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Meditation practice is difficult to access because of its countless forms of appearances originating from
the complexity of cultures it has to serve. This makes a suitable categorization for scientific use almost
impossible. However, empirical data suggest that different forms of meditation show similar steps of
development in terms of their neurophysiological correlates. Some electrophysiological alterations can
be observed on the beginner/student level, which are closely related to non-meditative processes. Others
seem to correspond to an advanced/expert level, and seem to be unique for meditation-related states of
consciousness. Meditation is one possibility to specialize brain/mind functions using the brain’s imma-
nent neural plasticity. This plasticity is probably recruited by certain EEG patterns observed during or
as a result of meditation, for instance, synchronized gamma oscillations. While meditation formerly
has been understood to comprise mainly passive relaxation states, recent EEG findings suggest that med-
itation is associated with active states which involve cognitive restructuring and learning.

� 2010 Elsevier Ltd. All rights reserved.
Introduction

In recent years, an increasing number of studies attempted to
explore neurophysiological processes occurring during altered
states of consciousness resulting from meditative training. These
studies abstracted from the cross-cultural differences between
meditative practice in different religious contexts and focussed
on common mechanisms arising from this voluntary alteration of
conscious states, which is characterized by both deep relaxation
and increased internalized attention. A number of studies revealed
the influence of meditation practice on autonomic parameters such
as breathing patterns, heart rate, skin conductance and blood vol-
ume pulse [1–3]. In this article, we will concentrate on the neuro-
physiological correlates of meditation, in particular effects
observed in EEG experiments.

The basic thought behind these studies is the premise that an
altered state of consciousness is always accompanied by an analo-
gously altered neurophysiological state (so-called psychophysical
isomorphism, e.g. [4]). If meditation is used as a repetitive influ-
ence on consciousness, certain measurable qualitative and quanti-
tative effects should develop on the neurophysiological side, which
may be either transient or permanent.

A large number of studies aimed at classifying and categorizing
observed effects but were only able to assess certain general
changes of the EEG which are not directly related to meditation
practice (for a review, see [5]): As conscious states can only be ac-
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cessed introspectively, they depend on subjective descriptions,
which are difficult to inquire during meditation practice. Moreover,
the enormous bandwidth of not clearly circumscribed meditation
styles and the lack of a commonly accepted phenomenal classifica-
tion of waking states of consciousness do only allow one to con-
clude about general findings and rough tendencies. Thus, even
though meditation research has produced a large number of stud-
ies during the past years, there is still a strong need for clear and
standardized definitions, in terms of meditative techniques, as well
as in terms of the involved states of consciousness.

Hence, we will first have to discuss the use of the term ‘medita-
tion’, explain the difficulties arising from the need of clear defini-
tions, and point out why the large field of meditation research
still lacks clear and practicable categorizations. With regard to
these problems, we will change our perspective by trying to de-
scribe meditation practice from a more general point of view. We
will suggest hypotheses which will allow us not only to arrange
the electrophysiological findings, but also to predict in which
way certain meditation-related states of consciousness may be
reached. In the following sections, we will describe EEG findings
on meditation-related states of consciousness supporting our
hypotheses. We will ask how, according to present knowledge,
meditation practice is manifested in oscillatory EEG activity.

What is meditation?

The word ‘meditation’ can be derived from the Latin word ‘med-
itatio’, which referred to an exercise originally not predefined be-
tween intellectual or physical. In both ways it points to the

http://dx.doi.org/10.1016/j.mehy.2010.02.025
mailto:juergen.fell@ukb.uni-bonn.de
http://www.sciencedirect.com/science/journal/03069877
http://www.elsevier.com/locate/mehy


J. Fell et al. / Medical Hypotheses 75 (2010) 218–224 219
center (lat. ‘medium’ = ‘center’) of either the body or the mind. The
word ‘medium’ again is rooted in the Indo-Germanic stem ‘*me(d)’,
meaning ‘to ambulate’ or ‘to measure’. Today, ‘meditation’ is re-
lated to various practices aiming to alter the state of consciousness,
hence belonging to a more spiritual context closer associated with
the term ‘contemplation’.

‘Meditation’ as used in a modern sense, does not refer to a spe-
cific spiritual practice, but involves various meanings depending
on the tradition it is used in. In Christian spirituality a form of med-
itation can be found, for instance, the ‘‘contemplation on the suf-
fering of Christ”, although nowadays the term is in most cases
associated with eastern traditions. Hinduism, Buddhism or Taoism,
found their way to Europe in the late 19th century and brought
along a complex terminology that highly influenced our parlance.
In these cases meditation only refers to a purely religious purpose,
but a close look illustrates, that implications of meditation can
reach far beyond that. Not only religious movements such as the
Hatha Yoga, but also more secular schools like eastern martial arts
employ meditation. Furthermore, seemingly non-spiritual activi-
ties, like dancing, e.g. the whirling dance, which is the spiritual
practice of the Moulavi-Order of the Sufi tradition in Turkey, or
singing, like Christian chorales or Buddhist chanting, can be used
as a meditative technique. In some traditions, like the ‘red tantra’,
even sexual impulses and activities are part of the meditative spec-
trum. Thus, one could try to achieve a definition of meditation
through its effects on the meditator, but that will not clarify the
picture either.

Depending on the tradition we study, meditation is a way to
establish a sense of calmness and serenity; a method to concen-
trate and focus on a single point; a way to stop the constant verbal
thinking and relax the mind; a way to relieve stress and alleviate
depression; a way to reduce anxieties and to build up self-esteem.
It may be only used to benefit the health, like stabilize the cardio-
vascular system or, to the other extreme, to seek to get in contact
with god, or to reach hard to define ‘peak experiences’ like ‘sama-
dhi’, ‘nirvana’ or ‘oneness’. This divergence is reflected in the scien-
tific studies of meditation. One instructive example is to compare
studies on Indian Yogis and Japanese Buddhist monks. In the early
sixties, a couple of studies showed that Yogi masters, while in
meditation, exhibited no response to external stimuli, e.g. to pain
when their hand was placed in cold water. Even auditory stimuli
showed no effect on the simultaneously recorded EEG as in control
subjects [6,7]. These findings are consistent with the theory of cer-
tain Yogi practices, which are supposed to cut off every sensory in-
put and reach a state of complete internalized attention with
extremely reduced body functions.

On the other hand, studies from the sixties and seventies on the
meditation of Japanese Zen Monks demonstrated, that these med-
itators showed an EEG response to repetitive auditory stimuli that
did not habituate as in control subjects [8]. Again, these findings
correspond nicely to the demands of Zen meditation, namely a
state of highly concentrated mindfulness, just witnessing whatever
goes through the mind, without trying to suppress external stimuli.
Both studies referred to the state of their subject as ‘meditation’.

Having these first approximations to the term ‘meditation’ in
mind, it seems that a clear definition of the field including all its
variations must fail because of its high diversity. Nevertheless, it
is fundamentally necessary for scientific research on meditation
to use at least a basic form of categorization. In most of the current
studies, meditation techniques are divided into two groups,
depending on the way the meditator employs her/his attention
[9]. If it is focussed on a single point, whether this point is abstract
(like a imagined picture, or a feeling about something or some-
body) or concrete (like a mantra or a specific part of the own body),
the technique is categorized as a concentrative form or, in other
words, a focussed attention meditation. The other end of the spec-
trum involves a concept which is referred to as the mindfulness
form or, in other words, an open monitoring meditation. This type
of meditation aims at reaching a state where upcoming thoughts
and emotions are just passively observed, without judging, analys-
ing, or even following them. From this phenomenal definition, we
get a first hint why this form of meditation is not only very difficult
to reach, but also why previous reviews found a high variability
within the results.

In the meditation literature the very same distinction is used
and commonly accepted. In most traditions, a beginner typically
will start with a rather concentrative form of meditation and will
then proceed to an open monitoring form. Of course, there are
many techniques, which cannot unequivocally be assigned to one
of those categories and incorporate both aspects, like for instance
the mindfulness of breathing. Knowing all this raises the serious
question how a scientist should distinguish between the various
forms of meditative practice. Here, we argue that despite the many
forms of meditation practice and the difficulties of categorization,
empirical studies indicate similar steps of development in terms
of their electrophysiological correlates. In the following, we will
therefore suggest a new view upon meditation practice.
A new approach to describe meditation practice

Our main hypothesis is that long-term practice of different
forms of meditation is associated with similar developments. By
this idea, we do not intend to state that various kinds of meditation
exhibit similar mental states and neurophysiological correlates
regarding all mental/neurophysiological aspects. We rather sug-
gest that during the development of meditation practice some
common characteristics are shared and passed through. This view
is supported by the experiences of meditation experts of different
traditions, who coherently report similar mental states – although
often with a quite diverse vocabulary [10–12]. In neuroscientific
terms, this hypothesis means that due to continuous meditation
practice, in some aspects, similar mind/brain states are reached,
i.e. states with adjacent locations in a suitable mental/physiologi-
cal state space (see chapter 6). We further hypothesize that the ini-
tial mind/brain states occurring during meditation, in some
aspects, are similar to, and overlap with, ‘‘regular” states experi-
enced outside meditation. Only after long-term meditation prac-
tice, new mind/brain states may be reached which do not
overlap with regular states. These hypotheses will now be ex-
plained in greater detail.

Hypothesis 1

Every meditative training, independent from its cultural back-
ground or practiced technique, involves a similar scheme of devel-
opment. This development is being carried out in several
consecutive steps starting from the status of an average healthy
brain/mind. Every developmental step has correlates on the neural
processing level. High inter-individual variability must be ex-
pected, due to different investments of time and effort, the individ-
ual resources, and the general flexibility in the integration of new
concepts. Not every meditation style integrates all possible steps;
some will even restrict themselves to the first levels in order to
benefit the health by slowing down and by calming certain body
functions.

Hypothesis 2 (steps of meditative development)

The first step will always involve mostly physical demands. The
beginner is requested to get used to a new and uncomfortable pos-
ture and will concentrate mainly on the performance of the
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technique. Her/his attention will be cursory and restless. The alter-
ations on the neurophysiological side should be relatively small
and transient.

With increasing experience, the student will be able to internal-
ize her/his attention, focussing on a rather simple object which is
easily accessible, e.g. a simple mantra, a picture, a part of the body,
or her/his own breath. By doing this, (s)he will experience the
slowing and relaxing physical aspect of meditation with all its
physiological effects that are easy to measure and to reproduce.
On the internal side, a slowing of the mind’s automatically pro-
duced internal dialog will be observed, accompanied by a deep
sense of calmness and serenity which is the basic condition for
any form of meditative work. In principle, this second step is with-
in the reach of every beginner and thus still closely related to non-
meditative processes. Therefore, the neurophysiological changes
should be reminiscent of those occurring during other non-medita-
tive tasks.

The third step is characterized by the correct performance of the
meditation technique, which means that the advanced student is
able to focus her/his attention completely on the object of medita-
tion. The first alterations in perception and in processing of sensory
input occur, and the advanced student realizes, for instance, a basic
change in the relationship between thoughts and feelings. The stu-
dent starts to experience the constantly and automatically gener-
ated mental processes as temporary and transitory. Corresponding
neurophysiological alterations may be less comparable to non-med-
itative tasks, but still transient.

The most advanced step of meditation practice, which is only
reached by experts, is associated with certain peak experiences,
described with terms difficult to define, like ‘samadhi’, ‘nirvana’,
‘kensho’, or the experience of ‘oneness’. These experiences come
along with permanent changes of individual properties and alter-
ations of states of consciousness lasting outside meditation prac-
tice. Because usually a large amount of time is spent to reach
this step (at least many years, typically several decades), the
availability of suitable subjects for research is substantially re-
duced. In electrophysiological recordings, new and unique oscil-
lation patterns may be observed on this expert level of
meditation.

In the following chapter, we will describe the results of EEG
studies related to meditation, and will discuss the hallmarks of
these findings with respect to our hypotheses.
Oscillatory EEG correlates of meditation

Alpha activity

The most dominant effect standing out in the majority of stud-
ies on meditation is a state-related slowing of the alpha rhythm
(8–12 Hz) in combination with an increase in the alpha power
[8,13,14]. These findings are relatively robust, because they do
not depend on either a certain meditation tradition or the experi-
ence of the meditator. Subjects engaged in meditation of various
styles were reported to demonstrate increased alpha power [15–
18], which is localized mainly over frontal regions [19–22]. Since
this effect is independent from meditation technique and degree
of experience, it may be regarded as a first basic change in the
course of meditative development.

With regard to our hypotheses, these first self-induced altera-
tions correspond to a beginner/student level and should thus fulfil
two criteria: First, the underlying neural pattern should be closely
related to a common process related to simple non-meditative
mental tasks. Second, these first basic alterations should be easily
accessible even by the unexperienced student of meditation, and
should be even within reach of our everyday experience.
Alpha oscillations fulfil these demands. They are known to arise
from an increase of internal attention [23], which of course does
not only occur due to meditation. Various studies showed an in-
crease of alpha power related to internally driven mental opera-
tions, like the imagery of tones [23–25], or working memory
retention and scanning [26,27]. Furthermore, EEG biofeedback
studies indicate that alpha activity is the brain rhythm, which
can be most easily controlled [28]. Subjects can be trained to either
produce or suppress alpha activity [29,30]. The baseline activity
shifted according to the instruction, and furthermore these trends
proved to be continuous, as if the subjects continued to do what
they had been trained to. Interestingly, subjects reported to find
it more difficult but also more pleasant to increase than to decrease
alpha activity.

These findings gave a first hint on the possible positive effect on
emotional management that can arise from a training closely re-
lated to a meditative approach. Further clues concerning emotional
implications and alpha activity come from studies focussing on the
laterality of anterior EEG activity. A recent study using mindfulness
meditation reported significant decreases in left-sided anterior al-
pha power (corresponding to an activation) in the meditators com-
pared with the non-meditators [31]. Other studies reported that
the same regions are related to certain positive emotions in sub-
jects with ‘more dispositional positive affect’ [32]. Furthermore,
patterns of asymmetric frontal EEG activity have been reported
in pathological processes. Groups of subjects with current episodes
of depression and those with a history of depression showed great-
er left than right frontal alpha activity compared with control sub-
jects [33,34], and a greater right than left parietal alpha activity
[35,36]. These findings suggest that the resting frontal EEG-asym-
metry may serve as a stable trait-like marker to distinguish de-
pressed individuals from never depressed individuals [37]. In
general, the prefrontal activation asymmetries seem to be plastic
and susceptible to changes upon appropriate training [38].

Theta activity

Appearance of the theta rhythm (3–8 Hz) is a characteristic for
the transition from wakefulness to sleep, which is classified as
sleep stage I [39]. In meditation and related contexts, theta band
activity has been found to increase due to different relaxation tech-
niques [40,41]. People highly trained in self-hypnosis show in-
creased theta activity not only during hypnosis, but also while
they are awake [42]. Besides alpha, theta activity is also mentioned
in neurofeedback studies, e.g. as an effective treatment of anxiety
disorders (for a review, see [43]).

A general increase of theta activity during meditation has been
reported in a large number of studies and appears to be unrelated
to a specific meditation technique or the subject’s experience level
(for a review, see [5]), although some studies attempted to demon-
strate theta activity increases as a specific outcome of enhanced
mindfulness [19]. This divergence may be related to the occurrence
of theta band activity during a variety of different tasks. In contrast
to alpha band activity, theta may arise without internalizing the
attentive focus, for instance, due to relief from anxiety [16]. Ante-
rior theta rhythms have been reported during short-term memory
tasks (reviewed in [44]), and both neocortical and hippocampal
theta activity are closely related to the formation of declarative
long-term memory [45–47]. It has been speculated that hippocam-
pal theta activity might reflect a state of readiness, waiting for
incoming signals to process [48]. These findings are supported by
the results of animal studies indicating that theta activity also ap-
pears in the rodent cortex during memory encoding and retrieval
(for a review, see [49]), in particular during spatial navigation
[50]. And of course, theta activity may be simply related to tired-
ness and the transition to sleep. Although this trivial interpretation
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is often not consistent with the subjective reports of meditators, it
is difficult to exclude in the absence of behavioural data. These dif-
ferent types of theta rhythms occurring throughout the brain are
probably produced by completely different mechanisms and are
not necessarily functionally related.

Despite its great variability, theta activity in meditators shows
some mentionable characteristics. Several studies describe increas-
ing theta activity in form of sharp burst or theta trains, which are
preceded and followed by alpha rhythm [8,51,52]. For some
authors, these findings distinguish theta activity found in medita-
tors from the more irregular forms that appear during drowsiness
[53], i.e. when the world of external stimuli recedes and imagina-
tions come to the fore [54]. The separation between a deep state of
meditation and a period of stage 1 sleep only based on EEG data is
difficult. Meditators may deliberately stay in a mental state related
to increased theta activity over longer time periods, which looks
similar to the deep relaxation state of sleep stage I. However, this
state may not be equivalent with stage I sleep, because subjects
showed ongoing theta activity even after meditation when they
had already opened their eyes and were alert [8,13].

A recent study demonstrated that meditation-related changes
of theta characteristics are indeed relevant for cognitive processing
[55]. Meditation novices and practitioners were tested in an atten-
tional blink paradigm before and after a three-month meditation
retreat. Performance in this task significantly increased in the prac-
titioner group and was associated with an enhanced theta phase-
locking, i.e. a reduced inter-trial variability of theta phases. Since
theta phase has been shown to be related to the timing of neural
activation [56], this finding may indicate a more stable execution
of neural processing steps in meditation practitioners.

Taken together, the general findings of theta activity related to
meditative processes do not provide sufficient evidence to corre-
late its form of appearance with a specific step of meditative devel-
opment. One may speculate that theta activity occurs after the
specifically altered alpha patterns related to the beginner/student
level have already been established in the brain [57,58], possibly
as a correlate of increased relaxation. In our framework, theta
activity would then be closer associated with an advanced level
of meditative practice.

Gamma activity

Usually an oscillatory frequency around 40 Hz is referred to as
gamma activity, but the range can vary substantially between 20
and 200 Hz across different studies. This lack of precision occurs
mainly for historical reasons, since early studies on humans fo-
cused on gamma activity around 40 Hz [59–61], while recent stud-
ies include higher frequency ranges as well [62–64].

Activity in high frequency ranges was already observed in the
very first studies on meditators [6,51]. These studies aimed to
investigate whether EEG changes during different levels of medita-
tion correlated with the experience of the subjects. They involved
both beginners and advanced students of a certain Yoga style
(Kriya-Yoga, Kundalini-Yoga) and Trancendental Meditation (TM).
Both studies reported fast activity with peaks around 40 Hz in both
hemispheres. Interestingly, both studies describe these peak-activ-
ities only for the highly advanced meditators. Nevertheless, these
findings should be considered with caution because of several
methodological deficits (discussed in [65]).

Later research on meditators focused mainly on the lower fre-
quency ranges and lost track of the activities in the high frequency
band. With the development of improved EEG amplifiers, as well as
more efficient recording techniques and computer-based analysing
strategies, high frequency EEG activity re-attracted the interest of
neuroscientists, and recent studies again deal with the occurrence
of gamma activity during meditation.
Two recent studies report high-amplitude gamma band oscilla-
tions during meditation. Both studies were conducted on advanced
Buddhist practitioners, some with more than 20 years of medita-
tion experience. One study investigated four different forms of fo-
cused meditation in a Buddhist Lama [66], which resulted in
different patterns of gamma band activity. The authors interpreted
these findings as evidence that altered states of consciousness are
associated with distinguishable patterns of brain activation.

The other study concentrated on a meditation of non-referential
compassion [67]. The authors observed that voluntarily induced
gamma band oscillations were sustained and showed an increased
phase synchronization during meditation. The patterns in medita-
tors differed from those of the control subjects specifically over lat-
eral frontal and parietal electrodes. The largest amplitude increases
of gamma band activity were found for the long-term practitio-
ners: Even before meditation, the ratio of oscillatory activity in
high (25–42 Hz) and low (4–12 Hz) frequencies was higher for
meditators compared to control subjects. These differences in-
creased sharply during meditation. Furthermore, the authors de-
scribe that the amplitude of gamma band activity in meditators
was higher than any other gamma band activity previously ob-
served in healthy human subjects. They speculate that the level
of meditative training can alter the spectral distribution of the
EEG in terms of possible permanent baseline changes. Of course,
further studies are needed to corroborate this interpretation. In
the framework of our hypotheses, these changes are closely related
to an expert level of meditation practice.

In the next chapter, we will describe the relevance of gamma
activity for cortical plasticity and the formation of neural circuits.
We will discuss, how these functions may contribute to the goal
of meditative practice: the development of new states of
consciousness.
Synchronized gamma oscillations and cortical plasticity

Neural plasticity comprises the creation of additional neurons
and new synaptic connections, as well as the expansion and shift
of functional areas. These modifications are most evident in pa-
tients with brain lesions or in subjects who have been trained in
specialized cognitive functions such as musicians for the control
of sensory-motor abilities, taxi drivers for spatial navigation, and
so on. Similarly, meditation training may be accompanied by alter-
ations of neural structures. Indeed, it has been shown by magnetic
resonance imaging that long-term meditation practice is associ-
ated with an increase of cortical thickness [68] and of gray matter
volumes of different brain structures [69,70].

Although the brain/mind contains and provides the general pos-
sibility to realize these changes, it may be restricted by both inher-
ited and acquired factors. Neural plasticity depends on processes
ranging from the molecular level to the level of neural networks.
Members of neural assemblies which are phase synchronized in
the gamma frequency range fire action potentials in a highly time
locked manner with a precision of a few milliseconds [56,71,72].
When these action potentials are propagated to common target
neurons, the corresponding synaptic inputs can cooperate in ele-
vating the membrane potential above firing threshold [73]. Such
rapid depolarizations depending on synchronized excitatory syn-
aptic inputs were shown to result from voltage-gated Na+ and K+

conductances [74]. This cooperation does not occur for incoming
action potentials that are not time locked, since the membrane po-
tential meanwhile decays depending on membrane time constants.
Thus, synchronized neural assemblies can reliably trigger activity
in target neurons. Moreover, this results in the firing of several tar-
get neurons with little jittering, thus again enabling the synchroni-
zation of target assemblies [75]. Synchronized oscillations in the
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gamma range were shown to be associated with such precise spike
timing [56,71,72] and may thus represent a mechanism for the
precise activation of target neurons, and thus for controlling the
flow of neural information [76]. If synchronization, for example,
occurs between neurons belonging to different feature maps,
which project to higher-order neurons in the associative cortex,
these higher-order neurons could be reliably triggered (bottom-
up). On the other hand, top-down influences from higher-order
areas might also be propagated by synchronized gamma activity
[77].

As long ago as 1949, Hebb [78] proposed a flexible mechanism
for the formation of functionally associated neural assemblies.
Hebb postulated an increase in synaptic efficacy in the case of cor-
related activity of the presynaptic and the postsynaptic neuron,
which was later experimentally verified [79,80]. The best investi-
gated examples for Hebbian plasticity are long-term potentiation
(LTP) and depression (LTD), which provide the basis for models
of learning and memory.

The required delay times for effective Hebbian modification of
synaptic connections by correlated firing of the pre- and postsynap-
tic neurons are of the order of less than ±10 ms [81]. Synchronized
high frequency EEG rhythms like gamma activity thus could provide
an optimal condition for the establishment and modification of
Hebbian neural assemblies and therefore may be a crucial mecha-
nism in associative learning and memory formation. This view is
supported by several recent memory studies [47,82–86].

To conclude, these data suggest that synchronized gamma
activity is highly relevant for neural plasticity and the implemen-
tation of new processing circuits (for a review see e.g. [87]). The
findings of strongly increased synchronized gamma activity in
meditation experts may thus be related to processes of cortical
restructuring and learning. These processes may provide a perma-
nent neural basis facilitating specific meditation-related states of
consciousness, as well as altered perception and cognition outside
meditation practice.
Are meditation-related brain/mind states unique?

A response to this question requires a clarification of what is
actually meant by a ‘‘unique” brain/mind state. One may consider
a mind state, in other words a state of consciousness, as a point or a
small area in a state space describing all possible mind states [4].
The variables defining the axes of the mental state space (i.e. the
co-ordinate system) are then different psychological properties.
For instance, Vaitl and colleagues [88] have suggested a state space
for the classification of altered states of consciousness defined by
four variables: activation, awareness span, self-awareness and sen-
sory dynamics. In principle, such a state space should enable to
separate different states of consciousness, i.e. states that are sub-
jectively perceived as different. If such states of consciousness can-
not be separated, additional psychological variables have to be
added to the state space. In the same manner a neural state space
may be constructed, where the variables represent different phys-
iological measures. The statement that meditation-related states
are unique, in this description, means that those states do not over-
lap with other states.

The basic assumption underlying psychophysical research is
that a one-to-one correspondence between mind and brain states
exists (often called psychophysiological isomorphism, e.g. [89]).
This implies that in case a certain state of consciousness is unique,
the corresponding neural state should also be unique. Conversely,
for the same state of consciousness, the neural characteristics
should always be the same, at least with regard to those neural
variables which are linked to the mind domain (not all neural vari-
ables are associated with consciousness).
In the present article, we argue that brain/mind states related to
meditation practice on the beginner/student level, in some aspects,
may overlap with brain/mind states that regularly occur outside
meditation practice, for instance, states associated with moments
of relaxation. In other words, we suppose that, in some aspects,
there is no qualitative difference between meditation-related
brain/mind states of beginners and some ‘‘regular states”. But un-
like the regular states, meditation-related states may be prolonged
and may occur more reliably. However, we suppose that brain/
mind states related to an advanced/expert level of meditation
training are unique. Such unique states may be reached, because
meditation training may not only be associated with the occur-
rence of certain electrophysiological signatures, but may also stim-
ulate cortical plasticity and involve changes in neural structures. In
other words, the constituents of the brain, i.e. the dynamical sys-
tems supporting neurophysiological processes, are modified. These
modifications may supply the neural basis for unique brain/mind
states associated with new electrophysiological signatures (see
chapter 5).

The above differentiation is supported by reports of meditation
beginners indicating a more reliable and prolonged occurrence of
psychological states sometimes perceived outside meditation. On
the other hand, experts often report about states of consciousness
which they perceive as new and unique [10,11]. After these states
have occurred once (during or outside of meditation practice), they
may be experienced more regularly afterwards.

But is there evidence for the suggested differentiation on the
physiological side? As described in chapter 4, meditation-related
brain states at the beginner/student level were often found to cor-
respond to an increased power and synchronization of low fre-
quency activity, in particular, alpha and theta activity. Such
alterations are rather unspecific, because they are also observed
during relaxation and transition to sleep, as well as during several
so-called altered states of consciousness [88]. On the other hand,
the few empirical data on meditation experts available tentatively
indicate that expert states may imply both, an increase of power/
synchronization of low frequency oscillations, as well as an in-
crease of power/synchronisation of gamma activity. Such a combi-
nation of EEG changes is rather uncommon because increased
relaxation and transition to sleep are normally associated with a
decrease of gamma power/synchronization [90–92]. However, it
is not clear yet, whether such an electrophysiological pattern is in-
deed unique for meditation-related brain/mind states of experts or
whether it may also occur during other altered states of
consciousness.
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