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Electrophysiological mechanisms of human
memory consolidation
Hui Zhang1, Juergen Fell2 & Nikolai Axmacher1

Consolidation stabilizes memory traces after initial encoding. Rodent studies suggest that

memory consolidation depends on replay of stimulus-specific activity patterns during fast

hippocampal “ripple” oscillations. Here, we measured replay in intracranial electro-

encephalography recordings in human epilepsy patients, and related replay to ripples.

Stimulus-specific activity was identified using representational similarity analysis and then

tracked during waking rest and sleep after encoding. Stimulus-specific gamma (30–90 Hz)

activity during early (100–500ms) and late (500–1200ms) encoding is spontaneously

reactivated during waking state and sleep, independent of later memory. Ripples during nREM

sleep, but not during waking state, trigger replay of activity from the late time window

specifically for remembered items. Ripple-triggered replay of activity from the early time

window during nREM sleep is enhanced for forgotten items. These results provide the first

electrophysiological evidence for replay related to memory consolidation in humans, and

point to a prominent role of nREM ripple-triggered replay in consolidation processes.
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Only a minority of the information we encounter each day
will be remembered on the long term, and this depends
crucially on memory consolidation. Rodent studies sug-

gest that hippocampal “ripple” oscillations (around 200 Hz)1,2

and replay of stimulus-specific neural activity3–5 serve as neuro-
physiological mechanisms underlying memory consolidation. In
rodents, ripples and replay are temporally coupled6. Further
studies suggest that ripple-triggered replay plays a causal role for
memory consolidation, because disrupting ripples impairs
memory performance after sleep2,7.

In humans, there is abundant evidence that brain regions
which are involved in cognitive tasks before a period of sleep are
more active during sleep, and that the activation levels of these
regions are related to subsequent memory performance8,9.
Moreover, when participants encoded visual stimuli together with
odors or auditory cues and these cues were presented to them
again during subsequent sleep, memory after the sleep was
enhanced10–13. Areas of the medial temporal lobe including the
hippocampus10 and parahippocampal gyrus12 showed increased
blood oxygen level dependent (BOLD) responses in functional
magnetic resonance imaging (fMRI) when the cues were pre-
sented during sleep, consistent with reactivation of previously
acquired memory traces. More recently, several studies used fMRI
to measure replay of stimulus-specific activity patterns14,15. In
these studies, stimulus-specific representations were identified
during encoding, using either multivariate pattern classification16

or representational similarity analysis (RSA)17. Replay was then
assessed via the spontaneous reoccurrence of stimulus-specific
activity across subsequent resting periods. Replay was observed
during both waking state and sleep, in apparent conflict with
behavioral data showing that sleep—in particular, non-rapid eye
movement (nREM) sleep—benefits memory consolidation18–22.
These studies provided first evidence for replay in humans and
showed that the amount of replay was related to subsequent
memory performance14,15,23.

In line with evidence from rodent studies, ripples are func-
tionally relevant for memory consolidation in humans as well24.
However, due to the low temporal resolution of fMRI, these
previous studies were not able to evaluate the relationship
between replay and ripples. In humans, ripples can only be
recorded in presurgical epilepsy patients implanted with intra-
cranial EEG (iEEG) electrodes24–27. Several studies have shown
that ripples in humans have a lower frequency than in rodents
(around 100 Hz), possibly because of the involvement of larger
networks28. However, direct electrophysiological evidence for
replay related to memory consolidation in humans is still missing.

Here, we first identified stimulus-specific neural representa-
tions in humans by applying a previously established RSA-based
metric29–31 to iEEG data from 12 epilepsy patients. We then
tracked replay of stimulus-specific activity during a post-encoding
afternoon nap (containing awake resting state and sleep periods),
and related replay to hippocampal ripple events. Our results show
that stimulus-specific information is spontaneously replayed
during both waking state and nREM sleep, but these general
replay levels do not predict later memory. By contrast, ripple-
triggered replay of activity from late encoding stages (500–1200
ms after stimulus onset) occurs specifically for items that are later
remembered, and only during nREM sleep. These findings sug-
gest a mechanistic explanation for the beneficial role of sleep for
memory consolidation.

Results
Stimulus-specific representations during encoding. To assess
stimulus-specific engram patterns, we first extracted for each
channel and each item the iEEG activity within the gamma and

epsilon band (30–90 Hz and 90–150 Hz, respectively; see Sup-
plementary Note 2; Supplementary Fig. 2a, b; Methods). We used
consecutive time windows of 200 ms (autocorrelation of the
gamma activity was significant up to 250 ms; Supplementary
Note 4; Supplementary Fig. 2e), overlapping by 100 ms (Fig. 1c,
results refer to the center time points of the windows; we also
tried consecutive time window of 100 ms, overlapping by 50 ms
and it generated highly similar results; Supplementary Fig. 2c;
Supplementary Note 3). During each time window, we obtained
one activity pattern across electrodes per item. These patterns
were correlated between each encoding time window and each
retrieval time window of each item (Fig. 1b). Stimulus-specific
representations were identified by comparing correlations
between encoding and retrieval of the same item (RSAsame) to
correlations between encoding of one and retrieval of a different
item (RSAdiffer). We controlled for multiple comparisons using
surrogate-based cluster statistics30.

Consistent with previous results29,30, we observed significantly
higher RSAsame than RSAdiffer values in the gamma frequency
range (30–90 Hz). Two separate temporal clusters were identified
(Fig. 2a) with regard to encoding, an early cluster (100–500 ms,
blue frame) and a late cluster (500–1200ms, black frame; both
pcorr < 0.001). RSAsame values were higher for remembered than
forgotten items in the late (t(11)= 3.75, p= 0.003) but not the
early cluster (t(11)= 0.45, p= 0.66; Fig. 2b), indicating a
relevance for subsequent memory only for the late cluster. In
order to investigate in greater detail which encoding time
windows are relevant for later memory, we compared the
difference of the similarity levels between remembered and
forgotten items within clusters showing stimulus-specific repre-
sentations and found that predominantly reinstatement of activity
during late time window (800–1100 ms; capturing activity in the
time range from 700 to 1200 ms) was relevant for subsequent
memory (p < 0.001 after multiple comparison correction; surro-
gate data were generated by shuffling condition labels of trial
averages in individual participants). RSAsame values did not differ
between the nap day and the day without nap for either
remembered or forgotten items (all t(11) < 0.68, all p > 0.51). Two
clusters in the epsilon band (90–150 Hz) showed higher RSAsame

than RSAdiffer values as well (Fig. 2c: 300–700 ms and 500–900
ms), however these effects were unrelated to memory (all t(11) <
0.84, all p > 0.52; Fig. 2d). We further investigated the brain
regions underlying stimulus-specific representations in both time
clusters. We found that 15% of all electrodes contributed
significantly to stimulus-specific representations of either the
early or the late encoding cluster (Supplementary Fig. 2d) which
replicated our previous findings30 supporting the theoretical
notion of sparse coding. We further investigated the distribution
of positively contributing electrodes and found that more
electrodes showed significant positive contributions to the early
encoding cluster than the late encoding cluster (χ2(1)= 5.69, p=
0.017) in the lateral temporal lobe (including fusiform gyrus,
inferior temporal gyrus, and middle temporal gyrus). We found a
trend for an opposite pattern for electrodes within the medial
temporal lobe (MTL, including the hippocampus and the
parahippocampal gyrus) where more electrodes contributed
significantly to the late cluster than to the early cluster (χ2(1)=
2.96, p= 0.085). Due to the overall small number of electrodes in
the occipital (2 electrodes) and parietal (2 electrodes) cortex, we
did not perform statistical analyses in these regions.

Spontaneous replay during rest. We assessed the spontaneous
re-occurrence of stimulus-specific activity patterns of remote
items (presented on the nap day before rest) during the rest
period by calculating the similarity of these patterns during
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encoding with brain activity during rest (Methods and Fig. 3a).
These reactivations were compared to correlations between rest
activity and recent items (shown on the nap day after rest) which
served as a baseline (Supplementary Note 1)14. We analyzed both
spontaneous replay (across the entire rest period; Fig. 3a) and
replay coincident with hippocampal ripples. Due to the small
number of patients reaching REM sleep (5 out of 12) and the

overall short duration of REM sleep in our data (Supplementary
Fig. 3a), we focused on waking state and nREM sleep (including
sleep stages N1, N2, and N3). The duration did not differ between
waking state and nREM sleep (t(11)= 0.82; p= 0.43).

To analyze spontaneous replay, we first calculated the level of
replay of gamma band activity during each 200 ms time window
(overlapping by 100 ms) during encoding. We averaged replay
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Fig. 1 Analysis of stimulus-specific representations. a Experimental design (day with nap). b Example of distributed activity in the gamma frequency range
(30–90 Hz) during encoding and retrieval of the same item. The right panel shows the same example data as a scatter plot. Each sphere corresponds to
one electrode contact. c Analysis of stimulus-specific representations: schematic overview. EEG power time series were extracted during encoding and
retrieval of each item for each channel and each frequency band. EEG data were segmented into 200ms windows with 100ms overlap, and averaged
within each window and each channel for both encoding and retrieval. This resulted in a 13 (window) × n (channel) × 2 (encoding, retrieval) matrix for each
item and each patient. We then performed Spearman’s correlations across channels separately for each window during encoding and each window during
retrieval of the same item. This resulted in one 13 (encoding window) × 13 (retrieval window) correlation matrix for each item and each patient. Fisher-Z
transformed correlation matrices were averaged across items within each patient, resulting in one 13 (encoding window) × 13 (retrieval window) correlation
matrix (RSAsame) for each patient. A similar analysis was conducted between encoding of one item and retrieval of a different item. This resulted in another
13 (encoding window) × 13 (retrieval window) correlation matrix (RSAdiffer) for each patient. We then performed paired t tests between RSAsame and
RSAdiffer across patients. We used a cluster-based surrogate analysis for correction of multiple comparisons. Surrogate data were generated by randomly
shuffling item labels and performing the same RSA procedure as described above. We extracted clusters from these surrogate matrices and selected for
each surrogate the cluster with the largest summary t value. This surrogate procedure was repeated 10,000 times and produced 10,000 surrogate clusters.
Then, we ranked each empirical cluster within the distribution of all surrogate clusters. rg indicates the ranking value. For details, see Methods
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levels first across the eight time windows of the late (500–1200
ms) encoding cluster for each item, and then across items. This
was done separately for remote and recent items. Replay levels
were significantly larger than zero for remote (t(11)= 3.07, p=
0.011) but not recent items (t(11)= 1.11, p= 0.29; Fig. 3b).
Moreover, replay levels of remote items were significantly higher
than those of recent items (t(11)= 2.32, p= 0.041). We next
separately analyzed replay during the different states of vigilance.
Replay levels of remote items were significantly above zero during
both waking state (t(11)= 3.11, p= 0.010) and nREM sleep (t(9)
= 2.88, p= 0.018). This was not the case for recent items (both
t(11) < 1.31, both p > 0.34). Replay levels were higher for remote
than recent items during waking state (t(11)= 2.33, p= 0.040)
and marginally during nREM sleep (t(9)= 1.85, p= 0.098).
Replay levels of remote items did not differ between waking
state and nREM sleep (t(9)= 1.46, p= 0.18; Fig. 3d). For gamma
band activity from the early encoding cluster only a marginally
significant replay effect was found (100–500 ms; Supplementary
Fig. 4a; Supplementary Note 5).

We also tested for replay of the entire sequence (i.e., the
temporal evolution) of gamma band activity within the two
encoding clusters showing stimulus-specific representations.
Results were very similar to replay of activity from the individual
encoding time windows during these clusters described above
(Supplementary Note 6; Supplementary Fig. 5). We did not find

any temporally compressed or expanded replay effects (Supple-
mentary Note 9).

Next, we analyzed replay of gamma band activity from all
encoding time windows (i.e., extending beyond the two clusters
showing stimulus-specific representations). Replay was analyzed
for all 200 ms time windows, overlapping by 100 ms, covering the
entire 1200 ms period from the onset to the offset of stimulus
presentation. Several encoding time windows showed higher
replay levels for remote vs. recent items (100–200 ms, 500–700
ms, and 1100–1200 ms; Fig. 3e; all p < 0.035, cluster-corrected for
multiple comparisons; surrogate data was generated by switching
remote and recent labels). Reactivations of remote items were
significantly larger than zero during the latter two time periods
(500–700 ms: t(11)= 2.98, p= 0.013; 1100–1200 ms: t(11)= 2.84,
p= 0.016; Fig. 3f) and in trend during the first time period
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showed stimulus-specific representations (i.e., higher correlations between
encoding of one and retrieval of the same item as compared to encoding of
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(100–500ms, blue frame) and a late cluster (500–1200ms, black frame).
b Functional relevance of clusters showing stimulus-specific
representations in panel a for memory. Higher similarity between encoding
and retrieval of subsequently remembered than forgotten items in the late
cluster, but not in the early cluster. Each colorful dot indicates one
participant. Same colors indicate data from the same participant. c Two
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participant. Same colors indicate data from the same participant. Error bars,
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Fig. 3 Spontaneous replay during rest. a Schematic illustration of analysis
procedure. Reactivation is quantified by correlating activity during each
encoding event and each time period during the resting state. Each circle in
the brain indicates one channel. The hotter the color of the circle, the higher
the EEG power. b Higher replay of stimulus-specific activity from late
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dot indicates one participant. Same colors indicate data from the same
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(100–200 ms: t(11)= 2.14, p= 0.056). We also separately com-
pared replay levels of remote and recent items during different
stages of vigilance (waking state and nREM sleep) for all encoding
time windows. During waking state and nREM sleep, replay levels
of remote items were higher than those of recent items for late
windows (waking stage, 1000–1200 ms; p= 0.022; nREM sleep,
500–700 ms; p= 0.021; p values were corrected for multiple
comparisons; surrogate data was generated by switching remote
and recent labels; Supplementary Fig. 4d, e, left panels). Replay
levels of remote items were consistently larger than zero in
both clusters (waking state: t(11)= 2.59, p= 0.025; nREM sleep:
t(9)= 3.42, p= 0.0076; Supplementary Fig. 4d, e, right panels).
These findings are thus consistent with the results of the analysis
focusing on the late encoding cluster and show that stimulus-
specific activity occurring relatively late after stimulus presenta-
tion is spontaneously reactivated during subsequent rest periods.

Is spontaneous replay of gamma band activity related to
subsequent memory? We did not find different replay levels when
comparing remembered and forgotten remote items, for either
the late (500–1200 ms; Fig. 3c) or the early (100–500ms;
Supplementary Fig. 4a) encoding cluster (both t(11) < 0.63, both
p > 0.55).

In the epsilon band, we did not find any evidence for replay,
either for activity during the two clusters showing stimulus-
specific epsilon band activity during encoding (300–700 ms and
500–900 ms; Supplementary Note 7; Supplementary Fig. 4b–c) or
for activity sequences during each cluster (Supplementary Note 8;
Supplementary Fig. 5d–e). Replay levels did not differ between
remembered and forgotten items for either encoding cluster (both
t(11) < 0.20, both p > 0.85; Supplementary Fig. 4b–c; Supplemen-
tary Fig. 5d–e).

Together, these results provide an electrophysiological basis for
previous fMRI findings showing replay of stimulus-specific
activity14,15. More specifically, they show that spontaneous replay
is predominantly related to gamma band activity occurring
relatively late (>500 ms) after stimulus presentation. In line with
previous fMRI studies on replay14,15, similar replay levels were
observed during waking state and nREM sleep.

Control analyses ruled out that replay was related to the overall
power of 30–90 Hz activity during encoding of an item
(Supplementary Fig. 6a–b; Supplementary Note 10) or during
the rest period (Supplementary Fig. 6c; Supplementary Note 11).
Numerically, replay levels were even higher when resting gamma
power was low, as shown by negative correlation coefficients
between replay levels and resting gamma power (r=−0.14 ±
0.30; mean ± SD), but correlations were not consistently different
from zero (t(11)=−1.61, p= 0.14). Remote items showed
similar replay levels across the entire rest period, excluding a
possible bias caused by temporal correlations between brain
activity during encoding and rest (Supplementary Fig. 6d and
Supplementary Note 12).

Ripple-triggered replay. Our data reported so far demonstrate
that items presented before the rest period (“remote”) are
replayed more often than control items presented afterwards
(“recent”). We next scrutinized replay of remote items in tem-
poral relationship to hippocampal ripple oscillations, focusing on
stimulus-specific activity in the gamma frequency range that
showed spontaneous replay. We extracted hippocampal ripples
based on previously established criteria (Methods; Fig. 4a, b and
Supplementary Fig. 7). The incidence of ripples (mean ± SD:
3.04 ± 0.70 events per minute) was comparable to previous
reports24,32. The number of ripple events did not differ between
waking state and nREM sleep (t(11)= 1.37; p= 0.20). Figure 4d
displays ripple-triggered replay levels of gamma band activity

during encoding, which we compared to replay during various
“peri-ripple periods”, i.e., time intervals before and after ripples
(Methods; Fig. 4c). We found that during nREM sleep but not
during waking state, replay was enhanced during ripple events as
compared to peri-ripple periods (Fig. 4d and Supplementary
Fig. 8c). In addition, the ripple-locked replay level of remote items
was higher than the ripple-locked replay level of recent items for
both the early and late cluster during nREM sleep (both t(9) >
2.19, both p < 0.016). This was not the case during waking state
(both t(11) < 0.81, both p > 0.43).

Ripple-triggered replay of remote items during nREM sleep.
We first evaluated nREM sleep ripple-locked replay of activity
from the early (100–500 ms) and late encoding cluster (500–1200
ms) for both remembered and forgotten items. We performed a
2 × 2 ANOVA with “cluster” and “memory” as repeated measures
and found a significant interaction (F(1,9)= 11.12, p= 0.0087;
Fig. 4e). Further analyses showed that replay of activity from the
late cluster was higher than replay of activity from the
early cluster for remembered items (t(9)= 2.92, p= 0.017),
while the pattern was reversed for forgotten items (t(9)= 2.04,
p= 0.071).

For subsequently remembered remote items, encoding activity
from the late but not the early cluster was more replayed during
ripple events than during the overall (averaged) peri-ripple
periods (late cluster: t(9)= 2.61, p= 0.028; early cluster: t(9)=
1.31, p= 0.22). An ANOVA comparing replay of activity from
the late cluster during ripple events and all ten peri-ripple periods
yielded the same result (F(10,90)= 3.94, p < 0.001; Supplemen-
tary Fig. 8a). Post hoc t tests showed that late-cluster replay was
higher during ripple events as compared to all individual peri-
ripple time windows, except the two windows immediately
following the ripple (Supplementary Fig. 8a). Late-cluster replay
levels for remembered items during ripple events were
significantly greater than zero (t(9)= 2.75, p= 0.022). Moreover,
the replay level of the late cluster was higher than both
randomly selected epochs of spontaneous replay (Supplementary
Note 13) and replay locked to surrogate ripples (Supplementary
Note 14).

For subsequently forgotten remote items, we observed a
strikingly different pattern of results. Replay of activity from
the late cluster did not differ between ripple events and peri-
ripple periods (t(9)= 1.40, p= 0.20). Interestingly, though—and
in contrast to the results for later remembered items—replay of
activity from the early cluster was higher during ripple events
than during peri-ripple periods (t(9)= 2.73, p= 0.023). An
ANOVA comparing replay of activity from the early cluster
during ripple events and all ten peri-ripple periods showed a
similar effect (F(10,90)= 4.99, p < 0.001; Supplementary Fig. 8a).
Post hoc t tests indicated that the replay level of the early activity
from forgotten items was higher during ripple events compared
to all individual peri-ripple time windows, except the two
windows immediately following the ripple. Early cluster replay
levels for forgotten items during ripple events were significantly
greater than zero (t(9)= 3.29, p= 0.009). The replay level of the
early cluster was higher than both randomly selected epochs of
spontaneous replay (Supplementary Note 13) and replay locked
to surrogate ripples (Supplementary Note 14).

Analogous to the analysis of spontaneous replay, we also
compared replay during ripple events and peri-ripple periods
separately for all individual encoding time windows for both
remembered and forgotten items. Encoding-related activity
between 700 and 800 ms was significantly more replayed during
ripple events vs. peri-ripple periods for subsequently remembered
remote items (p= 0.041, cluster-corrected for multiple
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comparisons; Supplementary Fig. 8b) during nREM sleep. We did
not find any other effects either for forgotten items during nREM
sleep or for remembered or forgotten items during waking state.

Finally, we also directly compared replay levels of remembered
and forgotten remote items within all individual encoding time
windows. The replay level of activity from a late encoding time
period (1100–1200 ms) was higher for remembered than
forgotten items (p= 0.014, cluster-corrected for multiple com-
parisons; Fig. 4f), supporting the relevance of ripple-triggered

replay of late encoding activity during nREM sleep for memory
consolidation.

Control analyses for ripple-triggered replay. During waking
state, results were clearly different (Fig. 4d, right column): Replay
of activity from the early and the late cluster did not differ
between ripple events and peri-ripple periods, either for
remembered or forgotten remote items (Supplementary Note 15).
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Replay levels of recent items did not differ between ripple events
and peri-ripple periods during either nREM sleep or waking state
(Supplementary Fig. 8c and Supplementary Note 16).

Control analyses ruled out that the observed higher replay level
of stimulus-specific gamma band activity during ripple events
compared with peri-ripple periods during nREM sleep was driven
by power differences in either the ripple (80–100 Hz) or the
gamma (30–90 Hz) frequency bands (Supplementary Notes 17–
18). After matching the ripple power between nREM sleep and
waking state, the ripple-triggered replay effect was still restricted
to nREM sleep (Supplementary Note 17). We also did not find
any relation between gamma power and ripple-locked replay
levels (Supplementary Note 18), which is consistent with our
findings on spontaneous replay.

Discussion
Our results provide direct electrophysiological evidence for replay
of stimulus-specific neural representations in humans. They show
that replay is related to hippocampal ripples, and that ripple-
triggered replay occurs specifically during nREM sleep. These
data are conceptually consistent with previous findings of replay
during ripples in rodents4,33. Unlike the single-cell results in
rodents, however, stimulus-specific representations were analyzed
on a network level. The relationship between stimulus-specific
representations at the level of single units and in large-scale brain
networks remains to be addressed in future studies in both ani-
mals and humans34.

Notably, in the rodent literature, researchers typically record
activities from a control sleep period before the task35. However,
in humans a bias between the first and the second sleep period
may occur because of the typical physiological adaptations to
sleep laboratory conditions. In addition, we did not want to
overstrain the patients by fixing polysomnography electrodes two
times. On the other hand, two sleep periods back in back with a
learning session in between was logistically not possible because
we used an experimental design with an afternoon nap, and
patients would not have been able to sleep both before and after
the experiment. Instead of a control nap before the experiment to
which replay during the experimental nap would be compared,
we presented stimuli both before and after the nap and compared
replay of remote and recent items. The presentation of stimuli
both before and after the sleep period optimally balances tem-
poral distances and thereby prevents any possible problems
related to temporal autocorrelations. Further studies are required
to assess the difference between those two different experimental
settings.

Consistent with previous results29,30, stimulus-specific repre-
sentations were found predominantly in the gamma frequency
range. Previous studies combining electrophysiological recordings
with fMRI in monkey visual cortex reported a positive relation-
ship between gamma power and BOLD responses36. Thus, it may

appear surprising that we found slightly negative correlations
between replay scores and gamma power during rest. Even
though this relationship was not significant (and is therefore
difficult to interpret), it is reminiscent of a previous finding from
our group that encoding-retrieval similarity during viewing of
movies is negatively related to gamma power during retrieval in a
significant subset of electrodes30. This was particularly the case
for “informative” electrodes, i.e., those electrodes which con-
tributed to global representations (based on a jackknife proce-
dure; see ref. 30. Our interpretation for this effect is that high
levels of gamma power in the positively contributing (“informa-
tive”) electrodes obscure item-specific spatial patterns and
thereby reduce reinstatement of information from encoding.
However, more studies are necessary to elucidate the relationship
between the magnitude of neural activity measured at various
different levels of brain organization (from spike rates to local
field potentials and frequency-resolved iEEG data to BOLD
responses) to the representation of stimulus-specific information.

Interestingly, only stimulus-specific activity relatively late post
stimulus (500–1200 ms) was related to subsequent memory, but
not stimulus-specific activity from an earlier cluster (100–500 ms,
Fig. 2a). The functional relevance of the later encoding time
window is in line with a recent study showing memory-selective
neurons responding around 550 ms after stimulus onset37. We
interpret this result in a levels of processing framework38 and
suggest that activity related to “deeper”, more semantic proces-
sing stages needs to reoccur during retrieval to support item
recognition, while reoccurrence of stimulus-specific activity from
a “superficial”, more perceptual processing step is not beneficial.
This assumption is supported by findings showing that electrodes
located in fusiform and inferior temporal lobe are more involved
in stimulus-specific representations of early encoding activities
while the medial temporal lobe (MTL) seems to be more engaged
during representations of late encoding activity. Regions con-
tributing to the early encoding cluster were substantially over-
lapping with the ventral visual stream39 that is predominantly
relevant for processing perceptual information, while the MTL is
a key region for high level information processing and memory40.
Similarly, only ripple-triggered replay of activity from the late but
not the early cluster during nREM sleep supported later memory,
suggesting similar benefits of deep representations during ripple-
triggered replay.

Contrary to the parsimonious idea that remembered items are
replayed while forgotten items are not, we found that the
encoding traces of both remembered and forgotten items are
spontaneously replayed during the post-encoding rest periods
(Fig. 3). We did not find any difference in spontaneous replay
levels between remembered and forgotten items. These data
suggest that aspects of both remembered and forgotten items are
replayed to some extent. However, replay patterns differed
between remembered and forgotten items when replay was spe-
cifically evaluated triggered to ripples (Fig. 4). For remembered

Fig. 4 Ripple-triggered replay. a Grand average of ripples and ripple-triggered raw EEG traces in the hippocampus. Time 0 indicates the onset of ripple
events. b Examples of individual ripple events in four patients (highpass filtered at 5 Hz for display purposes). The blue line marks the duration of ripple
events. c Analysis of replay during ripple events and peri-ripple periods: schematic overview. Top: Example of intracranial EEG activity from the
hippocampus (highpass filtered at 40 Hz). Below: time windows used to extract activity during peri-ripple periods and ripple events. d Time resolved replay
of gamma activity locked to ripples during nREM sleep and waking state for later remembered and forgotten remote items. Ripple time 0 corresponds to
ripple events and ripple time before and after 0 correspond to peri-ripple period. The early and the late cluster correspond to the stimulus-specific clusters
in Fig. 2a. e Ripple-triggered replay of early and late encoding activity differentially affects memory: Interaction between replay levels of remembered and
forgotten items and gamma band activity from the early (100–500ms) and the late (500–1200ms) encoding clusters. f Direct comparisons of replay
levels during ripple events between later remembered and later forgotten remote items. Each colorful dot indicates one participant. Same colors indicate
data from the same participant. Error bars, standard error of the mean; *p < 0.05 (paired t test); **p < 0.01 (2 × 2 repeated measures ANOVA); X, p= 0.071
(paired t test); time windows showing higher replay levels for remembered vs. forgotten items during ripple events are indicated by gray background
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items, ripple-triggered replay mainly concerned brain patterns
from late encoding periods; for forgotten items, neural activity
from early encoding time periods was replayed. These results may
account for findings that information which only undergoes
superficial, but not deep processing cannot be explicitly remem-
bered. This information may still be accessible in implicit mem-
ory tests41, although the relevance of replay for implicit memory
needs to be studied further. Previous studies investigating replay
of stimulus-specific activity via fMRI observed higher replay of
remembered than forgotten items14,15; however, due to the rela-
tively low temporal resolution of fMRI recordings, these studies
could not distinguish between activities from different processing
steps during encoding.

A previous iEEG study investigated replay of distributed
sequences of high-gamma activity during sleep42. This study
reported that replay could indeed be detected (i.e., it was
enhanced during sleep periods following as compared to pre-
ceding the initial occurrence of these sequences) and that it was
related to the timing of several sleep graphoelements including
sleep spindles and hippocampal ripples. However, this previous
study extracted activity sequences across waking periods char-
acterized by various everyday activity and cognitive experiments,
but not locked to specific events. By contrast, we identified
stimulus-specific neural representations during a recognition
memory task. This allowed us not only to track the re-occurrence
of neural activity patterns across multiple processing stages of
individual events, but also to relate replay to later memory
of individual items and thereby to clarify the functional relevance
of replay for memory consolidation.

Another related study43 provided evidence that local field
potential responses recorded via tetrodes in rat parietal cortex are
tuned to specific egocentric movements (specifically, to specific
combinations of angular and linear velocity), that these responses
are reactivated during post-experience sleep periods and that
reactivation is linked to hippocampal ripples. These results
demonstrate that replay does not only occur at the level of single
cells but also on a population level, conceptually similar to the
results reported in our current study. This study differs from our
study not only in terms of methodology (rats vs. humans, dis-
tributed iEEG representations vs. “modules” in parietal cortex,
assessment of reactivation etc.), but also with regard to the fact
that our design allowed us to assess the functional relevance of
reactivation for subsequent memory. Nevertheless, we feel that
the studies by Jiang et al.42 and Wilber et al.43 (and the results
presented here) constitute an important step towards an inte-
gration of animal and human research, which should be followed
by future investigations in both rodents and humans with parallel
experimental designs, recording methodology and analysis
methods.

Our study provides first evidence for a differential contribution
of spontaneous and ripple-triggered replay to memory con-
solidation of stimulus-specific representations in humans. These
data may explain an apparent paradox of previous studies pro-
viding evidence for consolidation-related replay during waking
rest14,15, despite the well-documented beneficial role of sleep for
memory consolidation18–21. Our data show pronounced differ-
ences of ripple-triggered replay during waking rest and nREM
sleep, suggesting ripple-triggered replay as a mechanism to
account for the beneficial role of sleep for memory.

Methods
Epilepsy patients. Twelve epilepsy patients (8 female; mean age ± standard
deviation (SD): 37.9 ± 9.6) participated in the study. No seizure occurred during the
test session or during rest. All patients were implanted with invasive EEG elec-
trodes for diagnostic purpose. Medial temporal depth electrodes (AD-Tech, Racine,
WI, USA) with ten cylindrical platinum-iridium (diameter: 1.3 mm) contacts were

implanted in all patients. Moreover, subdural grid and strip electrocorticography
(ECoG) electrodes with stainless-steel contacts (diameter: 4 mm) were implanted in
the frontal, temporal and parietal lobe of several patients. We excluded all elec-
trodes that were ipsilateral to the seizure onset zone. In addition, we excluded
contralateral electrodes if they were severely contaminated by epileptiform activity.
See Supplementary Fig. 1 for an overview of all remaining implanted electrode
contacts that were used for final analyses. Recordings were performed using a
Stellate recording system (Stellate GmbH, Munich, Germany) at the Department of
Epileptology, University of Bonn, Germany. The study was conducted according to
the latest version of the Declaration of Helsinki and approved by the ethics
committee of the Medical Faculty of the University of Bonn, and all patients
provided written informed consent.

Experimental design. The experimental paradigm is depicted in Fig. 1a. The
experiment consisted of two consecutive days, a “nap day” and a “no-nap day”. On
the nap day, patients first learned a set of 80 pictures (remote condition). Half of
the pictures were landscapes and the other half buildings. Patients were asked to
distinguish between landscapes and buildings by pressing one of two mouse but-
tons. Afterward, patients were settled in a bed with attenuated light and sound for
around 1 h and asked to try to fall asleep. During this period, we conducted
polysomnography recordings including scalp EEG, electrocardiograms, facial
electromyograms, and recordings of horizontal and vertical eye movements. Fifteen
minutes after awakening, patients learned a different set of 80 pictures, again
consisting of landscapes and buildings (recent condition), and were again asked to
indicate whether they saw a landscape or a building. The recent items served as a
baseline, because they cannot be replayed during the nap. After the recent session,
the experimenter had a conversation with the patient for around 15 min to avoid
rehearsal of items in short-term memory. In the following retrieval session, patients
were presented with all pictures from the remote and the recent session, randomly
intermixed with 80 new pictures (again half landscapes and half buildings). They
were asked to indicate for each picture if it had been presented before by pressing a
left or right mouse button. On the day without nap, the procedure was similar as on
the nap day except that patients did not sleep between the remote and the recent
session. Otherwise, they could freely choose their behavior during this period. The
sequence of the day with and the day without nap was counterbalanced across
patients. Continuous EEG data were recorded from the depth and ECoG electrodes
during remote encoding, recent encoding, retrieval, and nap periods. A design with
a nap day and a day without nap was chosen to investigate the role of an afternoon
nap on memory consolidation. Results from this original study in a smaller group
of patients than the current study have been reported in previous papers24,44. We
presented stimuli of landscapes and buildings. Stimuli from two different categories
were used in order to ensure attentive processing of the images by requesting
subjects to indicate stimulus category by button presses.

Recording and analyses. iEEG was referenced to bilateral mastoid electrodes,
recorded at a sampling rate of 1000 Hz, and bandpass filtered (0.01 Hz [6 dB/
octave] to 300 Hz [12 dB/octave]). All data analyses were based on electrodes from
the hemisphere contralateral to the epileptogenic focus to minimize the possibility
of artifact contamination. The locations of electrode contacts were ascertained by
post-implantation magnetic resonance imaging (MRI). Contacts were mapped by
co-registering pre-implantation to post-implantation MRI space, normalizing the
co-registered pre-implantation MRI to MNI space and applying the normalization
matrix to the post-implantation MRI. The anatomical locations of contacts were
then identified using PyLocator ([http://pylocator.thorstenkranz.de/]). All analyses
were conducted using the Fieldtrip toolbox45 and Matlab.

Extracting item-specific brain patterns during encoding. In order to optimize
the representational specificity of individual electrodes, we first re-referenced all
iEEG data by the average activity across all depth and subdural electrodes. Then,
we extracted activity from 1 s before the onset of each picture to 1 s after the offset
of each picture. Relatively long segments were chosen to remove edge effects
associated with spectro-temporal decomposition. EEG trials were visually inspected
for artifacts (e.g., epileptiform spikes), and trials with artifacts were excluded from
further analyses, resulting in exclusion of 14.22 ± 13.05% (mean ± SD) of all trials.
Time-frequency transformation was performed in each EEG trial using complex
Morlet wavelet transformation (seven cycles), and power values were extracted.
Only data from 100 ms before the onset of each picture to 100 ms after the offset of
that picture was kept for further analyses (1.4 s for each trial). We z-transformed
the EEG power data within each frequency and each channel (i.e., we normalized
the power data by first subtracting the average value and then dividing by the
standard deviation across all trials). Further data analyses were based on nor-
malized data. Each trial was divided into 13 time windows of 200 ms, overlapping
by 100 ms (−100 to 100 ms; 0–200 ms;…; 1100–1300 ms). Then, we averaged the
EEG power within each time window and frequency band of interest (gamma,
30–90 Hz; epsilon, 90–150 Hz; Supplementary Fig. 2a,b; Supplementary Note 2)28.

Stimulus-specific brain patterns were identified by RSA (ref. 17; Fig. 1c), using a
similar approach as in previous iEEG studies29,30. In order to maximize statistical
power, we combined activity during remembered and forgotten items from both
experimental days. First, we calculated a non-parametric Spearman’s correlation

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-06553-y

8 NATURE COMMUNICATIONS |  (2018) 9:4103 | DOI: 10.1038/s41467-018-06553-y | www.nature.com/naturecommunications

http://pylocator.thorstenkranz.de/
www.nature.com/naturecommunications


between encoding of a picture (n pictures after artifact rejection, with n ≤ 320,
which is the total number of pictures during the remote and recent sessions across
both days) and retrieval of either the same picture (RSAsame) or a different picture
(RSAdiffer). Correlations were calculated across electrodes, separately for each time
window during encoding and each time window during retrieval. For each
frequency band and patient, this yielded a timesencoding × timesretrieval × n similarity
matrix of RSAsame values (with timesencoding= timesretrieval= 13 being the number
of time windows during encoding and retrieval), and a timesencoding ×
timesretrieval × n × (n−1) matrix of RSAdiffer values. Second, the Fisher-Z
transformed correlation matrices were averaged across trials for both RSAsame and
RSAdiffer, separately for each frequency band and patient. This generated two 13 ×
13 (timesencoding × timesretrieval) similarity matrices—one for RSAsame and one for
RSAdiffer—for each frequency band and patient. Third, we compared RSAsame and
RSAdiffer matrices using paired t tests across patients within each timesencoding/
timesretrieval bin and each frequency band. Fourth, we also compared RSAsame

values against 0 using a one sample t test across patients within each timesencoding/
timesretrieval bin and each frequency band. This was done to ensure that RSAsame

values were reliably larger than zero.
For each frequency band, these values were corrected for multiple comparisons

using surrogate-based cluster statistics46 (for a similar procedure, see ref. 30). First,
we extracted cluster values from the empirical data (i.e., based on the actual
difference between RSAsame and RSAdiffer matrices and between RSAsame and 0):
We thresholded the t value of each timesencoding/timesretrieval bin such that only
time bins with t values corresponding to p values smaller than 0.01 in both
comparisons were taken into account. Time bins with shared edges were defined as
belonging to the same cluster. T values (RSAsame vs. RSAdiffer) of each contiguous
cluster of timesencoding × timesretrieval values were summed up. These empirical
cluster values were compared to a distribution of surrogate clusters. To obtain these
surrogate clusters, we randomly shuffled trial labels (within each patient and
frequency band) and performed the same RSA procedure as described above. We
extracted clusters from these surrogate matrices and selected the cluster with the
largest summary t value (RSAsame vs. RSAdiffer) for each surrogate. This surrogate
procedure was repeated 10,000 times and produced 10,000 surrogate clusters (if no
cluster was found in one of the surrogates, a cluster value of 0 was assumed for this
surrogate). Then, we ranked each empirical cluster within the distribution of all
surrogate clusters. Clusters with summary t values larger than 99% (alpha level=
0.01) of all surrogate t-clusters were selected. The cluster-based surrogate method
effectively controls the alpha level for multiple comparisons on an assumption-free
basis regarding the sampling distribution under the null hypothesis46. As this
analysis was done independently in each frequency band, we additionally
Bonferroni-corrected the resulting rank statistics for the two different frequency
bands. We also utilized another method to extract surrogate clusters in which we
randomly switched condition labels between RSAsame and RSAdiffer at the subject
level (i.e., across trial averages). This method generated the same results (i.e., p <
0.001).

Next, we compared encoding-retrieval similarity of remembered and forgotten
items. In the cluster resulting from the analysis above (i.e., showing significantly
higher RSAsame than RSAdiffer values regardless of memory), we extracted RSAsame

values for remembered and forgotten items, and averaged them separately. This
yielded one RSAsame value for all remembered items and one for all forgotten items
per patient, which were then compared by a paired t test across patients.

Brain regions supporting stimulus-specific representations. We conducted a
jackknife analysis to evaluate the contribution of different brain regions to
stimulus-specific representations within the temporal clusters obtained from the
analysis above. This was done separately for each electrode (i.e., at the single subject
level) because of the different implantation schemes across patients.

First, we calculated the overall representational similarity indices of each cluster
by averaging Fisher-Z transformed correlation values across all time bins within
each cluster for each stimulus (RSAtotal). Second, we calculated the correlation
between encoding and retrieval by leaving one electrode out (E[i]). Again, we
calculated the representational similarity indices of E[i] by averaging Fisher-Z
transformed correlation values across all bins within each cluster for each stimulus
(RSAE[i]). We calculated the contribution of each electrode by performing a paired
t test between RSAtotal and RSAE[i] across all stimuli. The higher the difference
between RSAtotal and RSAE[i], the higher was the contribution of E[i].

Analysis of spontaneous replay during rest. Patients had on average 1 h and 16
± 20min (mean ± STD) of rest. Sleep staging was performed according to the
criteria of the American Academy of Sleep Medicine47 for non-overlapping time
windows of 20 s. Across the group of 12 patients, two did not fall asleep during the
rest period; ten reached shallow sleep stages (sleep stages N1 and N2); seven
reached deep sleep (sleep stage N3, besides N1 and N2); and five had rapid-eye-
movement sleep (REM). The percentage of time that patients spent at the different
sleep stages is shown in Supplementary Fig. 3. The EEG data during rest was
visually inspected for artifacts (e.g., epileptiform spikes), and periods from 2 s
before to 2 s after each artifact window were excluded from further analyses. This
resulted in exclusion of 6.86 ± 4.22% (mean ± SD) of all data. Time-frequency
transformation was performed in each channel using complex Morlet wavelet
transformation (seven cycles), and power values were extracted. We then

normalized EEG power using Z transformation (i.e., we first subtracted the average
value from the EEG data and then divided by the standard deviation across all time
bins within each frequency and electrode).

Replay of stimulus-specific representations was investigated separately for each
frequency band during the nap day. We correlated activity during various encoding
time windows of each item with activity during each rest time window of each
frequency band (Fig. 3a). Activity during encoding was extracted from the time and
frequency window showing subsequent memory-related stimulus-specific
representations in the analysis described above: Eight time windows centered at
time points from 500 to 1200 ms post stimulus (400–600 ms; 500–700 ms;…;
1100–1300 ms) in the gamma frequency range (30–90 Hz; Fig. 2a). Correlations
with activity during rest were calculated separately for each remote item (presented
before the nap) and each recent item (shown after the nap). We segmented the
normalized EEG data during rest into small windows again each lasting 200 ms,
overlapping by 100 ms, and averaged EEG gamma (30–90 Hz) power within each
window and channel. This results in a specific brain pattern across channels of each
rest window. Next, we calculated a Spearman’s correlation between the brain
pattern of each of the selected encoding time windows of each picture and the brain
pattern of each rest window across channels. Spontaneous replay was quantified by
averaging all Fisher-Z transformed correlation coefficients across all rest windows,
all stimulus-specific time windows and all items, separately for the remote and the
recent condition. Finally we performed a paired t test between replay of items
shown before the nap (remote) and those shown after the nap (recent) across
patients.

In addition, we extracted encoding activity and time windows showing
stimulus-specific representations that were not related to subsequent memory: the
five gamma power time windows centered at time points from 100 to 500 ms post
stimulus (0–200 ms; 100–300 ms;…; 400–600 ms), five epsilon power time
windows centered at time points from 300 to 700 ms post stimulus and five epsilon
power time windows centered at time points from 500 to 900 ms post stimulus .
These results are reported in the Supplementary Notes 5 and 7.

We also investigated the spontaneous replay of the sequence—i.e., the temporal
evolution—of activities within the cluster (500–1200ms) of gamma band activity
showing subsequent memory-related stimulus-specific representations during
encoding. This was calculated as indicated in Supplementary Fig. 5a: First, we
extracted the power time courses in the gamma frequency range (30–90 Hz) within
the late encoding time windows (500–1200 ms; 701 data points) and concatenated
them across all electrodes. This resulted in a vector with the length of 701 × n (n is
the number of electrodes) (Vencoding) for each item. Second, we segmented the time
courses of gamma actvity (30-90Hz) during rest into small windows again each
lasting 700 ms (701 data points) and concatenated the gamma time courses across
all electrodes. This resulted in a vector with the length of 701 × n (n is the number
of electrodes) (Vrest). We generated a series of Vrest patterns by shifting them in
steps of 1 ms. Third, we calculated the correlation between Vencoding of each item
and each of the Vrest patterns using Spearman’s correlations and Fisher-Z
transformed the resulting correlation values. Spontaneous replay was defined as the
averaged correlation values, separately for remote and recent items. Finally we
performed a paired t test between replay of remote and recent items across patients.
We also conducted the corresponding analyses to activity from the early encoding
cluster (100–500 ms) for the gamma frequency range, and two clusters (300–700
and 500–900 ms) for the epsilon frequency range. The results are reported in the
Supplementary Notes 6, 8 and in Supplementary Fig. 5b–e.

Encoding-time resolved replay was evaluated by correlating EEG power of each
encoding time window (from 0 to 1200 ms) with each rest time window separately
for the gamma range and the epsilon range. Fisher-Z transformed correlations were
averaged across all rest windows and items, separately for each encoding time
window of the remote and recent conditions. Finally, we performed a paired t test
between the remote and recent condition at each encoding time window across
patients within each frequency range. Results were corrected for multiple
comparisons (the individual encoding time windows) using an analogous cluster-
based procedure as for the analysis of encoding-retrieval similarity. In detail, we
first thresholded the t value of each encoding time bin such that only time bins with
t values corresponding to p values smaller than 0.05 were taken into account.
Adjacent time bins were defined as belonging to the same cluster. T values of each
contiguous cluster were summed up. These empirical cluster values were compared
to a distribution of surrogate clusters to correct for multiple comparisons.
Surrogate data were generated by randomly switching condition labels (remote vs.
recent), and performing the same paired t test as applied to the empirical data. We
extracted clusters from these surrogate matrices and selected the cluster with the
largest summary t value for each surrogate. This surrogate procedure was repeated
10,000 times and produced 10,000 surrogate clusters (if no cluster was found in one
of the surrogates, a cluster value of 0 was assumed for this surrogate). Then, we
ranked each empirical cluster within the distribution of all surrogate clusters.

Analysis of ripple-triggered replay during rest. Ripple events were extracted
using a two-step procedure. The first step consisted of a combined manual and
automatic artifact detection to reject epilepsy-related high-frequency events. The
second step was the ripple extraction itself. First, we selected the hippocampal
electrode contact with the least epileptic contamination by visual inspection in each
patient and manually rejected larger artifacts (e.g., epileptiform spikes). Automatic
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artifact detection was then performed on artifact-free (by visual inspection) data
from the hippocampal channel of each patient using a similar procedure as in
ref. 27. We extracted z-scores of the EEG amplitude, of its gradient, and of the EEG
amplitude after applying a 250 Hz highpass filter. A time bin was defined as
containing artifacts if any of these three indices had a z-score larger than 5, or if
any two of these three indices had z-scores larger than 3.

Ripple events were extracted using exactly the same procedure as in a previous
study27. First, resting EEG data from the selected hippocampal channel were
bandpass filtered at the frequency of human ripples (80–100 Hz; we also calculated
the 80–140 Hz bands as ripples24, and found 94.6 ± 4.4% of 80–140 Hz ripples were
identified as 80–100 Hz ripples), excluding periods with artifacts (both visually and
automatically detected artifacts). Second, the root mean square (RMS) signal was
calculated by averaging the filtered EEG data using a moving average of 20 ms.
Epochs with RMS values ranking higher than 99% within the RMS values of the
entire rest period (including both, nREM sleep and waking state) and lasting more
than 38 ms (around three cycles at the lowest ripple frequency of 80 Hz) were
marked. Following ref. 27, we only included events that showed at least three peaks
or troughs in the unfiltered raw data. These periods together with activity 10 ms
before and afterwards (to take temporal smearing of ripple power into account)
were defined as “ripple events” (Fig. 4c).

Next, we analyzed replay during ripples and peri-ripple events, using an
analogous procedure as for the analysis of spontaneous replay (Fig. 4c). This
analysis was conducted separately for ripples occurring during nREM sleep and
waking state (Supplementary Note 13). Because only 5 out of 12 patients reached
REM sleep and because of the overall short duration of that sleep stage
(Supplementary Fig. 3a), we did not analyze ripple-related replay during REM
sleep.

First, we extracted the EEG power from ten overlapping 200 ms time
windows surrounding each ripple event in the frequency range where stimulus-
specific activity had been found (gamma: 30–90 Hz), using seven-cycle Morlet
wavelets. EEG power was z-transformed separately for each frequency within the
gamma band, across all these extracted time periods in each channel and each
patient, and then averaged across all frequencies. We extracted five time
windows of 200 ms, overlapping by 100 ms, before and after ripple events, and
defined them as “peri-ripple periods” (before ripples: −600 ms with regard to the
beginning of the ripple events to −400 ms before; −500 ms to −300 ms; …;
−200 ms to the beginning of the ripple event; after ripples: from the end of the
ripple event to 200 ms afterwards; 100 ms to 300 ms; …; 400 ms to 600 ms; see
Fig. 4c). Furthermore, EEG power in the gamma range (30–90 Hz) was extracted
during the ripple events. Second, we calculated the Spearman’s correlation
between brain patterns of each encoding time window of each item and brain
patterns of the ripple event and each peri-ripple period (one correlation with
activity during the “ripple event”, and ten correlations with time windows during
the “peri-ripple period”).

Analogous to the analysis of spontaneous replay, data were analyzed by both
averaging the (Fisher-Z transformed) correlations during the late (500–1200 ms)
and early (100–500 ms) encoding clusters showing stimulus-specific
representations, and separately for all encoding time windows (0–1200 ms) in the
gamma band. For comparison, the same analysis was then conducted for later
forgotten remote items, as well as later remembered and forgotten recent items
(Supplementary Note 14).

For both the late and the early encoding cluster in the gamma band, we
performed a paired t test between replay levels during ripple events and the
averaged replay levels across all peri-ripple periods. Whenever the replay level
differed between ripple events and overall peri-ripple periods, we performed an
ANOVA and (when significant) post hoc t tests to test if indeed replay during each
individual time window of the peri-ripple period differed from replay during the
ripples.

For the individual analysis of all encoding time windows (0–1200 ms), we again
compared replay levels during ripple events and averaged replay levels across all
peri-ripple periods. Results were corrected for multiple comparisons (the individual
encoding time windows) using an analogous cluster-based procedure as described
above. Surrogate data was generated by randomly switching condition labels (ripple
events vs. peri-ripple periods).

Data availability
All relevant data are available from the authors upon reasonable request, including the
iEEG data, behavioral log files, pre-implantation MRI, post-implantation MRI, and
MATLAB scripts. Patients’ private identifications are all anonymized.
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