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Natural stimuli consist of multiple properties. However, not all of these properties are equally relevant in a given
situation. In this study, we applied multivariate classification algorithms to intracranial electroencephalography
data of human epilepsy patients performing an auditory Stroop task. This allowed us to identify neuronal repre-
sentations of task-relevant and irrelevant pitch and semantic information of spokenwords in a subset of patients.
Whenpropertieswere relevant, representations could be detected after about 350msafter stimulus onset.When
irrelevant, the associationwith gamma power differed for these properties. Patients withmore reliable represen-
tations of irrelevant pitch showed increased gamma band activity (35–64 Hz), suggesting that attentional re-
sources allow an increase in gamma power in some but not all patients. This effect was not observed for
irrelevant semantics, possibly because the more automatic processing of this property allowed for less variation
in free resources. Processing of different properties of the same stimulus seems therefore to be dependent on the
characteristics of the property.
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Introduction

In daily life, we encounter many stimuli that are a conjugation of
simple and complex properties. For example, single-word utterances
contain information about, among others, pitch, loudness, semantics,
and speaker identity. However, not all stimulus properties are equally
relevant in each situation. Therefore, it could be argued that the relevant
properties for the task at hand have to be attended to, whereas irrele-
vant properties do not require as much attention.

Selectively attending to a stimulus or a specific stimulus property
has been shown to modulate its neuronal processing. For example, the
amplitudeof event-related potentials (ERPs) in electroencephalography
data decreases when an auditory stream is unattended (Hillyard et al.,
1973; Näätänen et al., 1992;Woldorff and Hillyard, 1991), and brain ac-
tivity measured with functional magnetic resonance imaging (fMRI) in-
creases in regions corresponding to the attended property (Degerman
et al., 2006; Downar et al., 2001; Johnson and Zatorre, 2006; Paltoglou
et al., 2009). In the visual domain, this biases neuronal population activ-
ity asmeasured by fMRI such that specifically the attended property can
be decoded from an ambiguous stimulus (Jehee et al., 2011; Kamitani
and Tong, 2005, 2006; Niazi et al., 2014). Finally, neuronal firing rates
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of monkey single-unit recordings increase with selective spatial atten-
tion (Benson and Hienz, 1978).

Selective attention to one particular stimulus feature in the visual
domain is associated with pronounced modulation of the neuronal re-
sponse by task-relevance (e.g. Davidesco et al., 2013; Harel et al.,
2014). However, it remains unclear whether the unattended property
is still represented throughout the entire task interval between stimulus
onset and task-related response. Therefore, in this study we explored
the neuronal representations of the stimulus properties ‘pitch’ and ‘se-
mantics’ of single spoken words throughout an auditory Stroop task,
when these properties were either relevant (attended to) or irrelevant
(unattended) (Haupt et al., 2009; Oehrn et al., 2014). We examined to
what extent the identity of these properties are still represented when
this identity was not relevant for the task at hand. Studies on feature-
based attention (e.g. Krumbholz et al., 2007; O'Craven et al., 1999) sug-
gest that unattended stimulus properties do not necessarily remain un-
processed. Thus, we hypothesise that although the specific identity of a
stimulus property may not be relevant for the task, this identity is still
processed and represented in the brain to a certain extent.

Since such neuronal representations of irrelevant stimulus proper-
ties are likely relatively weak, a method with high signal-to-noise
ratio is required. We thus re-analysed existing intracranial electroen-
cephalography (iEEG) data of a large group of patients (n = 21).
These data have a superior signal-to-noise ratio compared to conven-
tional scalp recordings, aswell as a high temporal and spatial resolution,
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because they are measured close to the brainwithout interference from
the skull.

Conventionally, Stroop data, in which stimuli are presented with
properties that are conflicting in meaning (such as the word ‘high’ spo-
ken in a low pitch), are analysed based on this conflict between these
stimulus properties. In this study, however, we focused on the effect
of task-relevance on the representation of these properties. The amount
of competition between the relevant (attended) and the irrelevant
(unattended) property caused by the auditory Stroop paradigm de-
pends on the automaticity with which the irrelevant property is proc-
essed. Here, the property ‘semantics’ is thought to be processed more
automatically than the property ‘pitch’ (Haupt et al., 2009; Oehrn
et al., 2014). It has been suggested, thatwhen two conflicting properties
are presented, activity related to the task-irrelevant property is sup-
pressed (e.g. Iguchi et al., 2005; Liu et al., 2016; Mansouri et al., 2009;
Polk et al., 2008). Because of its previously described role in attention,
we hypothesise power in the alpha band to be related to this top-
down suppression (8–12 Hz; e.g. Jensen et al., 2012; Jensen and
Mazaheri, 2010; Klimesch et al., 2011; Klimesch, 2012). Furthermore,
as gamma power (35–64 Hz) has also been associated with attentional
processes, (Brovelli et al., 2005; Fries et al., 2008; Tallon-Baudry et al.,
2005) and has been suggested to be increased in some cases related to
an unattended stimulus (Martinovic et al., 2009), we also expect a role
of this frequency band in the way different levels of task-relevance are
represented.

We found that pitch and semantics of a spoken word were repre-
sented both when these features were relevant and when they were
irrelevant. Furthermore, patients with a higher decodability of unat-
tended pitch representations tended to have larger increases in
gamma power. This effect was not observed for unattended semantics.
Therefore, the specific relationship the representation of an irrelevant
property has with frequency power seems to differ depending on the
property itself.

Materials and methods

Patients and paradigm

Intracranial EEGdata of 22 patientswith pharmacologically intracta-
ble epilepsy (mean age 36.4, sd=13.6; 14males; 21 right-handed, one
ambidextrous) were recorded, while these patients performed an audi-
tory version of the Stroop task (Haupt et al., 2009; Oehrn et al., 2014).
One patient was excluded from further analysis because all responses
in one condition were incorrect, resulting in 21 patients (mean age
35.7, sd= 13.6; 13 males; 20 right-handed, one ambidextrous).

The paradigm, as well as the data of 13 patients, was the same as
described by Oehrn et al. (2014). Patients were presented with the Ger-
man words for ‘high’ and ‘low’, spoken in either a high- or low-pitched
male voice. The word meaning and the corresponding pitch either
matched (congruent trials: the word ‘high’ spoken in a high-pitched
voice, or theword ‘low’ spoken in a low-pitched voice) orwere reversed
(incongruent trials: the word ‘high’ spoken in a low-pitched voice, or
the word ‘low’ spoken in a high-pitched voice). In addition, in control
trials the German word for ‘good’ was spoken with either a high or a
low pitch.

In one of two blocks, patients had to indicate whether the pitch was
high or low, regardless of theword's semantics (pitch task). In the other
block, they had to indicate whether the word meaning was ‘high’ or
‘low’, regardless of the pitch (semantic task). Four patients started
with the pitch task. The rest of the patients started with the semantic
task. Each block consisted of 40 congruent, 40 incongruent, and 40 con-
trol trials, which were randomly presented throughout the block. In
each of these conditions the pitch was high in half of the trials. Re-
sponses were given by left and right button presses with the dominant
hand. Response mapping was counter-balanced between participants.
For the control trials no response was required in the semantic task.
Only trials in which the response was correct were included in the
analyses.

In each trial the spoken word was presented for 0.5 s, during which
the response task was shown on a screen. After the word was spoken,
the task instructions remained on screen for an additional 2 s, during
which patients were still allowed to respond. Trials were separated by
a variable inter-trial interval of 1.5–3.3 s, while a fixation cross was
presented in the centre of the screen. Stimuli were presented with Pre-
sentation software (Version 14.5, Neurobehavioral Systems Inc.). This
design has been shown previously to evoke a typical Stroop effect
both in healthy subjects (Haupt et al., 2009), and in epileptic patients
with implanted electrodes (Oehrn et al., 2014).

The digitized sound files, all voiced by the samemale experimenter,
were transposed either to a low or high pitch, such that the interval
between the low- and high-pitchedwordswas a fifth on themusical in-
terval scale. The words were aligned with the Entropic Timescale Mod-
ification function of the GoldWave audio editing software (http://www.
goldwave.com/) to ensure an equal length of 0.5 s.

Intracranial recordings

Depending on clinical criteria, patients were either implanted with
subdural or depth electrodes or both, for diagnosis of the focus of phar-
macologically intractable epilepsy. Subdural electrodes were made of
stainless steel and consisted of strips or grids with a contact diameter
of 4 mm and a centre-to-centre spacing of 10 mm. Depth electrodes
had a diameter of 1.3mmand contained cylindrical platinum electrodes
of 2.5 mm every 4 mm. Electrodes were located over the frontal and
temporal lobe, including the medial temporal lobe and hippocampus,
with some strips extending into parietal and occipital areas (Fig. 1A).
The location of the electrodeswas dependent on the suspected epileptic
focus. The data were recorded at a sampling frequency of 1000 Hz, ref-
erenced to linked mastoids and band-pass filtered from 0.01 Hz to
300 Hz, using the digital EPAS system (Schwarzer, Munich, Germany)
and Harmonie EEG software (Stellate, Montreal, Canada). Measure-
ments were performed in the Klinik für Epileptologie in Bonn,
Germany. The studywas approved by the local ethics committee. All pa-
tients gave written informed consent before participating in the study.

Artefact rejection

Electrodes located over the epileptic focus were excluded. The re-
maining data were further inspected visually with BrainVision Analyser
2 (Brain Products). Electrodes that showedmore than occasional epilep-
tic activity, such as spikes and high frequency high amplitude bursts,
were excluded as well. The electrodes that were included for analysis
are shown in Fig. 1A. In total, 432 electrodes were included (mean per
patient = 20.67, sd= 8.91). Finally, trials in which artefacts were visu-
ally detected in the remaining electrodeswere rejected. On average, this
resulted in 194.19 (sd=23.76) trials per patient that remained for anal-
ysis. Data were then exported and further analysed using MATLAB
version 8.1.0.604, R2013a (The Mathworks Inc.) and FieldTrip, an
open source Matlab toolbox for the analysis of neuroimaging data
(Oostenveld et al., 2011).

Preprocessing

The data were low-pass filtered at 100 Hzwith a Butterworth IIR fil-
ter, and a 50 Hz notch filter was applied to remove the line noise. After
this, baseline correction was performed relative to the period between
stimulus onset and 200 ms before. Subsequently, the data were
downsampled to 300 Hz to reduce memory and CPU load. These time-
domain data were used for further classification analyses.

For additional correlation analyses between classification accuracy
and power in various frequency bands, time-frequency representations
were calculated for the alpha (8–12 Hz) and gamma (35–64 Hz)

http://www.goldwave.com/
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Fig. 1. Electrode coverage, behavioural results and classification accuracy. A) Location of all electrodes that passed artefact rejection and were used in further analyses. Different colours
indicate electrodes of different patients. B & C) Reaction times (B) and task accuracy (C) for the different conditions (congruent and incongruent) and tasks (pitch task and semantic
task). Asterisks indicate contrasts that were significant at p b 0.05 (Bonferroni corrected). D) Group averaged accuracies for pitch (red) and semantics (blue) when these features were
task-relevant, irrelevant, and when the classifier was trained on the relevant property and tested on the irrelevant property (transfer). The black horizontal line indicates chance level.
An asterisk indicates classification accuracies that are significant above chance level (Bonferroni corrected). Contrasts indicated with n.s. are not significant when correcting for
multiple comparisons. E) Averaged classification accuracies over time. The red line indicates the classification accuracy trace for pitch, the blue line represents the trace for semantics.
Stimulus onset was at zero seconds. The black horizontal line indicates chance level. The bright part of the blue line indicates the time points at which the classification accuracy trace
for semantics significantly exceeded the baseline traces (before stimulus onset).
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frequencyband. Frequency bands had a resolution of 1Hz, andwere cal-
culated using a Fourier analysis applied to sliding time-windows with a
step size of 50 ms and an adaptive length, such that each window
contained four cycles of the frequency of interest. These windows cov-
ered data ranging from 2 s before stimulus onset to 4.5 s after stimulus
onset. Hanning tapers were applied to the data before Fourier analysis
to smooth the data. To account for individual power differences due
to, for example, electrode positioning, a relative baseline correction of
the power spectrum was then performed against a baseline period of
500 to 200 ms before stimulus onset, as this period was not already
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used for baseline correction of the raw signal. Power values of each pa-
tient were then averaged over trials, electrodes and time period be-
tween 0 and 1500 ms after stimulus onset to match the time-domain
data to which the classifier was applied. This resulting power value
was then correlated to classification accuracy (see below).

Furthermore, to assess whether these correlation effects are selec-
tive to the alpha and gamma band or whether they extend into other
frequencies as well, successive frequency bins of 4 Hz each were com-
puted following the same method as described above. This resulted in
one power value averaged over time, electrodes and trials per patient
for each frequency bin. The centre frequencies of these bins ranged
from 3 to 88 Hz, and were shifted with a step size of 1 Hz. Power in
each bin was correlated to classification accuracy (see below).

Classification

A linear support vector machine (SVM) algorithmwas used for clas-
sification. The soft margin parameter C, which acts as a regularizer, was
set to a default value of

C ¼ 0:1∙
1
N
∑
N

i¼1
kii−
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N2 ∑
N

i¼1
∑
N

j¼1
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 !

where K is a linear kernel such that kij is the inner product between trials
i and j, and N is the total number of trials that constitute the training
data. In short, this algorithm trains a classification model to optimally
discern between data of two classes (for example between trials with
a high pitch and trials with a low pitch). It then uses a subset of the
data that was not used during the training phase to test how well
the model generalizes, which prevents circularity (‘double dipping’;
Kriegeskorte et al., 2009).

Classifier performance was quantified in terms of accuracy (propor-
tion of correctly classified trials). Because this is a binary classification
problem, and because each class is equally likely to occur, chance level
is 0.5. Classification accuracies at chance level indicate that the classifier
is unable to differentiate between the two classes based on the classifi-
cation model obtained during training. However, if the classifier per-
forms above chance level this model is informative about the neuronal
representations of the stimulus properties that are being discerned.

The number of trials included during classifier training and testing
was always balanced, such that it was equal for both classes. Training
and testing of the classifier was done on time-domain data. The feature
space consisted of all selected electrodes per patient and all time points
between stimulus onset and 1500 ms thereafter. Note that we did not
apply pattern classification analysis to time-frequency-domain data,
i.e. we did not assess whether a property was represented in the fre-
quency domain or in a specific frequency band.

This algorithm was first applied to the relevant properties (i.e. dis-
cerning trials with a low pitch from trials with a high pitch in the
pitch task, and discerning trials in which the word ‘low’ was spoken
from trials in which the word ‘high’ was spoken the semantic task).
Pitch classification was performed on all trials of the pitch task. Seman-
tics classification was performed on all trials of the semantic task apart
from the control trials. In addition, we applied this algorithm to the re-
spective irrelevantproperties (i.e. pitch in the semantic task, and seman-
tics in the pitch task). Here, pitch classification was performed on all
trials of the semantic task block (including control trials). Classification
of semanticswas performed on all trials in the pitch task, apart from the
control trials.

Furthermore, we trained the classifier on trials in which a property
was relevant, and tested the model on trials in which that property
was not relevant (e.g. training on low versus high pitch discrimination
in the pitch task and testing on low versus high pitch discrimination
in the semantic task). This transfer learning can be interpreted as a
test of similarity of the neuronal signals: if the neuronal signal of task-
relevant pitch is similar to the neuronal signal of irrelevant pitch, the
test data will fit the classification model that was generated based on
the training data. In this case, classification accuracy will be high. How-
ever, if the signals of the train and test data differ too much for the test-
ing data to fit the training model, the resulting classification accuracy
will be at chance level.

In the previously mentioned analyses, the classification algorithm
was applied to time-domain data from stimulus onset to 1500ms after-
wards as a whole, i.e. resulting in one classification accuracy per patient
for this entire time window. To obtain a more fine-grained temporal
representation of classification accuracy, data from consecutive win-
dows of 50 ms were averaged over time and each window was used
as an input to the classification algorithm, resulting in a feature space
for eachwindowof one averaged time-domain amplitude per electrode.
These 50 mswindows spanned the interval of 2 s before stimulus onset
to 4.5 s after stimulus onset with the outer 0.5 s potentially overlapping
with the previous or next trial due to the variable inter-trial interval.
This resulted in 130 classification accuracy values for each patient
(130 windows of 50 ms spanning a total of 6500 ms), forming a trace
of accuracies over timewhich indicatedwhen class informationwas de-
tectable from the iEEG signal.

To assess the relationship between power in different frequency
bands and the ability of the classifier to detect the representations of
the irrelevant stimulus properties in the time-domain, classification ac-
curacies obtained for the irrelevant properties were correlated with
power in the different frequency bands mentioned above (see Prepro-
cessing). Powerwas averaged over all electrodes andover timebetween
stimulus onset and 1500ms thereafter tomatch the data used to obtain
the classification accuracies. Also, only the trials that were used in the
calculation of these classification accuracies were included in the aver-
age power calculation. Spearman correlation (ρ) was used to correlate
the classification accuracies with power in the different frequency
bands.

Using a classification method allows for a dissociation between the
representations of relevant pitch and of irrelevant semantics and vice
versa, even though these representations exist in the same trial. After
all, in each trial of the pitch task, pitch is relevant and semantics are ir-
relevant. However, because both incongruent and congruent trials were
included (pitch congruentmean per patient= 15.9, sd=3.15; pitch in-
congruent mean per patient = 14.52, sd = 4.58; semantic congruent
mean per patient = 17.26, sd = 2.55; semantic incongruent mean per
patient = 17.4, sd = 2.07), the class of the relevant property (e.g. high
or low pitch), was not consistently related to the class of the irrelevant
property (e.g. ‘high’ or ‘low’ semantics). Therefore, the classification
contrast made on one property (high versus low relevant pitch), is un-
related to the contrast of the other property (‘high’ or ‘low’ unattended
semantics), disentangling the representations of relevant pitch from ir-
relevant semantics and vice versa. In addition, this renders it unlikely
that semantics are driving pitch classification or that pitch drives classi-
fication on semantics.
Statistical analysis

As the data were not normally distributed, we used non-parametric
testing. One-sample and pairwise tests were performed using the
Wilcoxon signed-rank test. Multiple comparisons were in these cases
corrected for using Bonferroni correction. For correlations over multiple
frequency bands, multiple comparisons were corrected for with the
FDR.

For classification over time, the classification accuracies after stimu-
lus onset were compared to the baseline accuracies before stimulus
onset and corrected for multiple comparisons using cluster-based
permutation testing implemented in FieldTrip (Maris and Oostenveld,
2007). In short, this method tests the largest sum of neighbouring t-
values whose corresponding p-value exceeded a threshold of 0.05
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against the maximum sum obtained when class labels were reshuffled
randomly for 500 permutations.

Results

Behavioural results

First, we assessed whether the task indeed induced a Stroop-like ef-
fect, as has been observed before by Oehrn et al. (2014) and Haupt et al.
(2009). Pair-wise Wilcoxon signed-rank tests revealed a slowing in re-
action times for incongruent pitch trials compared to congruent pitch
trials (Z = 2.83, p = 0.005), as well as slower reaction times on incon-
gruent pitch trials compared to congruent (Z=3.18, p=0.001) and in-
congruent semantic trials (Z=3.04, p=0.002; Fig. 1B). The other three
contrasts were not significant (all Z b 2.45, all p N 0.01, Bonferroni
corrected α for six contrasts is 0.008). Similarly, task accuracy was
lower on incongruent pitch trials compared to congruent (Z = 3.10,
p = 0.002) and incongruent semantic trials (Z = 3.18, p = 0.001;
Fig. 1C). Furthermore, task accuracy was lower in congruent phonetic
trials than in semantic incongruent trials (Z = 2.76, p = 0.006). The
other three contrasts were not significant (all Z b 2.58, all p N 0.01,
Bonferroni corrected α for six contrasts is 0.008). This larger Stroop ef-
fect for pitch discrimination suggests that semantics is the more auto-
matic process in terms of the auditory Stroop task, as has been
suggested before with this paradigm (Haupt et al., 2009; Oehrn et al.,
2014).

Pitch and semantic information can be decoded from single-trial neuronal
representations

We applied the classification algorithm to trials in which pitch was
relevant (i.e. the pitch task) to distinguish between high and low pitch
based on time-domain data from stimulus onset to 1500ms afterwards.
Additionally, we applied this same method to trials in which semantic
content was relevant (i.e. during the semantic task) to distinguish be-
tween the word meanings ‘high’ and ‘low’. As can be seen in Fig. 1D,
classification accuracies rose above chance level for both pitch (mean
classification accuracy: 0.64 ± 0.08; mean classification accuracy ±
sd: 0.60 ± 0.12; Z = 3.02, p = 0.003) and semantics (Z = 3.92,
p b 0.0001). Classification accuracy was not related to the number of
features used for classification (pitch: ρ = 0.37, p = 0.10; semantics:
ρ = 0.38, p = 0.09).

Temporal distribution of relevant property representations

Classification over consecutive time bins showed classification accu-
racies above chance level, as quantified by the baseline before stimulus
onset, from 325 to 525 ms after stimulus onset for pitch (cluster with
largest summed t-values t(18)= 16.66, p=0.004). For semantics, clas-
sification accuracies were found to be above chance level from 375 to
1225 ms after stimulus onset (cluster with largest summed t-values
t(18) = 67.10, p = 0.002). Average peak classification accuracies
(pitch: mean = 0.58, sd = 0.07; semantics: mean = 0.60, sd = .08)
were reached at 475 ms and 625 s, respectively (see Fig. 1E). No differ-
ences were detected between these time courses (cluster with largest
summed t-values: t(18) = 2.95, p = 0.40).

Above-chance classification accuracies for irrelevant properties

Next, to test to what extent a property remains represented in the
brain when it is not relevant to the task, we applied the classification al-
gorithm to the irrelevant property, i.e. classifying pitch during the se-
mantic task and vice versa. Average classification accuracies for
irrelevant pitch classification remained above chance level (Z = 2.94,
p = 0.003) and were not decreased compared to classification accura-
cies for relevant pitch (0.55 ± 0.07; Z = 2.57, p = 0.01; not significant
when Bonferroni corrected for 10 multiple comparisons: six tests com-
paring accuracies to chance level and four tests comparing between
group level accuracies).

Similarly, average classification accuracies of irrelevant semantics
remained above chance level (Z = 2.84, p = 0.0045) and were not
reduced compared to classification accuracies obtained for relevant
semantics (0.59± 0.12; Z=1.36, p=0.18; see Fig. 1D). Again, classifi-
cation accuracy was not related to the number of features used for clas-
sification (pitch: ρ=0.23, p=0.32; semantics: ρ=0.46, p=0.04; not
significant when Bonferroni corrected for four multiple comparisons).

Representations of irrelevant properties are similar to representations of
relevant properties

Next, we compared the representations of relevant and irrelevant
properties. We trained classifiers on trials in which a stimulus property
was relevant, and tested on trials inwhich that samepropertywas irrel-
evant. For pitch information, transfer learning accuracies were above
chance level (0.54 ± 0.05; Z= 2.84, p= 0.004), indicating a common-
ality in representations of relevant and irrelevant pitch. Furthermore,
compared to the classification accuracies obtained for relevant pitch,
transfer accuracies did not decrease (Z = 1.93, p = 0.05; see Fig. 1D).
This suggests that there is no difference when testing on relevant or ir-
relevant pitch with a model trained on relevant pitch, supporting the
notion that the representation of relevant and irrelevant pitch does
not differ.

For semantic information, transfer learning accuracies only just
failed to rise above chance level (0.57 ± 0.09; Z = 2.80. p = 0.0051;
not significant when Bonferroni corrected for 10 multiple comparisons,
see above). However, this accuracy was not reduced compared to
classification accuracies obtained for relevant semantics (Z = 2.52,
p = 0.01; not significant when Bonferroni corrected for 10 multiple
comparisons, see above). This suggests that there may be a small differ-
ence in the representation of relevant and irrelevant semantics. Howev-
er, we did not have sufficient power to test where these differences
would originate if they would indeed exist.

It is unlikely that classification was driven by the motor response.
After all, themotor responsewas the same regardless of which property
was relevant (pitch or semantics), but there was no relationship be-
tween classification accuracies when the pitch or semantics was rele-
vant (ρ(19) = 0.04, p = 0.86). Moreover, of the six patients that had
individual classification accuracies above chance level for pitch and of
the four patients that had above-chance classification accuracies for se-
mantics, only one patient had a classification accuracy above chance for
both pitch and semantics. Classification accuracies seem therefore quite
different for pitch and semantics, which is not what would be expected
if the common motor response would play a role. Finally, as the motor
response was only related to the relevant property and not to the irrel-
evant property, a motor effect would imply that classification on the ir-
relevant propertywould not be possible or at least would doworse than
classification on the relevant property. However, as shown above, this
was not the case, rendering an effect of the motor response on classifi-
cation unlikely.

Classification accuracy of irrelevant properties is differentially related to
gamma power

Finally, we assessed the relationship between classification accura-
cies of irrelevant properties and power in the alpha and gamma fre-
quency band. Power in the gamma band seemed to be behaviourally
relevant, as patients that showed increased power had faster reaction
times (ρ(19) = −0.55, p = 0.01; Fig. 2A). This was not the case for
alpha (alpha: ρ(19) = −0.44, p = 0.05). Note that for average power
and reaction times no clear distinction could bemade between relevant
pitch and irrelevant semantics in the pitch task and vice versa in the se-
mantic task. After all, unlike for classification, no contrast was made



Fig. 2. Relation between irrelevant property representations and power in the alpha and gamma band. A) Correlations over patients of power change in the alpha (left plot) and gamma
band (right plot), with average reaction times over all trials. An asterisk at the correlation coefficient ρ indicates a Bonferroni corrected significant correlation. B) Correlations over patients
of classification accuracies of irrelevant pitch (upperplots) and irrelevant semantics (lower plots),with power changes in the alpha (left plots) andgamma frequency band (right plots). An
asterisk at the correlation coefficient ρ indicates a Bonferroni corrected significant correlation. C) Correlations over patients of classification accuracy of irrelevant pitch (dark grey line) and
semantics (light grey line), with power in consecutive frequency bands with a width of 4 Hz and centre frequencies between 3 and 88 Hz. The dotted black line indicates a correlation of
zero. The dotted dark grey (pitch) lines indicate the threshold for FDR-corrected significant correlations between unattended pitch accuracies and the various frequency bands. The light
grey dotted lines (semantics) indicate the estimated threshold for FDR-corrected significant correlations between unattended semantics accuracies and the various frequency bands.
Because none of the correlations with classification accuracies for semantics were significant, the correlation corresponding to the FDR-corrected alpha value for semantics was
estimated based on the pitch correlation with a p-value closest to this FDR-corrected alpha value. Note that this means that for the correlation between frequencies and classification ac-
curacies for unattended semantics accuracies none of the correlations were significant, whereas the correlations based on unattended pitch were significant between 23 and 63 Hz.
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based on high and low pitch and ‘high’ and ‘low’ semantics to tease
these cases apart.

High classification accuracies of irrelevant properties suggest that
these properties are still detectable from the iEEG signals, whereas clas-
sification accuracies at chance level indicate that the representation
cannot be detected. A high classification accuracy, hence a clear repre-
sentation of the irrelevant property, may have resulted from a failure
in the suppression of this representation or a faulty recruitment of at-
tentional resources towards it. To test this hypothesis, we correlated
the patient-specific classification accuracies of irrelevant properties
with the individual power in the alpha and gamma band (Fig. 2B).
Classification accuracies for irrelevant pitch were significantly cor-
related with activity in the gamma (ρ(19) = 0.69, p = 0.0005) but
not alpha frequency range (ρ(19)= 0.21, p=0.37). By contrast, for ir-
relevant semantics, classification were neither correlated with alpha
(ρ(19) = −0.41, p = 0.06) nor with gamma power (ρ(19) = 0.16,
p = 0.48). These results show that in patients in which irrelevant
pitch was better detectable, gamma power was higher.

As shown in Fig. 2C, the correlations in the gamma band did not
carry over to lower frequencies, although it did seem to include part
of the higher beta band. This analysis revealed that the effect of the cor-
relation with gamma power extended between centre frequencies of
23 Hz (ρ(19) = 0.53, p = 0.01) and 63 Hz (ρ(19) = 0.54, p = 0.001),
with the highest correlation at 49 Hz (ρ(19) = 0.74, p = 0.0001; all p-
values FDR-corrected). This may seem odd given the notch filter at
50 Hz. However, it should be kept in mind that frequency bins with a
width of 4Hzwere used,meaning that for this peak correlation frequen-
cies below 50 Hz (47–51 Hz) were also included. Furthermore, as the
plateau of high correlations extendedwidely beyond50Hz, it is unlikely
that these effects were only due to any residual effect of line noise.

Assessing correlations between classification accuracy and frequen-
cy power in either frontal or temporal electrodes yielded no further
distinction in correlation significance for different brain areas (all abso-
lute ρ(19) b 0.64, all p N 0.02; not significantwhen Bonferroni corrected
for four multiple comparisons). Moreover, no significant correlations
were observed between classification accuracies of relevant properties
and either alpha or gamma band activity (all absolute ρ(19) b 0.20, all
p N 0.39), suggesting that the correlation between gamma power and
classification accuracies of irrelevant pitch is specific to the irrelevant
representation. Finally, we found no significant correlations between
reaction time and classification accuracy of either property, both rele-
vant and irrelevant (all absolute ρ(19) b 0.28, all p N 0.23).

Discussion

In this study we investigated the effect of task-relevance on the rep-
resentation of pitch and semantics of spoken words. We found that
pitch and semantics were represented in the brain not only when the
property was relevant, but also when this was irrelevant. Furthermore,
we observed that an individual's gamma power was related to the sta-
bility of irrelevant pitch representations. This suggests a differential ef-
fect of task-relevance on the representation of stimulus properties,
whichwehypothesise could be operationalized by attention, depending
on the automaticity of the processing of these properties.

Neuronal representations of relevant properties

We found that relevant property representations were accurate
enough to allow for stable single-trial distinctions between the two clas-
ses (high versus low pitch, and ‘high’ versus ‘low’ semantics; Fig. 1D).
Furthermore, the temporal representation of these relevant properties
started with a sharp increase in accuracy, followed by a peak around
475–625 ms before returning to baseline (Fig. 1E). This peak seems to
occur just before the time of conflict resolution of the Stroop task
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(about 725 ms after stimulus onset; Oehrn et al., 2014). It may well be
that the signals before accuracies rise above chance level are a mixture
of both the relevant and irrelevant property, which could be difficult
to disentangle. After 300–500 ms however, the properties may start to
be segregated into a relevant and irrelevant information stream, en-
abling above-chance classification. After this segregation it is then pos-
sible to resolve the conflict.

This relatively late onset of decodability could in addition be ex-
plained by electrode placement. As no electrodes were located over
the primary auditory cortex (Brodmann area 41), and only 11 elec-
trodes (3.2%) were located over the remainder of the auditory cortex
(Brodmann area 22; no electrodes were located over Brodmann area
42), it is unlikely that consistent differences in early neuronal represen-
tations could be detected in this study. Therefore, the seemingly late re-
sponse we observed may be related to predominantly higher-order
task-specific processing in temporal and frontal cortex. It should be
noted that although it was not possible with this electrode placement
to look at early low-level representations of pitch, this placement did
allow us to assess the representation of pitch and semantics throughout
the remainder of the task period in terms of the task and task-relevance.

Finally, it could well be that informationwas present during a longer
time period than we detected. As the presence of information was de-
fined by whether the classification accuracies were higher than those
during baseline, this definition is largely dependent on the signal-to-
noise ratio of the underlying accuracy traces. We observed relatively
low classification accuracies, which could be explained by the heteroge-
neity of electrode localization. After all, classification accuracies from
patients with electrodes only over non-informative brain areas are un-
likely to rise above chance level. This would result in a relatively large
variance between patients, as well as decreased average classification
accuracies. In turn, this could result in accuracies not being judged to
be above chance level, although this may actually be the case for some
patients.

Differential effects of irrelevant property representations

Although classification of a distracter stimulus based on fMRI data
has yielded average classification accuracies at chance level for the visu-
al domain (Woolgar et al., 2015), we showed that representations of ir-
relevant properties are detectable, comparable to the representations of
the relevant properties (Fig. 1D). Irrelevant pitch and semantics are
therefore likely still being processed. This is in line with what we
hypothesised based on studies on feature-based attention showing
that when one property of a stimulus is attended to, another irrelevant
or unattended property is still processed to a certain extent (Krumbholz
et al., 2007; O'Craven et al., 1999).

Although the classification accuracies for relevant and irrelevant
properties were not found to differ, this does not necessarily mean
that they are represented similarly. Therefore, we tested for a possible
similarity in representations by training on the relevant property and
testing on the irrelevant property. Although we did not detect the clas-
sification accuracies for this transfer learning to be decreased compared
to the accuracies obtained for the relevant property, the transfer learn-
ing accuracy for semantics did not rise significantly above chance level.
This could be a result of the relatively low signal-to-noise ratio in this
study, but thismay just aswell mean that the representations of seman-
tics differ when they are relevant as compared to irrelevant. Future re-
search should assess whether there is indeed a difference in these
representations, and if so, activation patterns in which brain regions
drive these differences.

In addition, we observed a correlation between individual gamma
power and classification accuracies for irrelevant semantics, but not ir-
relevant pitch (Fig. 2B). Gamma power has been suggested to play a
role in attention (Brovelli et al., 2005; reviewed by Fell et al., 2003;
Tallon-Baudry et al., 2005). Furthermore, especially low gamma has
been thought to decrease for unattended stimuli (Pitts et al., 2014;
Sokolov et al., 2004), and is thought to play a role in active suppression
of this irrelevant stimulus (Sokolov et al., 2004). If this decrease in
gamma would not occur, or to a lesser extent, then this suppression
may be lifted and the property would be detectable by classification
again. This is indeed what we observe in our correlation results. How-
ever, what would underlie this differentiation in gamma power?
Martinovic et al. (2009) found that in some cases gamma power related
to an unattended stimulus did increase. This was mainly the case when
that stimulus was familiar during a task with a low load. It may well be
that in the current study some subjects had resources to spare for the fa-
miliar pitch property during the easier semantic task, while others did
not. During themore difficult pitch task, however, there were fewer re-
sources to spare, hence gamma could not increase as easily in response
to the irrelevant semantic property.

The correlation with classification accuracies of irrelevant pitch is
first observed at 23 Hz. Although low gamma has sometimes been de-
fined to start as early as 20 Hz, and hence could be explained in the
same framework as above, this could also be regarded as the high beta
band. An increase in this frequency has been hypothesised to signify a
decrease in mental flexibility in extreme cases (Engel and Fries, 2010).
Potentially this is the case in some of the patients in this study, resulting
in an inability to suppress irrelevant pitch, even though it should be rel-
atively easy to do so. This effectmay be specific to irrelevant pitch, as se-
mantics are thought to be themore automatic process in this paradigm,
rendering it difficult to suppress in all subjects and thus reducing vari-
ability based on beta power.

Alternatively, itmaybe that the correlationwith gammapower is re-
lated to gamma activity as a correlate of pitch, as previous studies have
shown activity in the high gamma range (80–120 Hz) during pitch per-
ception (e.g. Kumar and Schönwiesner, 2012; Sedley et al., 2012), as
well as around 40 Hz (e.g. Crone et al., 2001; Ross et al., 2005). Activity
in the gamma band would then signify the processing of pitch, and
hence influence to what extent pitch could be decoded. After all, the
better irrelevant pitch is processed, the easier the classification algo-
rithm can distinguish the two classes that make up the pitch category.
However, the correlationwe observed between classification accuracies
for irrelevant pitch and gamma power was strongest for frequencies
below 70 Hz, as opposed to the higher frequencies that have been relat-
ed to pitch processing (Fig. 2C). Furthermore, if gamma band activity
was indeed an indication of the processing of pitch, we would also ob-
serve a correlation between gamma and classification accuracies for
attended pitch. This, however, was not the case, suggesting that the cor-
relation with gamma band activity was not related to pitch processing
per se.

As semantics has been thought to be the more automatically proc-
essed property, one could argue that in order to successfully perform
the auditory Stroop task, this automatic processing has to be suppressed
actively. This is in line with the theory that when two conflicting prop-
erties are presented, activity of the irrelevant property is suppressed
(Mansouri et al., 2009). Alpha oscillations are thought to serve as a
mechanism for active suppression of task-irrelevant processes (e.g.
Jensen et al., 2012; Jensen and Mazaheri, 2010; Klimesch et al., 2011;
Klimesch, 2012). However, we only observed a non-significant trend
that patients with lower levels of alpha power, hence less suppression,
showed a larger detectability of the representations of irrelevant se-
mantics by the classifier (Fig. 2B). This absence of a significant correla-
tion could be due to the high inter-patient variability and small
number of data points, possibly destabilizing a minor correlation. This
hypothesis is supported by the overall strength of the correlations for
frequencies surrounding the alpha band instead of a strong correlation
only for the alpha band itself. Further research should validate these
trends to determine whether alpha oscillations could regulate the
amount of automatic processing of semantics.

Differences in task difficultymay affect the attentionalmodulation of
neuronal activity (Altmann et al., 2008), and indeed, in this study the se-
mantic task was easier than the pitch task, in line with the observed
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Stroop effect. However, it can be argued that task difficulty is in fact re-
lated to the automaticity with which a property is processed. After all,
the more automatically a property is processed, the easier it will be ex-
tracted for processing, and the harder it is to suppress that property
when it is irrelevant, rendering the task more difficult. Along these
lines, the pitch task would be more difficult simply because the irrele-
vant semantic property is processedmore automatically. In this respect,
automaticity could be the construct through which task difficulty mod-
ulates the different representations.

In summary, pitch and semantics seem to be represented in the
brain both when these properties are relevant and when they are irrel-
evant. Furthermore, whereas the detectability of irrelevant pitch repre-
sentations was related to an increase in gamma power, this was not the
case for semantics. We suggest an attentional role for gamma power,
dependent on the extent to which the property is processed automati-
cally. Processing of different properties of the same stimulus is therefore
not trivial, but seems to be highly dependent on the characteristics of
the property.
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