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Materials and Methods  

Participants and APOE genotyping  

We recruited 531 healthy Caucasian participants in different lectures of the 

University of Bonn and performed genotyping by means of buccal swabs. Automatic 

purification of genomic DNA was conducted via the MagNA Pure® LC system using a 

commercial extraction kit (MagNA Pure LC DNA isolation kit; Roche Diagnostics, 

Mannheim, Germany). Analysis of the APOE polymorphisms was performed with real-

time polymerase chain reaction (PCR) on a Light Cycler System by Roche. Primers and 

hybridization probes were provided by TIBMOLBIOL, Berlin, Germany. From this large 

cohort, we successively and randomly invited male and female participants (age range, 18 

– 30 years) who were either homozygous for APOE-ε3 (“control participants”) or 

heterozygous for APOE-ε4/ε3 (“risk participants”) to the fMRI experiment until at least 

20 participants were scanned in each of the four groups (male control, female control, 

male risk, and female risk). Sample sizes were based on Doeller et al. (15) and previous 

APOE-fMRI-studies (e.g., ref. 21). No statistical method was used to predetermine 

sample size. We did not include a third genetic subgroup with homozygous APOE-ε4-

carriers, because they were too rare (n = 8). Participants as well as experimenters were 

blinded towards genotypes. Participants’ real names and genotypes were never directly 

connected. In total, 94 participants were scanned. Ten participants did not complete the 

experiment and 9 had to be excluded because of excessive head motion (more than 4 mm 

into one or more translational directions). Thus, all analyses were performed with a final 

number of N = 75 participants (n = 18 male control, n = 19 female control, n = 18 male 

risk, and n = 20 female risk). Control and risk groups did not differ in demographic 

characteristics (see Table S1). All participants had normal or corrected-to-normal vision 

and reported no history of neurological or psychiatric disease. The local Ethics 

Committee of the University of Bonn approved the study and all participants signed a 

written informed consent. 

 

Experimental task 

The paradigm was adapted from Doeller et al. (15). During the fMRI scan, 

participants performed an object-location memory task navigating freely in a circular 

virtual arena. The arena comprised a grassy plane (diameter of 9,500 virtual units) 

bounded by a cylindrical cliff. No intra-maze landmark (as used in previous versions of 

the task; 28, 15) was present. Movement in the arena was enabled using a button box with 

three buttons for the different movement directions (move forward, turn right, turn left) 

and one button for object placement. The total duration of 78 minutes was divided into 6 

sessions of 13 minutes each. Sessions were separated by short breaks. At the very 

beginning of session 1, participants collected eight everyday objects (randomly drawn 

from a total number of 12 potential objects: eggplant, baby bottle, briefcase, globe, 

bucket, rubber duck, barrel, stapler, agenda, vase, alarm clock, basketball) from different 

locations in the arena (“initial learning phase”). This time period (variable duration of 

approximately two minutes, as the whole task was self-paced) was excluded from all 

analyses by removing the corresponding fMRI volumes. Object locations were randomly 

distributed and similarly central between the two genetic subgroups (measured as the 

mean distance between the object locations and the arena center; two-sample t-test, t73 = -
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.617, P = .539). Several constraints ensured that the object positions were not too close to 

the cylindrical cliff, the center, and other objects. Afterwards, participants completed 

variable numbers of trials (mean number of trials ± standard error of the mean (SEM), 

229 ± 5), depending on individual movement speed. Each trial consisted of a retrieval and 

a subsequent re-encoding phase (Fig. 1A). During the retrieval phase, participants were 

shown one of the eight objects (“Cue”) and asked to place it as accurately as possible at 

its initial position (“Response location”; Fig. 1B). Depending on response accuracy, 

participants then received feedback via one of five possible smiley faces (Fig. S1B). 

Afterwards, each object had to be collected again from its initial position (“Correct 

location”; Fig. 1B), allowing for re-encoding. Thus, participants gradually improved their 

performance throughout the experiment (Fig. S2). After each trial, a fixation crosshair 

was shown for a variable duration of 3 to 5 sec (uniformly distributed). At the beginning 

of the first trial (after the initial learning phase), participants started from locations that 

were similarly central between the two groups (two-sample t-test, t73 = -1.107, P = .272). 

Subsequent starting positions of all retrieval phases were identical with the self-paced end 

positions of the directly preceding re-encoding phases to ensure a continuous, more 

natural navigation course. Note that these end positions were not completely identical 

with the object positions since participants only needed to enter a circle with a radius of 

120 virtual units around each object to “collect” it. Every 0.1 sec, the position of the 

participant in the arena was logged, which allowed us to extract movement periods, 

movement speed and movement direction. The virtual arena was projected onto a screen 

positioned at the head of the magnet bore and reflected onto a mirror attached to the head 

coil. 

 

MRI data acquisition  

Scanning was performed at the German Center for Neurodegenerative Diseases 

(DZNE), Bonn, using a Skyra 3-T MRI scanner (Siemens, Erlangen, Germany) with a 20-

channel head receive coil. Participants underwent a T1 weighted structural scan and a 

T2*-weighted functional scan. For T1-weighted structural brain imaging, a whole-head 

magnetization-prepared rapid gradient-echo imaging sequence (MP-RAGE) with the 

following parameters was used: 1 mm isotropic resolution; inversion time (TI) = 1100 

ms; repetition time (TR) = 2500 ms; echo time (TE) = 4.37 ms; flip angle = 7°; total 

acquisition time (TA) = 5:08 min. Functional images were subsequently acquired using a 

T2*-weighted echo-planar-imaging (EPI) protocol, adapted to account for increased 

susceptibility-induced artifacts in inferior slices (33), with the following parameters: 

acquisition matrix = 64 x 64; TR = 2600 ms; field of view = 192 mm x 192 mm; flip 

angle = 82°. Forty 2 mm-thick transversal slices were acquired in ascending order (1 mm 

slice gap) within each TR. The anterior-posterior phase encoding direction was tilted by 

30° towards the coronal plane (lifted anterior end). The echo time for superior slices was 

set to TEmax = 31 ms while the echo time for inferior slices was set to TEmin = 23 ms with 

a linear increase from the 14th to the 24th slice. The fMRI time series comprised six 

sessions, each consisting of 305 images (TA = 13:13 min per session). The first five 

images of each session were excluded from data analysis to account for signal steady-

state transition. 
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Data analysis  

Matlab (2014a, The MathWorks Inc., Massachusetts) was used to perform 

behavioral analyses. Freesurfer (v5.3.0, http://surfer.nmr.mgh.harvard.edu/) enabled the 

creation of participant-specific anatomical ROIs and was used to obtain four structural 

measures of right entorhinal cortex (volume, thickness, mean curvature, and surface 

area). SPM8 (http://www.fil.ion.ucl.ac.uk/spm) served to perform all first level analyses 

of functional MR images as well as the confirmatory second level analysis of 

compensatory activity on whole brain level. SPSS (version 22.0, IBM Corp., NY) was 

used to calculate all other second-level statistics. Most data were normally distributed and 

variance was similar between groups. Otherwise, non-parametric test statistics and 

corrections for unequal variances were chosen. All second-level statistics were two-sided. 

 

Behavioral analyses 

First, we assessed participant-specific spatial memory performance by averaging 

the distances between response and correct locations across trials (“drop error”, Fig. 1B). 

Solely for visualization and enhanced readability, we converted these “drop errors” into 

values of spatial memory performance using the following formula: spatial memory 

performancei = [max(drop error) - drop errori + min(drop error)] / max(drop error), where 

max(drop error) and min(drop error) correspond to the maximum and minimum drop 

error across all participants, respectively, and drop errori corresponds to the drop error in 

participant i. This formula simply reverses the drop errors and maps them into the range 

between 0 and 1. Second, participant-specific values of central navigational preference 

were calculated as central navigational preference = ncenter / nperiphery, where ncenter is the 

number of time points spent in the center of the arena and nperiphery is the number of time 

points spent in the periphery of the arena. The division between center and periphery was 

drawn by dividing the arena radius into two equal halves. Only time points during the 

retrieval phase were considered, as we expected a behavioral relevance for correct object 

placement solely during this trial phase. Drop error values and central navigational 

preference values were entered into two-sample t-tests between genetic subgroups. The 

result of the central navigational preference values was corrected for unequal variances 

(assessed via Levene’s test for equality of variances) using the Welch-Scatterthwaite 

method as implemented in SPSS by default. To validate our metric of central navigational 

preference, we determined the absolute distances of the self-paced starting positions as 

well as all self-paced positions relative to the center and compared them between genetic 

subgroups using two-sample t-tests. Third, as control analyses, we calculated basic 

behavioral characteristics including the number of movement time points, the cut-off 

speed (used for the definition of fast movements, see analysis of grid-cell-like 

representations below), the total path length, the total number of trials, the average 

duration of retrieval-phases, and the average duration of re-encoding-phases. Potential 

differences between these characteristics as a function of genotype were tested (Table 

S2). Finally, learning curves were calculated across participants of both genetic 

subgroups. For visualization and statistical evaluation with a time × genotype repeated 

measures ANOVA, drop error times were assigned to one-minute-bins and corresponding 

drop errors averaged within bins, leading to 77 drop error values per participant (Fig. S2). 
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Pre-processing of functional images 

SPM8 within Matlab was used to pre-process each participant’s fMRI data. 

Functional images were spatially realigned, unwarped, slice time corrected and 

coregistered onto participant-specific anatomical T1 images. For the analysis of grid-cell-

like representations (Fig. 2B), stability metrics (Fig. 3), and task-related activity (Fig. 2C, 

Fig. S8), we did not apply normalization as we exclusively performed ROI analyses and 

aimed at minimizing post hoc spatial distortions of the data. Only for the “confirmatory 

analysis of compensatory mechanisms” (see below; Fig. S9), we applied normalization to 

Montreal Neurological Institute (MNI) space using parameters from the segmentation of 

the T1 structural image (34). Images were spatially smoothed with an isotropic 6 mm 

full-width-half-maximum Gaussian kernel. 

 

Creation of participant-specific anatomical ROIs 

To improve the accuracy of the ROI analyses, normalization was replaced by the 

usage of participant-specific anatomical ROIs (right, left, and bilateral EC; right, left, and 

bilateral hippocampus; right, left, and bilateral posterior hippocampus; right, left, and 

bilateral amygdala; right, left, and bilateral fusiform gyrus; right, left, and bilateral 

precentral cortex) created via the Freesurfer image analysis suite (see Fig. 2D for 

exemplary ROIs of right EC, right amygdala and bilateral hippocampus). The right EC 

ROI was used in the analysis of grid-cell-like representations. The right hippocampal and 

right amygdala ROIs were used to perform control analyses in control participants as they 

are adjacent regions of the right EC. Finally, the other ROIs served for the analysis of 

task-related activity. Briefly, processing included registration to Talairach space, intensity 

normalization, skull stripping, volumetric labelling, and cortical parcellation. The 

detailed procedure has been described and validated in previous publications (35-37) and 

is comparable in accuracy to manual labelling (38). Afterwards, Freesurfer output was 

transformed back into participant-specific space to establish compatibility with the 

coregistered, smoothed functional images. Next, the parcellated cortical ribbon was used 

to obtain ROIs of EC, fusiform gyrus, and precentral cortex, whereas the segmented 

subcortical structures were used to produce ROIs of hippocampus and amygdala. All 

participants’ ROIs were visually inspected by overlaying them onto the participant-

specific anatomical T1 image to ensure proper definition. The number of voxels of our 

main target ROIs did not differ between genetic subgroups (two-sample t-test for right 

EC, t73 = -1.309, P = .195, mean number of voxels ± SEM: 1704 ± 60 in control 

participants, 1811 ± 55 in risk participants; two-sample t-test for bilateral hippocampus, 

t73 = -.789, P = .432, mean number of voxels ± SEM: 9062 ± 155 in control participants, 

9225 ± 136 in risk participants) and were in accordance with previous findings (right EC, 

mean ± SEM, 1759 ± 41, see ref. 39; bilateral hippocampus, mean ± SEM, 9144 ± 103, 

see ref. 40). Furthermore, the voxel numbers of all other ROIs that were additionally used 

also did not differ between genetic subgroups (two-sample t-tests, all P > .05).  

 

Analysis of grid-cell-like representations 

The analysis of grid-cell-like representations followed the procedure of Doeller et 

al. (15): The data was split into two halves. By fitting a first general linear model (GLM) 

to the first half of the data (Fig. 2A, left panel), we identified the angular orientation of 

the putative grid axes relative to the environment in each participant’s right EC (Fig. 2A, 
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middle panel; Table S4), because the angular orientation is not known a priori. 

Afterwards, we modeled the second half of the data with a second GLM to contrast brain 

activity during aligned movements with brain activity during misaligned movements 

relative to the previously identified putative grid axes from the first half of the data (Fig. 

2A, right panel; Table S5). This procedure is explained in greater detail hereinafter. The a 

priori defined first half of the data (sessions 1, 3, and 5) was modeled with a first GLM 

including a regressor for all fast movement time points (see below) in the virtual arena 

and regressors of no interest modeling phases without navigation in the environment 

(Table S4). Two parametric modulators of the movement regressor modeled the 

movement direction at each movement time point: sin[α(t) * 6] and cos[α(t) * 6], where 

α(t) is the movement direction at time point t (Fig. 2A, left panel), arbitrarily aligned to 

0° of the virtual reality environment as defined by the background cues. Multiplying by 

six transforms the movement directions into 60° space to account for the six-fold 

rotational symmetry of potential grid-cell-like representations. In other words, the factor 

6 means that these regressors are sensitive to activation showing a six-fold rotational 

symmetry in running direction (i.e., activation with six evenly spaced peaks as a function 

of running direction will produce parameter estimates β1 and β2 for the two regressors 

with large amplitude sqrt(β1² + β2²)). Next, the β-values of the two parametric modulators 

were extracted from the right EC ROI to calculate its putative mean grid orientation in 

60° space (varying between -180° and 180°): mean grid orientation φ60° = arctan(β1/β2), 

where β1 = averaged beta value for sin[α(t) * 6] and β2 = averaged beta value for cos[α(t) 

* 6] across voxels of the right EC ROI. Dividing by six changed the mean grid 

orientation φ60° back into normal 360° space (varying between -30° and 30°). Adding n 

times 60° yielded all putative grid axes (Fig. 2A, middle panel). Afterwards, we looked 

for sinusoidal modulation of activation with six-fold rotational symmetry in the other half 

of the data. In detail, this means that a second GLM was applied to the a priori defined 

second half of data (sessions 2, 4, and 6) containing regressors for “aligned” (within ± 

15° of the nearest axis of the grid) and “misaligned” (more than ± 15° from a grid axis) 

movements in the virtual arena (Fig. 2A, right panel; Table S5). Contrast values (aligned 

> misaligned) were extracted from the right EC ROI and averaged across voxels within 

participants. More positive values indicate more pronounced grid-cell-like 

representations, whereas smaller or even negative values indicate less pronounced grid-

cell-like representations. Please note that we restricted our analysis to the right EC and 

fast movements (fast tertile of all movements, separately determined for each participant, 

lower boundary defined as “cut-off speed”, see Table S2), following Doeller et al. (15).  

 

Control analyses of grid-cell-like representations 

 In control participants, we performed two control analyses to validate both the 

specificity of six-fold rotational symmetry and the specificity of the right EC ROI. To test 

for the specificity of the six-fold symmetric sinusoidal modulation, we used the same 

analysis procedure of (1) estimating the mean grid orientation of the right EC and (2) 

looking for sinusoidal modulation in control models, however with directional 

periodicities of 120°, 90°, 72°, 51.4°, and 45° (that is, three-fold, four-fold, five-fold, 

seven-fold, and eight-fold rotational symmetry) respectively. To test for the specificity of 

the right EC ROI, we performed the analysis with 6-fold rotational symmetry in right 
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hippocampus and right amygdala, since they are adjacent regions of the right EC (for the 

results, see Fig. S3). 

 

Session-wise analysis of grid-cell-like representations 

 To evaluate whether grid-cell-like representations were also reduced under the 

conditions of similar temporal and spatial stability of the voxel-wise grid orientations 

between genetic subgroups, we applied the analysis of grid-cell-like representations (see 

above) on shorter data segments: one session served to identify the angular orientation of 

the putative grid axes and the subsequent session served to contrast brain activity during 

movements aligned with these grid axes versus brain activity during misaligned 

movements, leading to five session combinations (estimate grid orientation in session 1, 

calculate contrast of aligned versus misaligned movements in session 2; same between 

session 2 and session 3; session 3 and session 4; session 4 and session 5; session 5 and 

session 6). Temporal and spatial stability values were assessed for each session 

combination following the procedure explained below. The results were averaged across 

session combinations before entering group statistics.  

 

Linear multiple regression to predict spatial memory performance 

To investigate whether grid-cell-like representations and central navigational 

preference were related to spatial memory performance, we calculated a linear multiple 

regression model with spatial memory performance as the dependent variable. Grid-cell-

like representations, central navigational preference, genotype, sex, and age were 

included as relevant predictor variables. Concerning grid-cell-like representations, we 

hypothesized a positive influence on spatial memory performance as shown before (15).  

 

Analysis of task-related activity 

Hippocampal task-related activations were estimated using a separate GLM 

including a regressor that modeled the time during which participants were engaged in 

the task (i.e., cue, retrieval, feedback, and re-encoding combined; Table S6). Contrast 

values for this regressor versus the implicit baseline were extracted from the participant-

specific right, left, and bilateral hippocampal ROIs (created using Freesurfer, see above) 

and averaged across voxels within participants (“hippocampal task-related activation”). 

Afterwards, we examined whether reduced right EC grid-cell-like representations were 

related to increased hippocampal task-related activity across all participants by 

calculating a Pearson correlation. To further elucidate the relationship between grid-cell-

like representations and other ROIs inside and outside the medial temporal lobe, task-

related activations were also extracted from EC, amygdala, fusiform gyrus, and precentral 

cortex (created using Freesurfer) and correlated to the grid-cell-like representations (Fig. 

S8) using Pearson correlations. 

 

Analysis of potentially compensatory mechanisms 

 To elucidate whether our finding of increased hippocampal task-related activity 

reflects compensatory mechanisms with a behavioral impact, we conducted two analyses. 

First, we calculated six different versions of the linear multiple regression (Table S3) 

used to predict spatial memory performance in the main text (Table 1). Each version 

included task-related activity of a different part of the hippocampus (bilateral 
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hippocampus, left hippocampus, right hippocampus, bilateral posterior hippocampus, left 

posterior hippocampus, right posterior hippocampus) as an additional independent 

variable. We were specifically interested in the influence of task-related activity of the 

posterior hippocampus, since this is the region of the hippocampus that has been shown 

to be especially relevant for spatial navigation (22, 41-45). Second, we performed a 

separate second-level whole brain analysis using SPM. Here, first level contrast-images 

represented trial-by-trial response accuracy within participants (see below: “Confirmatory 

analysis of compensatory mechanisms”). See below for the results.   

 

Confirmatory analysis of compensatory mechanisms 

To validate our result of compensatory hippocampal activity, we used an 

additional whole-brain approach that identified voxels which were specifically relevant 

for correct object placement (i.e., good spatial memory performance) and that were also 

negatively correlated to grid-cell-like representations. This approach contained a first 

level GLM and a second level analysis in SPM. Hence, exclusively for this analysis, pre-

processing of functional images included normalization to MNI space before smoothing. 

On the first level, the GLM contained one regressor of the retrieval-phase that was 

modeled with a parametric modulator depicting the accuracies of the trial-specific 

response locations (Table S7) revealing voxels associated with good spatial memory 

performance. Contrast images of the parametric modulator versus zero were calculated 

for all participants and entered into a second level linear regression model in SPM. This 

linear regression model contained the participant-specific grid-cell-like representations of 

right EC as predictor variable. We then identified voxels which were negatively 

correlated with grid-cell-like representations across the group of participants, also 

reflecting potential compensatory mechanisms. Based on our strong a priori hypothesis, 

we applied small volume correction (SVC) for bilateral hippocampus (SPM anatomy 

toolbox mask image; mask volume = 23,664 mm3). We report activation at P < .05 at the 

peak level corrected for multiple comparisons within this search volume. 

 

Calculation of temporal and spatial stability 

Grid-cell-like representations solely occur when the voxel-wise grid orientations 

(angular orientation of the putative grid axes relative to the environment in 60° space) 

from the first half of the data exhibit both spatial and temporal stability. Thus, in 

principle, reduced grid-cell-like representations can be either due to spatial or temporal 

instability of the voxel-wise grid orientations (or – similar temporal and spatial stability 

between genetic subgroups in smaller data segments provided – due to a relatively 

weaker right EC contrast of aligned versus misaligned movements, which we investigated 

using shorter data segments, see main text and above: “Session-wise analysis of grid-cell-

like representations”). For each participant, we calculated one spatial stability value 

(statistically expressed as Rayleigh’s z-value: the higher the z-value, the higher spatial 

stability) and one temporal stability value (estimated as percentage values: the higher the 

percentage value, the higher temporal stability). This is explained in greater detail 

henceforth. Spatial instability is maximal for a uniform circular distribution of grid 

orientations across voxels. As a result of spatial instability, the mean grid orientation of 

the first half of the data would be a random selection of this distribution. Arbitrary 

allocations of aligned and misaligned movements in the second GLM would be the 
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consequence, leading to reduced or absent grid-cell-like representations. Statistically, 

spatial stability was evaluated with Rayleigh’s test for non-uniformity of circular data 

(46), which was applied to the voxel-wise grid orientations of the first half of the data 

(accounting for spatial smoothing). This resulted in participant-wise z-values of spatial 

stability (for two examples, see Fig. 3C). In contrast, temporal instability means that the 

voxel-wise grid orientations – albeit potentially spatially stable – change across time. 

Incorrect allocations of aligned and misaligned movements in the second GLM would be 

the consequence, also producing reduced or absent grid-cell-like representations. To 

obtain a metric of temporal stability, we first calculated the voxel-wise grid orientations 

in the right EC ROI separately for both halves of the data. Afterwards, we evaluated for 

each voxel individually whether the grid orientation of the second half of the data was 

within a range of ± 15° around the grid orientation of the first half of the data. This 

allowed us to calculate the percentage of voxels with temporally stable grid orientations 

for each participant (for two examples, see Fig. 3A). For statistical comparison, 

percentage values (percentageoriginal) were logit-transformed according to: percentagenew = 

log[percentageoriginal / (1 – percentageoriginal)], because they were in a limited range of 0 to 

1 originally. For group statistics, temporal stability values (i.e. logit-transformed 

percentage values) and spatial stability values (i.e. Rayleigh’s z-values) were entered into 

separate two-sample t-tests between genetic subgroups and into separate Pearson 

correlation analyses to detect significant relations to the grid-cell-like representations. 

Note that the terms “grid axes” and “grid orientation” used throughout the main paper 

and the Supplementary Information are based on a directionally modulated fMRI signal 

and do not simply correspond to electrophysiological nomenclature.  

 

Functional connectivity between EC and hippocampus 

 Functional connectivity was analyzed by first extracting the preprocessed BOLD 

time series from right EC and right hippocampus and averaging them across voxels 

within each of the ROIs (right EC and right hippocampus). Next, linear trends of the time 

series were removed within sessions and the time series were normalized within sessions 

to have mean 0 and standard deviation 1. We calculated the Pearson correlation r value 

between the time series of right EC and right hippocampus for each participant and 

transformed the r values into z values (Fisher-z-transformation). As a control analysis, we 

included the participant-specific head motion parameters as regressors of no interest. As a 

second control analysis, functional connectivity between right EC and bilateral 

hippocampus as well as between right EC and left hippocampus was also calculated using 

the identical procedure.  
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Supplementary Text  

Grid-cell-like representations and spatial memory performance within genetic subgroups  

  In the main text we showed that multiple regression was sensitive to reveal a 

positive relationship between the magnitude of grid-cell-like representations and spatial 

memory performance across all participants. To further evaluate a potential dependency 

of this relationship on genotype that would be relevant to proposing a mechanistic 

account of (later) spatial memory impairments observed in AD, we conducted two 

exploratory analyses. First, we plotted the raw bivariate correlations between grid-cell-

like representations and spatial memory performance, separately for both genetic 

subgroups (Fig. S6A). Visual inspection suggests a stronger relationship in risk 

participants, but this was not significant (risk participants only: Pearson’s r = .204, P = 

.220; control participants only: Pearson’s r = .055, P = .748; difference between 

correlation coefficients, z = .63, P = .529). Second, we used partial correlations as a more 

sensitive approach correcting for sex, age, and central navigational preference, which 

revealed a significant partial correlation in risk participants (r = .341, P = .045; Fig. 

S6B), but not in control participants (r = .086, P = .628), with no difference between both 

groups (z = 1.12, P = .263). Thus, the most robust finding is an overall positive effect of 

grid-cell-like representations on spatial memory performance that is influenced by other 

factors such as sex, age, and central navigational preference as represented in the linear 

multiple regression analysis (Table 1). 

Hippocampal task-related activity and spatial memory performance  

  To elucidate whether our finding of increased hippocampal task-related activity 

reflects compensatory mechanisms with a positive impact on behavior or adverse effects 

with a negative behavioral impact, we conducted two additional analyses (see Methods). 

First, different versions of the linear multiple regression (Table 1, including task-related 

activity of different parts of the hippocampus as an additional predictor, see Methods) 

showed that task-related activity of the entire hippocampus is too unspecific to reveal a 

positive association with spatial memory performance (bilateral, P = .660; left, P = .465; 

right, P = .855; Table S3, Models 1-3). However, activity in the posterior hippocampus 

(posterior third of the hippocampus), which seems to be more closely related to spatial 

navigation than the anterior hippocampus (22, 41-45), was associated with improved 

spatial memory performance, in particular in the left hemisphere (bilateral, P = .068; left, 

P = .006; right, P = .517; Table S3, Models 4-6). This specificity was supported by our 

second-level whole brain analysis of voxels which are positively associated with spatial 

memory performance (within participants) and that are at the same time negatively 

associated with grid-cell-like representations (across participants; see Methods: 

“Confirmatory analysis of compensatory mechanisms”). This analysis revealed a brain-

wide peak in the left posterior hippocampus (peak MNI coordinates: -18/-28/-8, peak z-

score = 4.03, P = .038, FWE-corrected after small volume correction for the bilateral 

hippocampus; Fig. S9). Importantly, no other voxel exceeded this z-value on the whole 

brain level, reflecting the specificity of activation in the posterior hippocampus. Taken 

together, these two analyses suggest compensatory hippocampal task-related activity that 

is specific to its posterior third.       
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Interpretation of increased activity in APOE-ε4-carriers 

  It is a matter of ongoing debate whether increased hippocampal activity in APOE-

ε4-carriers represents compensatory mechanisms required to maintain normal cognitive 

functioning or, in contrast, pathological dysfunction. Compensatory mechanisms in ε4-

carriers were first suggested by Bookheimer et al. (19), similar to the finding of potential 

compensatory mechanisms in patients with mild AD (47) that could indeed be related to 

better performance (48). The hypothesis of compensatory mechanisms was further 

supported by findings of Bondi et al. (49), Rosano et al. (50), Han et al. (51), Filippini et 

al. (21), Wierenga et al. (52), and Suthana et al. (53). Even in a 20-year-old at risk for 

familial AD (presenilin 1 mutation carrier) increased brain activity within memory-

related neural networks (including the hippocampus) was found and interpreted as 

compensatory effort (54). However, increased brain activity was also discussed as 

indicating different cognitive processing strategies, biochemical alterations, or as a 

marker of the pathophysiologic process itself (55-57). Moreover, there is growing 

evidence that hippocampal hyperactivity in mild cognitive impairment, AD, and 

presymptomatic individuals is a paradoxical or even adverse condition that could be 

targeted therapeutically (e.g., 58, 59). Jagust et al. (60) propose that lifespan brain 

activity in humans increases deposition of amyloid-β. Bakker et al. (23) even show that 

the reduction of hippocampal hyperactivity by the antiepileptic drug levetiracetam 

improves cognition in amnestic mild cognitive impairment. Furthermore, it is shown in 

mouse models that neuronal activity increases the regional load of amyloid-β deposition 

(24).   

In the main text, we proposed that our finding of increased hippocampal activity 

indicates compensatory mechanisms in risk participants. This interpretation was based on 

our findings that reduced grid-cell-like representations were correlated with increased 

hippocampal task-related activity, and that this relationship was significantly more 

pronounced in risk participants as compared to control participants in the posterior 

hippocampus. In principle, there must be some compensatory processes given our 

contrary findings that spatial memory performance is preserved in risk participants, 

although they show reduced grid-cell-like representations and reduced central 

navigational preference, which are both related to impaired spatial memory performance 

across all participants. Increased hippocampal activity could reflect a more pronounced 

boundary-based navigation strategy in risk participants (61, 28) or enhanced hippocampal 

path integration computations (29, 30) to compensate for impaired entorhinal path 

integration. Furthermore, our finding that reduced grid-cell-like representations are also 

related to increased task-related activity in EC and amygdala (Fig. S8) could be 

interpreted as an overall compensatory activity of the medial temporal lobe areas. For 

example, Filippini et al. (21) speculate that increased activity in hippocampal regions 

reflects compensation of reduced synaptic plasticity, neuronal growth, or altered long-

term potentiation, which seems to be particularly affected by apolipoprotein E4 (62). 

However, this finding could also speak in favor of an adverse broader disruption of 

medial lobe network computations accounting in total for our finding of altered 

navigational behavior in risk participants. Hence, to further elucidate whether our finding 

of increased hippocampal task-related activity could represent compensatory mechanisms 

with a behavioral impact, we conducted two additional analyses (see Supplementary Text 
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“Hippocampal task-related activity and spatial memory performance”). It became 

apparent that increased task-related activity specifically of the (left) posterior 

hippocampus is related to better behavioral performance, supporting the compensatory 

hypothesis. Furthermore, our finding of reduced functional connectivity between EC and 

hippocampus in participants with reduced temporal stability values (Fig. S10B) might 

reflect a mechanism to protect hippocampal processing from impaired entorhinal 

computations enabling independent compensatory mechanisms. However, the last two 

results were obtained across all participants and were not modulated by genotype (no 

differences between correlation coefficients were observed). While this speaks against a 

compensatory role that is specific to risk participants, it is consistent with the general idea 

that entorhinal cortex dysfunction is associated with (and possibly responsible for) 

broader changes in medial temporal lobe computations. In this light, APOE-ε4 may 

induce entorhinal dysfunction that could then, in turn, gradually lead to functional 

changes in downstream areas. Finally, we would like to point out that the two 

interpretations of increased hippocampal activity as a compensatory or a pathological 

phenomenon are not mutually exclusive: increased hippocampal activity could 

(temporarily) serve as a compensatory mechanism – in particular in young participants, 

decades before potential disease onset – and simultaneously promote pathological 

processes. The compensatory potential might then fade out with proceeding pathology or 

might be shifted to neocortical areas as suggested in various studies (e.g., 53).   

 

Functional connectivity between right EC and hippocampus 

  We found that there was pronounced functional connectivity between right EC 

and right hippocampus across all participants (one-sample t-test, t74 = 36.561, P < .001). 

Furthermore, reduced temporal stability values were associated with lower connectivity 

values (Pearson’s r = .298, P = .009; Fig. S10B), possibly indicating a decoupling of both 

regions associated with entorhinal dysfunction. This decoupling between right EC and 

right hippocampus could constitute a modulating mechanism to reduce the influence of 

impaired entorhinal computations on hippocampal processing. Independent hippocampal 

functioning may thus be enabled that could compensate for EC failure. For completeness, 

similar results were achieved when using the time series from right EC and bilateral 

hippocampus (correlation to temporal stability values: Pearson’s r = .272, P = .018) or 

right EC and left hippocampus (correlation to temporal stability values: Pearson’s r = 

.229, P = .048). Likewise, including the participant-specific head motion parameters (as 

potential confounds of functional connectivity) did not change the results substantially 

(correlation between temporal stability values and functional connectivity between right 

EC and right hippocampus, Pearson’s r = .282, P = .014). 

 

Potential mechanistic basis of reduced grid-cell-like representations in risk participants 

  We speculate that risk participants exhibit less robust grid-cell-like 

representations and temporally unstable grid orientations in combination with preserved 

spatial stability of the grid orientations because of the underlying neuropathological 

changes: Intraneuronal neurofibrillary tangles – potentially impairing grid cell inherent 

properties such as temporal stability and strength of the grid representations – and not 

interneuronal amyloid-β plaques – possibly affecting synaptic communication between 

grid cells and thus spatial stability of the grid orientations – appear first in 
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histopathological sections, especially in APOE-ε4-carriers (6, 7). These hypotheses could 

be tested in mouse models of AD. 
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Fig. S1. Illustration of central navigational preference and feedback. (A) Participant-

specific values of central navigational preference were calculated as central navigational 

preference = ncenter / nperiphery, where ncenter is the number of time points spent in the center 

of the arena (within circle) and nperiphery is the number of time points spent in the 

periphery of the arena (outside circle). The division into center and periphery was drawn 

by dividing the arena radius into two equal halves. Solely time points during the retrieval 

phase were considered, as we expected a behavioral relevance for correct object 

placement only during this trial phase. (B) After placement of the object, participants 

received feedback via one of five smiley faces. E.g., dark green smiley faces were shown 

when the participant placed the object within a radius of 700 virtual units (vu) around the 

correct object location. 
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Fig. S2. Learning curves. Participants gradually improved their performance throughout 

the experiment. As expected, drop errors decreased with time. However, they did not 

vary as a function of genotype or time-genotype-interaction (time × genotype repeated 

measures ANOVA: main effect of time, F76,5548 = 32.326, P < .001; no main effect of 

genotype, F1,73 = .031, P = .860; no interaction, F76,5548 = .643, P = .993). 



 

 

16 

 

 

Fig. S3. Control analyses. (A) Absence of “Aligned > Misaligned” effects in 3-, 4-, 5-, 

7-, and 8-fold rotational symmetry control models for control participants (all P > .112). 

(B) 6-fold rotational symmetry in right amygdala (“rAmyg”) or right hippocampus 

(“rHC”) does not lead to consistent grid-cell-like representations (“Aligned > 

Misaligned”) in control participants (both P > .382). These results show that our finding 

in control participants is specific for six-fold rotational symmetry and specific for right 

EC. Green dotted line represents the result of 6-fold rotational symmetry in the right EC 

of control participants from Fig. 2B. All bars show mean and SEM across participants. 

Units of all contrasts are parameter estimates. 
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Fig. S4. Grid-cell-like representations and participant-wise structural metrics of the 

right entorhinal cortex. Pearson correlations did not reveal associations between grid-

cell-like representations and right EC structural metrics across participants, which could 

potentially account for the functional changes: (A) volume, P = .145, (B) thickness, P = 

.177, (C) mean curvature, P = .348, (D) surface area, P = .861. Correlation coefficients 

did not differ between genetic subgroups. Structural metrics were obtained using the 

Freesurfer image analysis suite (see Methods). Green dots represent control participants, 

red dots represent risk participants. Units of grid-cell-like representations are parameter 

estimates. 
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Fig. S5. Absolute distances of the self-paced positions relative to the arena center in 

the virtual environment. In accordance with our finding of reduced central navigational 

preference, risk participants exhibited greater mean distances of the (A) self-paced 

starting positions (at the beginning of each retrieval phase, except for the very first 

retrieval phase) as well as greater mean distances of (B) all self-paced positions (during 

all cue, retrieval, feedback, and re-encoding phases) relative to the arena center of the 

virtual environment. All bars show mean and SEM across participants. *P < .05, **P < 

.01. 
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Fig. S6. Grid-cell-like representations and spatial memory performance within 

genetic subgroups. (A) Raw bivariate Pearson correlations between grid-cell-like 

representations and spatial memory performance. Risk participants only: P = .220; 

control participants only: P = .748; difference between correlation coefficients: z = .63, P 

= .529. (B) Partial correlations between grid-cell-like representations and spatial memory 

performance correcting for sex, age, and central navigational preference, separately for 

both genetic subgroups. Risk participants only: P = .045; control participants only: P = 

.628; difference between correlation coefficients: z = 1.12, P = .263. Green dots represent 

control participants, red dots represent risk participants. Units of grid-cell-like 

representations are parameter estimates. 
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Fig. S7. Genotype dependent relation between task-related activity in the posterior 

hippocampus and magnitude of grid-cell-like representations. In the posterior 

hippocampus, the negative correlation between task-related hippocampal activity and the 

magnitude of grid-cell-like representations is significantly different between genetic 

subgroups (P = .023): Whereas risk participants show a highly significant correlation (P 

< .001), this effect is not present in control participants (P = .707). Green dots represent 

control participants, red dots represent risk participants. Units of grid-cell-like 

representations and task-related activity are parameter estimates. 
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Fig. S8. Grid-cell-like representations and task-related activity. Reduced grid-cell-
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like representations were not only related to increased task-related activity in the 

hippocampus (Fig. 2C), but also to increased task-related activity in EC (A) and 

amygdala (B). Fusiform gyrus (C) and the precentral cortex (D) were chosen as control 

regions outside the medial temporal lobe. P- and r-values refer to Pearson correlations. 

Correlation coefficients did not differ between genetic subgroups. In sum, these data 

suggest that reduced grid-cell-like representations are related to an overall increase in 

medial temporal lobe activity. Green dots represent control participants, red dots 

represent risk participants. Plots on the left show bilateral regions, plots in the middle 

refer to regions in the left hemisphere, and plots on the right display effects in the right 

hemisphere. Units of grid-cell-like representations and task-related activity are parameter 

estimates. 
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Fig. S9. Confirmatory analysis of compensatory hippocampal activity. Grid-cell-like 

representations correlated negatively with activity in left posterior hippocampus that was 

enhanced during trials with more accurate object placement (peak MNI coordinates: -18/-

28/-8, peak z-score = 4.03, P = .038, FWE-corrected after small volume correction for 

bilateral hippocampus, t-image thresholded at P < .0005, and voxel extent = 10 for 

display purposes). No other voxel exceeded this z-value on whole brain level. Color bar 

indicates t-statistics. This result supports our previous ROI-result of compensatory 

hippocampal task-related activity. 
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Fig. S10. Temporal stability of voxel-wise grid orientations. (A) Higher temporal 

stability values are significantly correlated with lower hippocampal task-related activity 

(Pearson correlation, P = .007). (B) Reduced temporal stability values are related to 

decreased functional connectivity between right EC and right hippocampus (Pearson 

correlation, P = .009). rEC, right entorhinal cortex; rHC, right hippocampus. Green dots 

represent control participants, red dots represent risk participants.    
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Fig. S11. Grid-cell-like representations under the condition of similar stability 

values between genetic subgroups. Performing the analysis of grid-cell-like 

representations on shorter data segments (within subsequent pairs of sessions, see 

Methods) reveals significant right EC grid-cell-like representations in control participants 

(one-sample t-test, t36 = 2.708, P = .010) but not in risk participants (one-sample t-test, t37 

= -.788, P = .436), with a significant difference between both groups (two-sample t-test, 

t73 = 2.315, P = .023). In contrast, temporal and spatial stability values do not differ 

between groups. Bars show mean and SEM across participants. Units of grid-cell-like 

representations are parameter estimates. *P < .05. 
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Fig. S12. Schematic overview of all results. EC, right entorhinal cortex; HC, 

hippocampus. Dashed green line indicates a positive relation between spatial memory 

performance and HC activity that is specific to the left posterior third of the hippocampus 

(see Table S3).  
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Table S1. Demographic characteristics of participants. 

 Control group 

(APOE ε3, ε3) 

Risk group 

(APOE ε4, ε3) 

P 

Number 37 38  

Mean age, age range [years] 22.76 (± .49), 18-30 22.34 (± .45), 18-29 .532a 

Sex [male/ female] 18/ 19 18/ 20 .912c 

Education [years] 16.19 (± .38) 16.05 (± .37) .693b 

Family history of dementia 2 3 .667c 

Values denote mean (± SEM) or the number of participants. P-values refer to (a) two-

sample t-tests, (b) Mann-Whitney U tests, or (c) χ2-tests. 
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Table S2. Influence of APOE genotype on basic behavioral characteristics. 

 Control group 

(APOE ε3, ε3) 

Risk group 

(APOE ε4, ε3) 

P 

Number of movement time points 

[10/s] 

19,937 (± 422)  19,967 (± 441) .961a 

Cut-off speed [vu/s] 799 (± 1) 799 (± 1) .611b 

Total path length [vu]  1,451,250 (± 45,626) 1,447,604 (± 48,265) .956a 

Number of trials 229 (± 8.8) 230 (± 6.7) .918a 

Duration of retrieval-phases [s] 11.8 (± .7) 11.1 (± .5) .453a 

Duration of re-encoding-phases [s] 5.4 (± .3) 5.1 (± .2) .679b 

 

Values denote mean (± SEM). P-values refer to (a) two-sample t-tests or (b) Mann-Whitney 

U tests. s, seconds; vu, virtual units. 
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Table S3. Multiple regression to predict spatial memory performance including 

task-related activity of different parts of the hippocampus (N = 75). 

 

Predictor β t P 

Model 1: including task-related activity in bilateral 

hippocampus (adjusted R² = .161; all VIF < 1.441) 

   

Grid-cell-like representations .256 2.093 .040* 

Central navigational preference .235 2.106 .039* 

Genotype [control/ risk] .146 1.230 .223 

Sex [male/ female] -.258 -2.149 .035* 

Age [years] -.304 -2.795 .007** 

Task-related activity (bilateral hippocampus) .057 .442 .660 

Model 2: including task-related activity in left 

hippocampus (adjusted R² = .165; all VIF < 1.471) 

   

Grid-cell-like representations .270 2.196 .032* 

Central navigational preference .232 2.080 .041* 

Genotype [control/ risk] .154 1.292 .201 

Sex [male/ female] -.242 -2.017 .048* 

Age [years] -.306 -2.826 .006** 

Task-related activity (left hippocampus) .095 .735 .465 

Model 3: including task-related activity in right 

hippocampus (adjusted R² = .159; all VIF < 1.347) 

   

Grid-cell-like representations .230 1.904 .061(*) 

Central navigational preference .236 2.115 .038* 

Genotype [control/ risk] .134 1.120 .267 

Sex [male/ female] -.290 -2.479 .016* 

Age [years] -.307 -2.816 .006** 

Task-related activity (right hippocampus) -.023 -.183 .855 

Model 4: including task-related activity in bilateral 

posterior hippocampus (adjusted R² = .199; all VIF < 

1.359)  

   

Grid-cell-like representations .278 2.433 .018* 

Central navigational preference .234 2.146 .035* 

Genotype [control/ risk] .167 1.440 .155 
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Sex [male/ female] -.178 -1.504 .137 

Age [years] -.311 -2.923 .005** 

Task-related activity (bilateral posterior hippocampus) .225 1.856 .068(*) 

Model 5: including task-related activity in left posterior 

hippocampus (adjusted R² = .248; all VIF < 1.356) 

   

Grid-cell-like representations .286 2.597 .012* 

Central navigational preference .238 2.260 .027* 

Genotype [control/ risk] .173 1.546 .127 

Sex [male/ female] -.123 -1.058 .294 

Age [years] -.308 -2.993 .004** 

Task-related activity (left posterior hippocampus) .334 2.848 .006** 

Model 6: including task-related activity in right posterior 

hippocampus (adjusted R² = .163; all VIF < 1.265) 

   

Grid-cell-like representations .254 2.160 .034* 

Central navigational preference .235 2.109 .039* 

Genotype [control/ risk] .148 1.253 .214 

Sex [male/ female] -.252 -2.163 .034* 

Age [years] -.307 -2.826 .006** 

Task-related activity (right posterior hippocampus) .078 .651 .517 

Multicollinearity was not a concern (see variance inflation factors, VIF). (*)P < .10, *P < 

.05, **P < .010. 
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Table S4. Detailed description of the first general linear model (GLM) to identify 

the angular orientation of the putative grid axes relative to the environment in each 

participant’s right EC. For this general linear model (GLM) one half of the data was 

used (sessions 1, 3, and 5). All regressors were convolved with the canonical 

hemodynamic response function (HRF) in SPM before entering the GLM. Data were 

high-pass filtered at 1/128 Hz. Coefficients for each regressor were estimated for each 

participant using maximum likelihood estimates. 

Regressor Parametric 

modulator 

Temporal 

derivative 

modeled 

Duration 

[seconds] 

Regressors to analyze grid-cell-like representations   

Movement  Yes 0 

 sin[α(t) * 6]a Yes 0 

 cos[α(t) * 6]a Yes 0 

Regressors to model trial phases    

Cue -  Yes 0 

Retrieval - Yes Variable  

Feedback - Yes 0 

Re-encoding - Yes Variable  

Nuisance regressors    

Scanner drift - No Sessionb 

Mean activation - No Session 

Head motion parameters - No  Session 

(a) α(t) is angular movement direction at time point t. (b) The duration of one session is 13 

min.  
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Table S5. Second GLM to contrast brain activity during aligned movements with 

brain activity during misaligned movements relative to the previously identified grid 

axes. For this GLM the other half of the data was used (sessions 2, 4, and 6). All 

regressors were convolved with the canonical HRF in SPM before entering the GLM. 

Data were high-pass filtered at 1/128 Hz. Coefficients for each regressor were estimated 

for each participant using maximum likelihood estimates. The estimated contrast values 

of aligned versus misaligned movements are termed “grid-cell-like representations”. 

Regressor Temporal 

derivative 

modeled 

Duration 

[seconds] 

Regressors to analyze grid-cell-like representations   

Aligned movement Yes 0 

Misaligned movement Yes 0 

Regressors to model trial phases   

Cue Yes 0 

Retrieval Yes Variable  

Feedback Yes 0 

Re-encoding Yes Variable  

Nuisance regressors   

Scanner drift No Session 

Mean activation No Session 

Head motion parameters No  Session 
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Table S6. GLM to estimate hippocampal task-related activity. All regressors were 

convolved with the canonical hemodynamic response function (HRF) in SPM before 

entering the GLM. Data were high-pass filtered at 1/128 Hz. Coefficients for each 

regressor were estimated for each participant using maximum likelihood estimates. 

Regressor Temporal 

derivative 

modeled 

Duration 

[seconds] 

Regressor to model hippocampal task-related 

activation 

  

Cue + retrieval + feedback + re-encoding Yes Variable  

Nuisance regressors   

Scanner drift No Session 

Mean activation No Session 

Head motion parameters No  Session 
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Table S7. GLM for the confirmatory analysis of compensatory hippocampal 

activity. The aim of this GLM was to reveal voxel activity associated with spatial 

memory performance. Hence, we modeled the retrieval phase with a parametric 

modulator, termed “Response accuracy”, which was determined as follows. For each 

participant separately, the 20%-, 40%-, 60%-, 80%-, and 100%-quantile of all drop errors 

were calculated. Note that the drop error was defined as the distance between the 

response location and the correct location (thus having a reverse relation to spatial 

memory performance). Next, we assigned the highest value of +2 to the parametric 

modulator, when the trial-specific drop error was in the lowest quantile of all drop errors, 

the value of +1, when the trial-specific drop error was in the second lowest quantile of all 

drop errors, and the values 0, -1, and -2, when the trial-specific drop errors were in the 

middle, second highest, and highest quantile, respectively. All regressors were convolved 

with the canonical HRF in SPM before entering the GLM. Data were high-pass filtered at 

1/128 Hz. Coefficients for each regressor were estimated for each participant using 

maximum likelihood estimates. Contrast values for the parametric modulator versus zero 

across all sessions were calculated for all participants and entered into a second level 

random effects linear regression analysis as implemented in SPM. During the second 

level analysis, we were then able to look for spatial memory-related brain activations 

negatively correlated to grid-cell-like representations, also reflecting compensatory 

activations. 

Regressor Parametric 

modulator 

Temporal 

derivative 

modeled 

Duration 

[seconds] 

Regressors to model trial phases and response accuracy 

Cue -  Yes 0 

Retrieval  Yes Variable 

 Response 

accuracya 

Yes Variable 

Feedback - Yes 0 

Re-encoding - Yes Variable  

Nuisance regressors    

Scanner drift - No Session 

Mean activation - No Session 

Head motion parameters - No  Session 

(a) The parametric modulator contained equally distributed values of +2, +1, 0, -1, and -2. 
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