Guest Lecture
November 9th, 2004
Time: 16.00, E 23 / Mechanical Engineering Building, Campus North

Gérard A. Maugin
Laboratoire de Modélisation en Mécanique,
CNRS & Université Pierre et Marie Curie,
Paris, France

On the Thermomechanics of Continuous Media with Diffusion and/or
Weak Nonlocality

First the viewpoints on configurational forces of M.E.Gurtin and the author are contrasted. Then,
working in parallel on the energy equation in a special form and the associated canonical equation of
momentum, we focus attention on the case of deformable media which are priorily finitely elastic, but
they also admit the existence of thermodynamically irreversible phenomena by means of a diffusive
internal variable of state, or alternately an additional degree of freedom, in any case presenting some
weak nonlocality (gradient effects). Two descriptions follow thereof, one than can be called standard
according to rational thermo-mechanics (there exists a generalized internal force or thermodynamically
conjugated force for a variable and each of its gradient separately, and the entropy flux has its classical
definition) or the so-called field-theoretic viewpoint in which only one generalized force (based on a
variational derivative of the energy) is used. In the latter one, the entropy flux deviates form its
classical definition but, simultaneously, by virtue of the space-time consistency, the Eshelby stress
tensor has to be altered. Simple examples with diffusion of an internal variable illustrate these
formulations that may be valuable in the description of some geomaterials.