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C O G N I T I V E  N E U R O S C I E N C E

Theta oscillations synchronize human medial prefrontal 
cortex and amygdala during fear learning
Si Chen1,2, Zheng Tan1,2, Wenran Xia1,2, Carlos Alexandre Gomes3, Xilei Zhang1, Wenjing Zhou4, 
Shuli Liang5, Nikolai Axmacher3,6, Liang Wang1,2*

Numerous animal studies have demonstrated that fear acquisition and expression rely on the coordinated activity 
of medial prefrontal cortex (mPFC) and amygdala and that theta oscillations support interregional commu-
nication within the fear network. However, it remains unclear whether these results can be generalized to fear 
learning in humans. We addressed this question using intracranial electroencephalography recordings in 
13 patients with epilepsy during a fear conditioning paradigm. We observed increased power and inter-
regional synchronization of amygdala and mPFC in theta (4 to 8 hertz) oscillations for conditioned stimulus (CS+) 
versus CS−. Analysis of information flow revealed that the dorsal mPFC (dmPFC) led amygdala activity in theta 
oscillations. Last, a computational model showed that trial-by-trial changes in amygdala theta oscillations predicted 
the model-based associability (i.e., learning rate). This study provides compelling evidence that theta oscillations 
within and between amygdala, ventral mPFC, and dmPFC constitute a general mechanism of fear learning across 
species.

INTRODUCTION
Neural oscillations have been suggested as a mechanism for the co-
ordination of cell assemblies that synchronizes spiking activity and 
gates interregional information transfer (1). Numerous animal studies 
have demonstrated that fear learning and expression of fear rely on 
the coordinated activity of amygdala and medial prefrontal cortex 
(mPFC) (2–5) and that theta (4 to 8 Hz) oscillations support com-
munication within this network (2–4, 6). A recent nonhuman primate 
study showed that amygdala spikes are synchronized with mPFC 
activity and transfer error signals to support aversive learning (3). 
An involvement of mPFC and amygdala in fear expression has also 
been observed in human neuroimaging (7–10) and has been indi-
rectly inferred from scalp electroencephalography (EEG) studies 
(11, 12). Within the mPFC, two subregions have been proposed to 
play opposing functions in fear memory: The rodent prelimbic cortex, 
which is homologous to human dorsal mPFC (dmPFC) (13), partic-
ipates in fear expression (14). By contrast, the rodent infralimbic 
cortex, homologous to human ventral mPFC (vmPFC), is responsible 
for fear extinction (15).

Because of the location of the fear network in deep brain regions, 
direct neurophysiological evidence on fear learning is scarce in hu-
mans. Intracranial EEG (iEEG) recordings in patients with epilepsy 
are pivotal for gaining direct access to these areas. However, while 
several recent iEEG studies investigated neural mechanisms under-
lying the role of emotions for declarative memory formation (16–18), 
the basic mechanisms of human fear learning have remained largely 
unexplored. Specifically, the neurophysiological signals that may 

govern communications between amygdala, vmPFC, and dmPFC 
during human fear learning are still unknown. In addition, some 
studies suggest that when organisms learn cue-reinforcer associations, 
they apply a rule known as associability that is dynamically deter-
mined by trial-wise prediction errors (19). Recent neuroimaging studies 
using associability-based computational models demonstrated that 
the human mPFC is implicated in fear extinction (20), but the role 
of amygdala is less computationally characterized in fear learning, 
especially for iEEG data.

To address these questions, we used a classic fear conditioning 
paradigm (Fig. 1A). On the basis of iEEG data simultaneously re-
corded from dmPFC, vmPFC, and amygdala (Fig. 1B and fig. S1), 
we found that human fear learning relies on information transfer 
via theta oscillations between the amygdala and two areas in the 
mPFC, providing strong evidence for the employment of theta syn-
chronization during fear learning in the human brain.

RESULTS
Skin conductance responses during fear learning
Thirteen patients with epilepsy participated in the fear conditioning 
task (Fig. 1A), and in 11 of them, skin conduct responses (SCRs) 
could be recorded (table S1 and fig. S2). To avoid the confounding 
effect of electric stimulation on SCR, we excluded the trials paired 
with stimulation from SCR analysis. The grand average of the SCRs 
showed successful fear acquisition in 11 patients (Wilcoxon signed-
rank test, P = 0.04; Fig. 1C). Among them, seven patients showed 
successful fear acquisition as indicated by a differential SCR to the 
CS+ relative to the CS− (difference > 0.05 s) during the second half 
of acquisition, while four patients failed to show conditioned re-
sponses (CRs).

To explore the trial-by-trial learning dynamics of SCRs, we im-
plemented SCR analyses via psychophysiological modeling (PsPM), 
which has been shown to be more sensitive and objective than con-
ventional manual peak scoring methods of SCR data (21, 22). We 
analyzed these data in the entire group of individuals (i.e., including 
both learners and nonlearners) using a linear mixed-effects (LME) 
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model with trial number and condition (CS+ versus CS−) as fixed 
effects and “subject” as random effect (fig. S3A). This analysis re-
vealed a significant interaction between condition and trial number 
[F(1,2250.1) = 9.11, P = 0.002], indicating significant learning effects 
on the condition differences. We also conducted a linear trend analysis 
and found a significant linear trend for CS+ items [t(2248) = 2.69, 
P = 0.007] but not for CS− items [t(2248) = −1.41, P = 0.16].

Next, we separately tested learning effects in the first and the sec-
ond half of the data. Again, we applied LME model with trial num-
ber and condition (CS+ versus CS−) as fixed effects and subject as 
random effect. For both the first and the second half, we found a 
significant condition effect [first half: t(2248) = 2.69, P = 0.007; sec-
ond half: t(2250) = −6.74, P < 0.001; fig. S3B].

Last, we directly compared learning effects in the first and the 
second half of the data. We applied LME model with trial number, 
condition (CS+ versus CS−), and “learning phase” (first versus sec-
ond half) as fixed effects and subject as random effect. This analysis 
showed that the condition difference was significantly more pro-
nounced in the second than the first half of the data [t(2250) = 2.45, 
P = 0.014], which suggests that learning effects become more stable 
in the second half. Therefore, we focused on the second half of trials 
in the following analysis.

Theta oscillations in amygdala, vmPFC, and dmPFC during 
fear learning
We then examined iEEG responses in amygdala, dmPFC, and vmPFC.  
We built an LME model with condition (CS+ versus CS−) as fixed 
effect and individual and electrode as random effects. When LME 
model was applied to the time-frequency contrast map (CS+ versus 
CS−) across the second half of trials, clusters with significantly in-
creased power in the CS+ condition were found in all regions: In the 
amygdala, a significant cluster was found between 700 and 1700 ms 
and between 3 and 12 Hz (P = 0.042; Fig. 2A, top row); in the vmPFC, 
between 600 and 2000 ms and between 2 and 22 Hz (P = 0.033; 
Fig. 2A, middle row); and in the dmPFC, between 300 and 2000 ms 
and between 2 and 7 Hz (P = 0.026; Fig. 2A, bottom row). These 
clusters were dominated by theta activity, as indicated by the per-
centage area of the respective clusters that fell in the theta frequency 
range: Using a definition of theta as 4 to 8 Hz, we found 48, 42, and 
74% for amygdala, vmPFC, and dmPFC, respectively; when a broader 
definition of theta was applied that is more in line with previous 
results from animals (2 to 12 Hz) (23), the area percentages increased 

to 91, 82, and 100% for these three regions. When theta was quan-
titatively averaged across power between 4 and 8 Hz and between 
0 and 2000 ms after cue onset, this analysis revealed increased theta 
power in amygdala [LME, t(44) = 6.92, P = 1−8; Fig. 2B, left], 
vmPFC [LME, t(96) = 5.1, P = 1−6; Fig. 2B, middle], and dmPFC 
[LME, t(62) = 7.1, P = 1−9; Fig. 2B, right] for CS+ versus CS− 
across the second half of trials in which learning effects were more 
pronounced. In contrast, no significant clusters were found when 
the first half of trials was considered (fig. S5), possibly because con-
dition differences only started to emerge during this period. When 
we calculated learning effects on theta power across all trials, in-
cluding trials from the early conditioning phase, we again observed 
an increased power of theta oscillations in amygdala, dmPFC, and 
vmPFC [amygdala: t(44) = −2.83, P = 0.007; vmPFC: t(62) = −4.7, 
P = 1–5; dmPFC: t(96) = −2.7, P = 0.008; fig. S4]. While these effects 
were obtained using a white matter referencing scheme, we obtained 
the same effects when using a bipolar montage (fig. S6).

To analyze whether oscillatory activity in the theta band can ac-
tually be used to predict the patients’ performance in fear learning, 
we also performed a receiver operating characteristic (ROC) analysis. 
The area under the curve (AUC) was computed using a leave-one-
subject-out cross-validation scheme (chance = 0.5). We found that 
theta power in mPFC regions, but only by trend in the amygdala, 
distinguished learners from nonlearners (amygdala: AUC = 0.65, 
P = 0.09; dmPFC: AUC = 0.87, P < 0.001; vmPFC: AUC = 0.82, 
P < 0.001; fig. S7A).

Changes in theta power may be either due to narrow-band oscil-
lations or broad-band shifts in the 1/f spectrum, which putatively 
reflect different neural mechanisms and cognitive functions (24). To 
characterize theta responses during fear learning, we applied a pre-
viously established algorithm that disentangles theta oscillations from 
the background 1/f spectrum [“better oscillation detection method” 
(BOSC); (25)] (Fig. 3A). The amygdala showed a peak at 9 Hz in 
17.7 and 16.34% of the detection time for CS+ and CS−, respectively; 
dmPFC showed a peak at 5.5 Hz in 18.9% (CS+) and 17.7% (CS−) of 
the detection time; and vmPFC showed a peak at 6.5 Hz in 11.77% 
(CS+) and 11.61% (CS−) of the detection time (Fig. 3B). An ROC 
analysis revealed a higher frequency of those theta oscillations that 
showed the highest percentage of oscillation times in amygdala as 
compared to either dmPFC (AUC = 0.91, P < 0.001, permutation 
test; fig. S7B) or vmPFC (AUC = 0.8893, P < 0.001), with no differ-
ence between dmPFC and vmPFC (AUC = 0.43, P = 0.95).

Fig. 1. Schematic depiction of the experimental paradigm and SCR results. (A) Trial structure and timeline for a single CS trial. The visual stimulus was presented for 
4000 ms followed by an 8000- to 10,000-ms intertrial interval. A 15-ms electric stimulation (US) occurred at the end of 50% of all CS+ trials. (B) Depiction of electrode 
contact localizations in amygdala, vmPFC, and dmPFC for all 13 patients superimposed on a semitransparent MNI152 brain (as viewed from the left side). (C) Means 
(±SEM) CS-evoked SCRs during late acquisition over all patients (Wilcoxon signed-rank tests, P = 0.04). *P < 0.05.
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Fig. 2. Theta power in amygdala, dmPFC, and vmPFC during fear learning. (A) Group time-frequency spectrograms for CS+ condition (left), for CS− condition (middle), 
and contrast (CS+ versus CS−) with clusters after cluster-based permutation test for multiple comparison in amygdala (top), vmPFC (middle), and dmPFC (bottom) follow-
ing CS onset. For all three regions, only the largest cluster passed the permutation test (P < 0.05). (B) Averaged (±SEM) theta power (4 to 8 Hz) across electrode contacts 
during the 2000 ms following CS onset for CS+ and CS− conditions for the second half of trials in amygdala [left; LME, CS+ versus CS−: t(44) = 6.92, P = 1−8], vmPFC [middle; 
LME, CS+ versus CS−: t(96) = 5.1, P = 1−6], and dmPFC [right; LME, CS+ versus CS−: t(62) = 7.1, P = 1−9]. Red and blue open circles indicate electrode contact–wise data. 
(C) Averaged trial-by-trial theta power difference across electrode contacts in amygdala [left; LME, t(903) = 5.16, P = 2−7], vmPFC [middle; LME, t(1892) = 5.77, P = 9−9], and 
dmPFC [right; LME, t(1407) = 4.48, P = 8−6]. Black line is the best fitting line using the robust fit. ***P < 0.001. a.u., arbitrary units.
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Temporal dynamics of theta oscillations across learning
Next, we explored the dynamic profiles of theta oscillations in the 
three brain regions. All regions showed a significant increase in theta 
power throughout the learning phase [LME, amygdala: t(903) = 
5.16, P = 2−7; dmPFC: t(1892) = 5.77, P = 9−9; vmPFC: t(1407) = 4.48, 
P = 8−6; Fig. 2C]. As expected, patients who failed to discrimi-
nate CS+ from CS− did not show the increase in theta power for 
CS+ versus CS− in any of the three regions [LME and amygdala: 
t(28) = −1.64, P = 0.11; dmPFC: t(42) = −1.56, P = 0.13; vmPFC: 
t(42) = −4.1, P = 1−4; fig. S8A], nor did they show a gradual increase 
in the trial-by-trial analysis [LME, amygdala: t(658) = 1.43, P = 0.15; 
vmPFC: t(1016) = −2.2, P = 0.02; dmPFC: t(1057) = 1.66, P = 0.1; 
fig. S8B].

To investigate whether the theta onset covaries with the progres-
sion of learning, we divided the entire acquisition phase into six 
blocks, using a sliding window of 12 trials with 4 trials overlap. We 
then extracted the onsets of theta oscillations detected by BOSC and 
correlated them with the block number using LME model, with individuals 

and electrodes as random factors and “onset latencies” in the amyg-
dala, dmPFC, and vmPFC as dependent variables, respectively. We 
found that the latency of theta onsets covaried with the progression 
of learning in amygdala and vmPFC, specifically for CS+ trials but 
not for CS− trials [amygdala: CS+, t(107)  =  −4.67, P  =  8−6; CS−, 
t(108) = −1.44, P = 0.15; vmPFC: CS+, t(286) = −4.82, P = 2−6; 
CS−, t(289) = −1.35, P = 0.18; dmPFC: CS+, t(186) = −1.39, P = 0.17; 
CS−, t(187) = 1.79, P = 0.08; fig. S9A]. As learning proceeded, theta 
oscillations occurred at earlier latencies. Specifically, amygdala the-
ta oscillations had a latency of 670 ± 60 ms in the first block and 
360 ± 50 ms in the sixth block; vmPFC theta oscillations initially 
had a latency of 470 ± 40 ms in the first block and 280 ± 30 ms in the 
sixth block.

To investigate whether theta frequencies also covary with the 
progression of learning, we extracted the peak frequency in the 2- to 
12-Hz band of each electrode and correlated it with the block number 
using LME model, with individuals and electrodes as random factors 
and “theta peak” in the amygdala, dmPFC, and vmPFC, respectively, 

Fig. 3. Time characteristics of theta oscillations detected by BOSC. (A) Two example trials with theta oscillations after CS onset from different patients. Black, raw 
signal; red, low-frequency component of the raw signal (<10 Hz); green shading, time periods with theta oscillations detected by BOSC. (B) Percentage of time during 
which BOSC detected a given instantaneous frequency on all electrode contacts in amygdala (top), vmPFC (middle), and dmPFC (bottom). Red (CS+) or blue (CS−) line 
shows a summary plot across electrode contacts. (C) Learning-dependent increase in the overlap between time periods showing simultaneous theta oscillations in amygdala 
and dmPFC [LME, t(2494) = 9.49, P < 0.001] and amygdala-vmPFC [LME, t(5978) = 15.06, P < 0.001]. (D) Averaged (±SEM) onset (across electrode contacts) of theta oscilla-
tions detected by BOSC in three brain regions [LME, amygdala versus dmPFC: t(53) = 5.06, P = 5−6; amygdala versus vmPFC: t(70) = 4.69, P = 1−5; dmPFC versus vmPFC: 
t(86) = −1.32, P = 0.19]. ***P < 0.001.
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as dependent variable. Although absolute differences were relatively 
small, we found significant linear changes of peak frequencies across 
CS+ trials in the dmPFC and vmPFC but not in the amygdala [amygdala: 
CS+, t(112) = −1.59, P = 0.11; CS−, t(112) = −1.1, P = 0.27; vmPFC: 
CS+, t(292) = −2.16, P = 0.03; CS−, t(292) = −0.09, P = 0.93; dmPFC: 
CS+, t(190) = −2.84, P = 0.005; CS−, t(190) = 1.55, P = 0.12; fig. 
S9B]. Specifically, dmPFC theta oscillations had a peak frequency at 
6.93 ± 0.2 Hz in the first block and 5.97 ± 0.16 Hz in the sixth block; 
vmPFC theta oscillations initially had a peak frequency at 6.02  ± 
0.17 Hz in the first block and 5.57 ± 0.1 Hz in the sixth block. No 
differences were found for CS− trials (all P > 0.05).

We also tested whether time periods showing simultaneous 
narrow-band theta oscillations between all pairs of amygdala-dmPFC 
and amygdala-vmPFC contacts changed with learning. We found 
gradually increasing overlapping oscillatory time periods across trials 
for both amygdala-dmPFC contacts [LME, t(2494) = 9.49, P < 0.001; 
Fig. 3C] and amygdala-vmPFC contacts [LME, t(5978) = 15.06, 
P < 0.001; Fig. 3C].

Together, these results show clear evidence that human fear learn-
ing is associated with increased theta power in amygdala, vmPFC, 
and dmPFC. Theta effects exhibit higher frequencies in the amygdala 
than in the mPFC regions. Moreover, we found an increasing overlap 
between regional theta oscillations when learning proceeded, pro-
viding a neurophysiological basis for interregional communication.

Interregional theta synchronization and 
information transfer
We extracted the onset of detected theta oscillations and averaged 
over all contacts in each region. We found a shorter latency in the 
mPFC (dmPFC, 339.7 ms; vmPFC, 368.2 ms) and a longer latency 
in the amygdala (488.3 ms) [LME, amygdala versus dmPFC: t(53) = 
5.06, P = 5−6; amygdala versus vmPFC: t(70) = 4.69, P = 1−5; dmPFC 
versus vmPFC: t(86) = −1.32, P = 0.19; Fig. 3D]. These results indi-
cate that theta oscillations occur earlier in mPFC regions than in the 
amygdala, suggesting that amygdala responses are driven by oscilla-
tions in the mPFC. To directly test this, we analyzed functional in-
teractions between amygdala and the two mPFC regions. We measured 
imaginary coherence for CS+ versus CS− trials during the second 
half of trials and found significantly increased theta coherence be-
tween amygdala and vmPFC [t(228) = 5.03, P = 9−7; Fig. 4A, top] 
and between amygdala and dmPFC [LME, t(94) = 5.58, P = 2−7; 
Fig. 4A, bottom]. In addition, when we assessed the learning effects 
on theta coherence across all trials, we found significantly higher 
theta coherence between amygdala and dmPFC for CS+ versus CS− 
stimuli [t(94) = −2.73, P = 0.008; fig. S4, right]. However, theta co-
herence between amygdala and vmPFC was not significantly higher 
for CS+ versus CS− trials when all trials were taken into account 
[t(228) = 1.32, P = 0.19; fig. S4, left]. The theta-specific interregional 
synchronization was visible in the imaginary coherence spectrum 
between amygdala and vmPFC (P = 0.027 for the cluster in 4.6 to 5.0 Hz; 
P = 0.014 for the cluster in 6.1 to 7.0 Hz; Fig. 4B, top) and between 
amygdala and dmPFC (cluster-based permutation test, P = 0.005 
for the cluster in 4.6 to 6.5 Hz; Fig. 4B, bottom). Furthermore, theta 
coherence between amygdala and two mPFC regions increased sig-
nificantly across the entire learning phase [LME, amygdala and dmPFC: 
t(1896) = 1.96, P = 0.05; amygdala and vmPFC: t(4606) = 7.26, 
P = 4−13; Fig. 4C].

To further examine the directionality of information transfer be-
tween the amygdala and the two mPFC regions, we calculated the 

phase slope index (PSI). Comparing the CS+ with the CS− condition, 
we observed significantly more negative phase slopes from the amygdala 
to the dmPFC, indicating fear-related transfer of theta activity from 
dmPFC to amygdala (significant period, 20  to 1340 ms after CS+ 
onset; LME model with permutation test, all P < 0.05; Fig. 4D). The 
PSI was negatively correlated with imaginary coherence between 
amygdala and dmPFC [LME, t(46) = −2.43, P = 0.02; Fig. 4E], indi-
cating that the PSI from dmPFC to amygdala was positively correlated 
with dmPFC-amygdala imaginary coherence. For the amygdala-
vmPFC circuit, the PSI did not show a significant information transfer 
in any direction. These results indicate that synchronized theta os-
cillations constitute an information channel for interregional com-
munication between amygdala and both mPFC regions during fear 
learning and that directed transfer of information from dmPFC to 
amygdala facilitates the processing of fear information.

Model-based analysis of associability-related activity 
in the amygdala
Computational learning models supposed that instructive signals 
are activated only when there is a discrepancy between expectations 
based on sensory cues (here, CS) and outcomes [here, the aversive 
unconditioned stimulus (US)] (26, 27). According to the Pearce-Hall 
model with time-varying learning rates (26, 28, 29), surprise generated 
by the unexpected occurrence of the US controls the acquisition rate 
by modulating the internal processing of the CS, an effect referred 
to as “associability.” On the basis of this, we fit an associability model 
using the SCR data of individual patients that is consistent with pre-
vious associability model fitting approach (see below for details) (20). 
The core parameter of the model is the associability that is dynami-
cally determined by the (unsigned, i.e., absolute) prediction error of 
the previous trial. Using this computational model, we can identify 
the neural processes that govern learning in individual trials.

We first validated the associability model behaviorally using SCRs. 
We conducted an LME model with SCR as dependent variable, as-
sociability as fixed effect and subject and (nested) trial as random 
effects for assessing correlations between associability and SCR.  
These analyses revealed a significant correlation between associabil-
ity and SCR [LME, t(388) = 4.69, P = 3−6; Fig. 5B]. Second, to quan-
titatively identify the neural correlates of associability, we conducted 
an LME model with theta power in the three regions as dependent 
variable, associability as fixed effect and subject and (nested) trial as 
random effects for assessing correlations between associability and 
theta power. These analyses revealed a significant correlation be-
tween associability and amygdala theta power [LME, t(388) = 2.12, 
P = 0.035; Fig. 5C]. By contrast, applying the same analysis to the 
data from vmPFC or dmPFC did not reveal any correlations be-
tween associability and theta power [LME, vmPFC: t(388) = 1.31, 
P = 0.191; dmPFC: t(388) = 0.99, P = 0.323].

DISCUSSION
The formation of fear memory involves interactions of the amygdala 
with other areas of the fear network, particularly within the mPFC.  
This study demonstrates, in humans, that theta oscillations within 
an amygdala-mPFC circuit play an important role during fear learn-
ing. We found increased theta oscillations in the amygdala, vmPFC, 
and dmPFC of patients who successfully learned the association but 
did not find these effects in patients who failed to acquire the fear 
CR. We then showed that oscillatory activity was largely governed 
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by theta oscillations and that the peak frequency was higher in the 
amygdala than in mPFC regions. Theta oscillations were synchronized 
between the amygdala and both mPFC areas, although these long-
range neural synchronizations showed dissociable dynamic patterns: 
Analysis of information transfer revealed that amygdala activity was 
driven by the dmPFC but not by vmPFC. Last, computational mod-
eling showed that activity in the amygdala, but not in mPFC regions, 
reflected associability as a measure of learning.

These findings provide direct evidence that human fear learning 
involves the amygdala-mPFC circuit and that theta oscillations serve 
as a neural mechanism for interregional communication and direc-
tional information transfer between amygdala and dmPFC. These 
findings expand our understanding of the amygdala-prefrontal circuit 
(2–4, 6, 10, 11, 18, 30, 31). These effects may be instrumental for the 
development of therapeutic strategies for anxiety disorders such as 
post-traumatic stress disorder.

Fig. 4. Theta coherence between mPFC and amygdala during fear learning. (A) Averaged (±SEM) imaginary coherence across electrode contacts in the theta band 
for CS+ and CS− between amygdala and dmPFC [bottom; LME, CS+ versus CS−: t(94) = 5.58, P = 2−7] and between amygdala and vmPFC [top; LME, CS+ versus CS−: 
t(228) = 5.03, P = 9−7]. Red and blue open circles represent electrode contact–wise data. (B) Imaginary coherence between amygdala and dmPFC (top) and between 
amygdala and vmPFC (bottom) calculated across frequencies. Horizontal black lines below the curves denote significant differences between CS+ and CS− (LME mod-
el with permutation test, all P < 0.05). (C) Averaged trial-by-trial imaginary coherence across electrode contacts in the theta band for CS+ minus CS− between amygdala 
and dmPFC [top; LME, t(1896) = 1.96, P = 0.05] and between amygdala and vmPFC [bottom; t(4606) = 7.26, P = 4−13]. Black line is the best fitting line using robust fit. (D) PSI 
calculated point by point across time using the theta signal from the amygdala as modulating channel and dmPFC as modulated channel. Black lines below the graph 
denote significant differences between a period of 20 to 1340 ms after CS onset (LME model with permutation test, all P < 0.05), showing that theta activity from dmPFC 
precedes amygdala across most of the stimulus presentation period. (E) Relationship between averaged imaginary coherence and PSI effects in the theta band for CS+ 
minus CS− between amygdala and dmPFC [LME, t(46) = −2.43, P = 0.02]. Black line is the best fitting line using robust fit. For (A) to (E), results were based on five patients 
with electrodes implanted in both amygdala and vmPFC/dmPFC. ***P < 0.001.
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Increased theta power in the human amygdala and mPFC
Theta frequency oscillations have long been implicated in human 
learning and memory. Human studies of memory have provided a 
wide range of evidence for theta’s role in successful learning, mem-
ory formation, and retrieval [for a recent review, see (32)]. Moreover, 
abundant work revealed theta oscillation–mediated communica-
tion between distant brain regions as a neural mechanism for infor-
mation transfer in the human brain (33). In addition, various animal 
studies have demonstrated that theta oscillations support the inter-
action between amygdala and mPFC during the acquisition (3), ex-
pression (30), discrimination (6), and consolidation (31, 34) of fear 
memory. Moreover, artificial induction of 4- and 8-Hz oscillations 
in the basolateral amygdala exerts a bidirectional control over con-
ditioned freezing behavior in an experience- and context-specific 
manner (35), demonstrating the causal relevance of theta oscillations 
in rodents. iEEG studies in patients with epilepsy demonstrated that 
processing emotionally salient events recruited an amygdala-related 
network and that successful pattern separation of emotional stimuli 
was associated with theta oscillations (16, 18). Consistent with these 
studies, we found that theta oscillations in the human amygdala and 
mPFC were significantly enhanced when a CS+ was presented as 
compared to a CS− in patients who successfully acquired fear. More-
over, using the modified BOSC, we found that theta oscillations in-
deed dominated the largest proportion of oscillation time in the entire 
time period, and the predominant peak frequency with the highest 
percentage of theta oscillation time was significantly different between 
the amygdala and both mPFC regions. Overall, the cross-species en-
hancement of theta oscillations suggests a common neural mecha-
nism that effectively promotes learning of fear memory.

Amygdala-dmPFC interactions during fear learning
Extensive research confirms that aversive conditioning requires co-
ordinated activity among different brain regions. In line with this, 
animal studies have demonstrated that codischarge of neurons in 
the dmPFC and amygdala is enhanced during resistance to extinc-
tion behavior (36). During fear discrimination, increased theta syn-
chronization between mPFC and amygdala was found only in 
rodents that successfully differentiated between fear and safety cues 
(6). Primate research found increased power and phase synchrony 

in the theta range in amygdala and dorsal anterior cingulate cortex 
during aversive conditioning and that the synchrony was linked to 
single-unit spiking (3). Consistent with animal studies, we found 
enhanced coordination of theta activity between the dmPFC and 
amygdala during CS+ presentation.

Moreover, we found a dmPFC-to-amygdala directionality in theta 
oscillatory activity in response to the CS+, which is consistent with 
previous findings at the level of local field potentials (2) and firing 
rates in rodents (6). Although the precise role of dmPFC projec-
tions to amygdala is still unknown in humans, it has been proposed 
that activity in dmPFC may support fear conditioning both by act-
ing as a bridging signal between representations of the CS and US 
and by providing information regarding the predictive value of the 
CS (37). Attention regulation may also underlie an indispensable 
function of the dmPFC during aversive learning (38, 39). Our find-
ings indicate that the dmPFC may use the anatomical projection to 
the amygdala to transfer emotional information and promote the 
formation of fear memory.

Anatomically, electron microscopic examinations revealed that 
a great majority of mPFC axon terminals terminate on dendritic spines 
of amygdala projection neurons and only a few on putative inter-
neurons (40). This excitatory-to-excitatory projection results in fear 
enhancement (41). Using extracellular stimulation of amygdala in 
mice revealed that putative dmPFC principal neurons exhibit anti-
dromic responses to amygdala stimulations, suggesting that the 
dmPFC preferentially targets the amygdala to drive fear responses 
(42). Furthermore, the dmPFC-to-amygdala directionality suggests 
that fear conditioning requires cortical inputs to the amygdala, 
rather than only relying on a faster subcortical pathway. Together, 
the increased coherence can serve as a means for facilitating interre-
gional information communication between these core areas within 
the fear network.

Amygdala-vmPFC interactions during fear learning
The amygdala showed theta-based interactions not only with the 
dmPFC but also with the vmPFC during fear learning. This finding 
seems to conflict with previous results that the vmPFC is mainly 
involved in fear extinction (37). Previous animal studies explored 
the functional and neural mechanisms of vmPFC through cerebral 

Fig. 5. Relationship between associability and amygdala theta power. (A) Averaged associability from computational modeling across individuals. (B) Relationship 
between associability of the computational model and normalized SCR data [LME, t(388) = 4.69, P = 3−6]. Dots indicate estimates for individual trials across patients, calculated 
from the LME model. The black line is the best fitting line using the robust linear regression. (C) Relationship between associability of computational modeling and theta 
power in amygdala [LME, t(388) = 2.12, P = 0.035].
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lesions, electric stimulation, and tracking techniques (14, 15, 43). 
However, most of the animal experimental manipulations were car-
ried out after fear conditioning, and thus, the role of vmPFC in fear 
learning itself remains to be elucidated, in particular regarding neu-
ral activity. In humans, several neuroimaging studies suggest that 
the vmPFC is particularly recruited during fear extinction (8, 11, 12). 
Anatomically, a robust connection has been described between vmPFC 
and amygdala. An imaging tractography analysis of infralimbic and 
prelimbic connectivity in mice found both dmPFC and vmPFC con-
nectivity with the amygdala (44). A targeted optogenetic stimulation 
study found that infralimbic inputs innervated principal neurons in 
the amygdala but not medial intercalated neurons (45), indicating 
that there is an anatomical connection between vmPFC and amyg-
dala. However, it has remained unclear whether this connection 
plays an important role in fear learning.

The partial reinforcement rate used in the current study was lower 
compared with most animal studies, which may introduce uncer-
tainty in the processing of fear-related stimuli. The vmPFC has been 
proven to be important in human decision-making, particularly in 
judgements under conditions of uncertainty (46). Patients with bi-
lateral lesions of the vmPFC have difficulties in choosing between 
options with uncertain outcomes, whether the uncertainty is in the 
form of a risk or of an ambiguity (47–49). For fear conditioning with 
partial reinforcement rates, the probability of an aversive stimulus 
appearing is clearly uncertain. Functional magnetic resonance im-
aging (fMRI) data showed that the level of ambiguity in judgements 
correlates positively with activation in the amygdala and vmPFC, 
suggesting a neural system for evaluating general uncertainty (50). 
Another fMRI study revealed a clear learning curve that indexed the 
formation of associative fear in the vmPFC (51). These findings de-
scribe the process by which organisms explore their surroundings: 
In the case of uncertainty, the available information decreases, and 
the risk of decision-making based on available information increases. 
In this situation, the brain must mobilize more cognitive resources 
to find additional information from the environment. This may ex-
plain the different findings in the vmPFC across studies. Instead of 
being limited to fear extinction, the vmPFC may be widely involved 
in other aspects of emotional processing and regulation (52).

Associability in computational modeling predicts amygdala 
theta activity
Theories of associative learning suppose that, when animals learn 
cue-reinforcer associations, they track a quantity known as associa-
bility that reflects the extent to which each cue has previously been 
accompanied by surprise (26). This surprise can be generated either 
by the unexpected appearance of the US (fear learning) or the un-
expected omission of the US (reversal learning and extinction learn-
ing). Previous studies (28, 29) described the progression of both 
associative learning and reversal learning using the associability 
model: They found that the associability of each CS increased during 
early acquisition (unexpected appearance of the US); declined during 
late acquisition, when outcomes became more expected; and then 
increased rapidly during the reversal phase, when the outcomes 
were again unexpected. Another study (20) used the associability 
model to show that replacing threat with tone outcomes improved 
extinction retention, demonstrating the general role played by sur-
prise in associative extinction (unexpected omission of the US). 
Hence, the associability-based model is suitable for both initial fear 
learning and extinction learning.

Using this computational modeling approach, we found that the 
associability was positively correlated with SCR and amygdala theta 
activity. This suggests that the amygdala has a specific functional 
role in controlling associability during learning, which is consistent 
with previous studies (28, 53). Our findings extend the computa-
tional characterization of learning signals in the human amygdala, 
suggesting that it is complementary to representations of prediction 
error in the striatum. The same effect was not found in the mPFC 
regions, although amygdala activity was significantly driven by the 
dmPFC. In the future, it will be important to investigate how the 
dmPFC influences the amygdala-dependent associability signal.

There are several limitations in the current study. First, since the 
position of the electrode is determined clinically, we can only roughly 
explore the activity of the entire amygdala; the function of different 
subregions of the amygdala needs further exploration. Second, fear 
conditioning studies vary in the trial number and order, type of 
CS/US stimuli, reinforcement rate, and CS-US delay, which seems 
to affect the pattern of amygdala and mPFC activity. Despite these 
limitations, this study demonstrated that theta oscillations built up 
long-range communication and directional information transfer 
within amygdala-mPFC circuits during fear learning. The present work 
thereby supports that theta oscillations within and between amygdala, 
vmPFC, and dmPFC constitute a general mechanism of fear learn-
ing across species.

MATERIALS AND METHODS
Experimental design
A fear conditioning paradigm was adapted for simultaneous SCR-
iEEG recordings (Fig. 1A). During the task, patients were instructed 
to view the stimuli displayed on the screen. Two different color 
squares (red and green) constituted the CS, which were randomly 
assigned to CS+ or CS− across patients. CS+ was reinforced with a 
mild electric stimulation (US; contingency of 50%), while CS− stimuli 
were never paired with a US. CS+ and CS− were presented 52 times 
each and were presented on a desktop screen (visual angle, 16°) in 
random order (patient 7 completed only 26 CS+ and 26 CS− trials 
due to time constraints). Each stimulus lasted for 4 s with a jittered 
intertrial interval of 8 to 10 s (CS offset to next CS onset). The US 
delivery occurred upon the termination of CS+ (i.e., delay condi-
tioning). During the intertrial interval, a white fixation cross was 
shown on a black background.

The US consisted of a 15-ms single-pulse electric stimulation that 
was delivered from a transcutaneous current stimulator (STM200) 
using two steel disk electrodes attached to the right wrist (radius, 5.2 cm). 
During a workup procedure, the intensity of the electric stimulation 
was set individually to an extent that was subjectively perceived as 
“uncomfortable but not painful.” In addition, participants had to 
rate the negative valence of the US higher than 7 on a 10-point 
Likert scale (0, not unpleasant at all; 10, extremely unpleasant).

Subjects
A total of 13 patients with medically refractory epilepsy (six females, 
average age: mean = 26 years, SD = 6.54; table S1) were recruited 
from Yuquan Hospital, Tsinghua University, and the First Affiliated 
Hospital of General Hospital of People’s Liberation Army. The pa-
tients underwent intracranial electrode implantation as part of their 
clinical evaluation for epilepsy surgery when noninvasive studies could 
not adequately localize the origin of their seizures. All patients had 
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normal or corrected-to-normal vision and had no history of head 
trauma or encephalitis. Preoperative MRI did not reveal structural 
abnormalities in the amygdala and mPFC for all patients. All pa-
tients provided written informed consent. This research protocol 
was approved by the institutional review boards at the hospital sites.

All patients apart from one completed the same number of trials. 
Patient 7 only conducted 26 CS+ and 26 CS− trials due to time con-
straints. For this reason, we excluded the data from this patient 
from all trial-level analyses. Since this patient was only implanted in 
the amygdala and not in any of the mPFC subregions, data from this 
patient were also not used for connectivity analyses. The data from 
this patient were thus only included in the analysis of the time-
frequency (power) effects in the amygdala and the BOSC-based 
analyses of averaged detection times of theta oscillations and theta 
onsets in the amygdala.

Electrode reconstruction
Postoperative computed tomography (CT) images were coregistered 
to preoperative T1-weighted MR images using FreeSurfer (v6.0.0, 
http://surfer.nmr.mgh.harvard.edu/). The registration was visually 
verified and manually adjusted if necessary. The implanted electrodes 
were reconstructed using the stereotactic localization software (54). 
Then, all electrodes’ coordinates were mapped onto a standard 
MNI space (Fig. 1B).

Electrode localizations in regions of interest
For determining the exact electrode locations in the amygdala, we 
used an automatic parcellation via FreeSurfer (55) and visually ver-
ified the accuracy of the procedure. The dmPFC was delineated to 
include bilateral areas 32d and 9, while the vmPFC included bilater-
al areas 11m and 14m according to the medial prefrontal template 
(56). Given that the medial prefrontal templates were depicted in 
the standard MNI space, the electrodes were arranged to each area 
of the template based on their MNI coordinates (table S2).

SCR data acquisition and analysis
SCR was recorded using a BIOPAC system and measured with two 
steel disk electrodes attached to the middle phalanges of the index 
and middle fingers of the left hand. Data were recorded at a sam-
pling rate of 200 Hz and low pass–filtered to 10 Hz online, followed 
with a 1-Hz low-pass filtering. After visual inspection for artifacts, 
the amplitude of SCR was calculated in each trial as the base-to-peak 
difference in skin conductance of the largest deflection (in micro-
siemens) within a window of 500 to 6000 ms after stimulus onset, 
using an open-source toolbox (https://github.com/mateusjoffily/
EDA). The minimal response criterion was 0.02 S (57). Responses 
below this threshold were encoded as zero. The raw SCR scores were 
scaled according to each participant’s maximum SCR value across 
all CS trials (11, 58). Since we were interested in whether patients 
successfully acquired fear responses to the CS, only SCRs during the 
second half of all trials were averaged to assess fear acquisition. Four 
patients who failed to discriminate between CS+ and CS− in SCR 
(difference < 0.05 S) were used for control analysis (Fig. 1C and 
table S1). This resulted in a total of nine patients (five females, aver-
age age: mean = 26.44 years, SD = 5.9) who were included into all 
electrophysiological data analysis. Two participants in whom SCR 
recordings failed because of equipment problems but orally reported 
successful fear acquisition were also included in electrophysiological 
data analysis. Group results remained the same when these two patients 

were excluded (fig. S10). Unless otherwise specified, only participants 
with successful fear acquisition were included in iEEG data analysis.

For the trial-by-trial SCR analysis, we used a PsPM tool (59). The 
data were modeled using dynamic causal modeling (nonlinear model), 
which allows estimating the amplitudes of anticipatory and evoked 
SCR under a canonical response function (60). After trimming the 
time series, the SCR data were filtered with a first-order bidirectional 
bandpass Butterworth filter (cutoff frequencies, 0.016 to 5 Hz) and 
further down-sampled to 10 Hz. For each trial, we estimated (i) a 
fixed-dispersion response at CS onset (i.e., CS trials with and with-
out US), (ii) a fixed-latency response at US onset, and (iii) a flexible 
latency that comprised the time window between CS offset and US 
onset (minus 1 s, to allow disambiguation of the US response from 
the CS response). The data for all trials and conditions were inter-
polated with last observation carried backward. This was performed 
because after the cue is presented and the outcome received, the 
associative strength for the cue will immediately be updated, but it 
will only be expressed behaviorally when the subject is presented 
with the cue again (61, 62). To prevent extreme responses from bi-
asing calculations, extreme values with at least 5 SD above or below 
the mean were excluded. In addition, only nonreinforced trials 
(CS + US−) were included in the analysis to avoid contamination by 
the response to the US.

We applied PsPM to SCR data to detect learning effects because 
of its higher sensitivity for detecting learning-related condition dif-
ferences (21, 22). PsPM is modeling the data using a canonical re-
sponse function of sudomotor activity and uses a bidirectional filter 
to mitigate the effects of unspecific noise (e.g., slow drift components). 
The values (parameter estimates) that are shown in the PsPM plot 
represent the goodness of fit to this response function. Because of 
the more indirect analysis approach, apparent linear increases in 
PsPM-based parameter estimates should not be interpreted as re-
flecting increases in SCR but only of predictability by the model. 
Thus, we fit and validated the computational model of cue-reinforcer 
associability based on the raw SCR values derived from a conven-
tional peak scoring method rather than based on the PsPM parameter 
estimates, which also made the model input more consistent with 
previous studies (20, 28, 29).

Statistical analysis was performed using LME model in which learning 
was predicted from trial number and condition (fixed effects), with 
patients as random effect. In addition, a separate model was con-
ducted by adding two polynomials (first and second degree) in the 
regression equation to test for linear and quadratic trends.

iEEG: Data collection and preprocessing
iEEG data were acquired using a Nihon-Kohden recording system 
(Yuquan Hospital) and a Blackrock Neuroport system (First Affiliated 
Hospital of General Hospital of People’s Liberation Army) at a sam-
pling rate of 2000 Hz. All the data were analyzed in MATLAB com-
bined with open-source toolboxes. After acquisition, iEEG data were 
band pass–filtered from 0.6 to 200 Hz using a zero–phase delay fi-
nite impulse response filter and down-sampled to 500 Hz. Noise (50 Hz) 
and its harmonics were removed using a notch filter. The resulting 
data were rereferenced per contact to one contact located in white 
matter that was close to gray matter contacts (63, 64). Specifically, 
for each electrode targeting the regions of interests, candidate refer-
ence contacts were chosen from contacts located in white matter by 
visual inspection of the coregistered CT. The filtered iEEG data from 
candidate contacts were then visually inspected one by one, and a 

http://surfer.nmr.mgh.harvard.edu/
https://github.com/mateusjoffily/EDA
https://github.com/mateusjoffily/EDA
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single contact with little or no apparent EEG activity was chosen as 
the reference for other contacts.

iEEG data analyses
Epochs from −4500 ms before to 5000 ms after CS onset (plus addi-
tional “buffer” window of 3000 ms before and after the window of 
interest) were extracted from the preprocessed iEEG data. To avoid 
interictal activity or even subclinical or clinical seizures that may 
confound the results, we carefully verified that no subclinical or even 
clinical seizures occurred during or immediately before the experi-
ment. In addition, we conducted a multistep procedure to remove 
all data points that were affected by interictal events or other arti-
facts. First, epochs contaminated by epileptic activities were identified 
by an automated detection algorithm (65). The detection algorithm 
discriminates signals containing interictal discharges from back-
ground activity based on adaptive modeling of signal envelopes 
within the range from 10 to 60 Hz that is primarily affected by inter-
ictal discharges. Second, after removal of epochs contaminated by 
epileptic activity, outliers in the remaining epochs were labeled and 
removed if their voltage value surpassed 5 SD of all epochs at any 
time point. Third, channels with more than 20% of epochs contain-
ing either epileptic discharges or labeled as bad trials were excluded 
from further analysis. Fourth, we screened all data visually and re-
moved all trials with remaining artifacts (this was performed in a 
manner that was blind to the experimental conditions).

Time-frequency transformations were performed using the multi-
taper method implemented in FieldTrip. Briefly, the time-frequency 
analysis was performed for each epoch using a multitaper power 
spectral density estimation using a frequency-dependent time win-
dow of five cycles (i.e., window size decreasing with frequency in-
creasing) and a time-bandwidth product of 2 (three tapers). In this 
study, we mainly focused on electrophysiological activity from CS 
onset to 2000 ms afterward (11). Each epoch was baseline corrected 
(−1500 to −500 ms before CS onset, to avoid smearing of changes in 
theta power between pre- and post-CS time bins). Then, theta power 
was calculated by averaging the normalized power over 4 to 8 Hz. 
For the analysis of the distribution of peak frequencies, we extracted 
the peak frequency from the power spectrum of each electrode con-
tact to generate the electrode-wise distribution.

We used the modified BOSC method to identify rhythmic activity 
at specific frequencies within the background of nonrhythmic EEG 
components (25). The BOSC analysis was applied on the signals re-
corded from each electrode contact and kept the frequency band that 
fell within a frequency range of 1 to 30 Hz. For each contact, we also 
focused on the 2000-ms period after CS onset. For a given frequency 
f, a time period was defined as containing rhythmic activity if the 
wavelet power at f exceeded a power threshold PT(f) and lasted for 
more than a duration threshold (set to four cycles, DT = 4/f). The 
background spectrum was estimated by first removing points greater 
than 1 SD of the spectrum’s linear fitting residual in log-log coordi-
nates (modified based on eBOSC) (66) then refitting the remaining 
spectrum with linear regression. PT(f) was set to the 95th percentile 
of this theoretical probability distribution. For each iEEG contact, 
the proportion of time in which oscillatory signals at a given frequency 
f was detected. We created a summary plot of the proportion of time 
in which theta oscillations were detected and extracted the onset of 
detected theta oscillation across all contacts. We also calculated the 
proportion of time showing simultaneous theta oscillations between 
the amygdala and dmPFC and between the amygdala and vmPFC.

For coherence analyses, a method based on imaginary coherence 
was used to avoid the effect of a common input on the interregional 
neural synchronization (2). Imaginary coherence was calculated as

	​​ iCoh​ xy​​  =   ​  
∣Im(​n​​ −1​ ​∑ n=1​ n=N ​​ ​S​ xy​​ )∣

  ───────────────────   
​√ 

_________________________
   (​n​​ −1​ ​∑ n=1​ n=N ​​ ​S​ xx​​ ) . (​n​​ −1​ ​∑ n=1​ n=N ​​ ​S​ yy​​) ​ 
 ​​	

where Sxy denotes the cross-spectral density between activities at 
electrodes x and y, Sxx and Syyare the autospectral densities for electrodes 
x and y, N denotes the time bins, and iCoh denotes the absolute imag-
inary coherence. Cross- and autospectral densities were calculated 
with Morlet wavelets (five cycles) over 2000 ms after CS onset.

As an index of dominant unidirectional interaction, PSI indicates 
the direction of coupling between two signals. Given a prespecified 
bandwidth parameter, it reflects the change of phase difference be-
tween adjacent frequency bins and is weighted by the magnitude of 
the coherence. The PSI is defined as

	​​ ​̃  ​​ x,y​​  =  Im(​ ∑ 
fϵF

​​​ C ​x, y​ *​ (f ) ​C​ x,y​​​​​(f + f ) ) , F  ∈  (f − w, f + w)​	

where Cx, y is the complex coherence, f is the frequency resolution, f is 
the center frequency (6 Hz) of the targeted frequency range (4 to 
8 Hz), and Im denotes the imaginary part. We used 2w as the band-
width (4 Hz) for which the phase slope was calculated and chose it 
to be four times of the frequency resolution f (1 Hz). To under-
stand the directionality between two signals involved in fear learn-
ing, we segmented the phase of the modulating signal (amygdala) 
and of the modulated signal (dmPFC and vmPFC) into N epochs 
and used them as inputs to calculate the PSI for both CS+ and CS− 
conditions. The sign of the PSI informs which signal is temporally 
leading the other one. For example, when the phase differences be-
tween the modulating signal A and the modulated signal B increase 
with frequencies, a positive slope of the phase spectrum is expected 
(A➔B). By performing the PSI analysis with a sliding window of 
1000 ms, spaced at 20 ms (98% overlap), we were able to track the 
time course of directionality between two signals.

ROC analyses were conducted using the frequency with the highest 
percentage of theta oscillation time detected by BOSC and power in 
the theta band. For the first variable, we extracted the frequency with 
the highest percentage of theta oscillations of each electrode contact 
and linked each value to the diagnosis—brain region 1 or brain re-
gion 2 (amygdala or dmPFC, amygdala or vmPFC, and vmPFC or 
dmPFC). We then conducted an ROC analysis using the ROC func-
tion in MATLAB to explore whether an ideal observer could predict 
which brain region it belongs to when relying only on this variable 
(the frequency with the highest percentage of theta oscillation times). 
With regard to theta power, we extracted the theta power difference 
(CS+ minus CS−) of each electrode contact and linked each value to 
the diagnosis “learner or nonlearner.” Then, we conducted an ROC 
analysis to explore whether theta power could predict whether a 
given subject is a learner or a nonlearner. Accuracy was measured as 
the area under the ROC curve. We then conducted a permutation 
test in which we generated a null distribution by randomly shuffling 
labels of brain regions (for variable 1) or learner/nonlearner (for 
variable 2), computed the AUC across all patients, and repeated this 
procedure 1000 times. The 95th percentile threshold was extracted, 
and AUCs above this threshold were considered significant. Unless 



Chen et al., Sci. Adv. 2021; 7 : eabf4198     18 August 2021

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

11 of 13

otherwise specified, iEEG data analyses were based on the second 
half of trials.

Computational modeling
We fitted and validated an associability model behaviorally using 
SCR data. In this model, xn indicates the CS on trial n (CS+ or CS−), 
and rn is the US (1 for US, 0 for no US). Predictions of value (i.e., 
occurrence of electric stimulation) Vn(xn) were defined for each stim-
ulus type (xn) on trial n. The prediction error n = rn − Vn(xn) measures 
the difference between the actual and predicted electric stimulation 
on trial n. We used a dynamic learning rate that gated the speed of 
learning based on the Pearce-Hall associability rule (20, 28, 29, 67). 
The resulting model for fear conditioning was as follows

	​​ V​ n+1​​(​x​ n​​ ) = ​V​ n​​(​x​ n​​ ) + k ​​ n​​(​x​ n​​ ) ​​ n​​​	
	​​ ​ n+1​​(​x​ n​​ ) = ∣​​ n​​∣+ (1 −  ) ​​ n​​(​x​ n​​)​	

where  indicates the weight assigned to the most recent absolute 
value of the prediction error (indicating the accuracy of value pre-
diction) in the conditioning phase, and k indicates a normalization 
factor. The value V0 and the associability 0 were initially set to 0.5.

We tested the fit of the above model by minimizing the differ-
ence between model-predicted associability and observed SCR. We 
optimized the free parameters of the model ( and k) by maximizing 
the probability of observing the measured sequence of SCRs following 
each CS. This maximization was achieved via the maximum likeli-
hood estimation. Likelihoods were performed over all trials but omitting 
trials paired with electric stimulation to avoid possible contamina-
tion due to stimulation artifacts. Then, we identified associability-
related brain activity by conducting an LME model with theta power 
in the three regions as dependent variables, associability as fixed 
effect, and subject and (nested) trial as random effects for assessing 
correlations between associability and theta power.

To further test whether learning dynamics in our study can be 
better explained by the associability model than by alternative models, 
we compared the fit of the Rescorla-Wagner (RW) model of learn-
ing by prediction errors (in which learning rate is a constant) to the 
trial-by-trial skin conductance responses with the fit to the augmented 
hybrid models that gated prediction error–driven learning by asso-
ciability. We fit these models separately to each individual subject’s 
SCRs and performed likelihood ratio tests on the data aggregated 
across subjects. The classical likelihood ratio tests were based on the 
verification of the null hypothesis that the improvement in fit of the 
more complicated model relative to the simpler one was only due to 
the higher number of predictors. We found that the SCR scores 
were best explained by the inclusion of associability  and the value 
V as additional predictors to explain variance in SCRs [Hybrid ( + V) 
versus RW (V), 3

2 = 73.73, P = 6−16; versus Hybrid(V), 1
2 = 35.86, 

P = 2−9; versus Hybrid(), 1
2 = 36.55, P = 1−9]. Thus, this result 

indicates that the associability-based model best accounts for fear 
learning in our study.

Statistical analysis
An LME model was used for statistical analysis and implemented 
using the fitlme function in MATLAB. Given that the LME model 
can handle the case where the predictor variables are not indepen-
dent, the information of all contacts can be effectively used (68).

We implemented LME model with patient and electrode as two 
random effects and used the restricted maximum likelihood method 

to estimate LME parameters. Post hoc tests of P values were per-
formed using Bonferroni correction to correct for multiple compar-
isons. To assess the effects of condition (CS+ versus CS−) on theta 
power, coherence, and PSI, we compared CS+ with CS−

	​ Y ~ condition + (1∣subject) + (1∣subject : electrode)​	

where the dependent variable Y is either theta power, imaginary co-
herence, or PSI. The condition variable is coded as 1 for CS− and 
2 for CS+.

To assess the effects of learning dynamics on theta power, coher-
ence, theta onsets detected by BOSC, theta peak frequency detected 
by BOSC, and overlap between time periods showing simultaneous 
theta oscillations in amygdala and vmPFC/dmPFC

	​ Y ~ trial / block + (1∣subject ) + (1∣subject : electrode)​	

where the dependent variable Y is either theta power, imaginary co-
herence, or overlapping time periods. The “trial/block” variable is 
coded as the trial/block number.

To assess the relationship between associability of computation-
al modeling and SCR data or theta power in the three brain regions

	​ Y ~ associability + (1∣subject ) + (1∣subject : trial)​	

where the dependent variable Y is either theta power or SCR data.
To compare temporal dynamics of theta oscillation between dif-

ferent brain regions

	​ Y ~ area + (1∣subject ) + (1∣subject : electrode)​	

where the dependent variable Y is the onset time of theta oscillation 
detected by BOSC.

A Wilcoxon signed-rank test was used to access successful fear 
acquisition in SCR. Spearman’s correlation was used to calculate the 
relationship between model-based associability and theta power across 
trials as well as dynamic changes in both theta power and imaginary 
coherence across trials.

Cluster-based permutation tests were performed by shuffling con-
dition labels for data epochs to create distributions under the null 
hypothesis. Specifically, in each permutation, the CS+/CS− condition 
labels were shuffled between data epochs while keeping the labels of 
electrode contacts and subjects unchanged. LME model was then 
applied to the time-frequency spectrograms or imaginary coherograms 
derived from shuffled data. A P value of 0.05 was chosen to find out 
significant points. Clusters were then extracted, and the largest cluster’s 
size was passed to the null distribution. This procedure was repeated 
1000 times. Cluster sizes derived from the unshuffled data epochs were 
compared to the 95th percentile of the null distribution, and those 
with a size larger than this threshold were labeled as significant clusters.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/7/34/eabf4198/DC1

View/request a protocol for this paper from Bio-protocol.
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