013). This suggests that
the 2 dimensions might be integrated into a common coding
scheme of spatiotemporal proximity in the hippocampus, sup-
porting the formation of hierarchical structures in a memory
space (Eichenbaum et al. 1999; McKenzie et al. 2014; Collin et al.
2015). Human fMRI studies found that the spatial and temporal
aspects of autobiographical experiences are coded within the
hippocampus across various scales of magnitude, up to 1 month
in time and 30 km in space (Nielson et al. 2015). After learning
spatiotemporal trajectories in a large-scale virtual city, subject-
specific neural similarity in the hippocampus scales with the
remembered proximity of events in space and time (Deuker
et al. 2016). The joint coding of space and temporal context
found in CA1 in the current study further suggests that spatial

information can be combined with temporal contexts in order
to support temporal order memory.

Beyond the representation of space and time, our study fur-
ther suggests that the learned structured event sequence may
serve as a scaffold for the organization of temporal memory.
In addition, a previous study showed that spatial and episodic
information might be separately represented in different CA1
neurons, suggesting that in addition to place cells, other hip-
pocampal neurons are involved in supporting episodic context
coding (Tanaka et al. 2018). Finally, although the method of loci
might not be commonly used, it represents just one particularly
prominent case of learned and structured knowledge—that is,
schemas—which have been consistently shown to be combined
with learned material to facilitate episodic memory (Gilboa and
Marlatte 2017; Xue 2018). This could be achieved via interactions
between the hippocampus and vmPFC (van Kesteren et al. 2010;
Preston and Eichenbaum 2013). Interestingly, we also found sig-
nificant representations of learned words in the vmPFC during
encoding. It is likely that via the interaction between vmPFC and
hippocampus, the to-be-learnt words could be effectively linked
to the well-learned structure, via semantic-based associations.
All these rich representations might be integrated with the
ongoing hippocampal oscillation to form an integrated sequence
of neuronal activities that shapes our temporal order memory
(Buzsáki and Llinás 2017). With proper behavioral and cognitive
strategies, we could effectively engage these effective mech-
anisms to achieve striking memory outcomes. Future studies
should uncover the intricate interaction of externally driven and
internally organized sequences (that are influenced by long-
term learning) in shaping our experiences and memories. For
example, future studies could examine how the method of
loci could modulate the effect of temporal distance on tem-
poral order judgment (Kwok and Macaluso 2015). Furthermore,
researchers could try to translate our paradigm into rodent or
primate studies to uncover the neuronal mechanisms.

To summarize, using the method of loci to strongly engage
the hippocampus, the current study uncovered rich and mul-
tiplexed spatial, temporal, and structured sequence represen-
tations in the hippocampus. Through transformations of spa-
tial and sequential representations, the hippocampus generates
robust and distinctive episodic contexts that are linked to the
learned material. This provides a novel neural mechanism by
which humans can achieve precise temporal order memory and
also helps to uncover the mystery of this ancient mnemonic
trick.
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