
Chaos and Complexity Letters
Volume 2, Number 2/3, pp. 435–452

ISSN 1555-3995
c© 2007 Nova Science Publishers, Inc.

THE CORTICAL IMPLEMENTATION OF COMPLEX
ATTRIBUTE AND SUBSTANCE CONCEPTS:

SYNCHRONY, FRAMES, AND HIERARCHICAL
BINDING

Markus Werning1∗and Alexander Maye†

1Department of Philosophy
Heinrich-Heine University Düsseldorf
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Abstract
Combining frame theory with the theory of neural synchronization, the paper pro-

poses oscillatory networks as a model for the realization of complex attribute and
substance concepts in the cortex. The network has both perceptual and semantic capa-
bilities. Coherency chains and hierarchical binding mechanisms are postulated.

1. Introduction

Frame theory (Minsky, 1975; Barsalou, 1992) provides us with a universal account not only
for the psychology of categorization, but also for the decomposition of concepts. A frame
is defined for a large domain of things and contains a fixed set of attribute dimensions (e.g.,
color, form) each of which allows for a number of different attribute values (red, green, ...;
round, square, ...). Frames can be nested hierarchically and mutual constraints between at-
tribute dimensions (e.g., between size and weight) can be incorporated. The frame-theoretic
approach is especially interesting for the decomposition of substance concepts into attribu-
tive concepts. Whereas attributive concepts represent features that are volatile in the sense
that one and the same thing can fall under different attributive concepts at different times
(an object may, e.g., change its color, its size or its speed), substance concepts represent
permanent features that govern the identity conditions of objects (a tomato, e.g., ceases to
exist when it no longer falls under the substance concept [tomato] , say, because it has been
mashed). If one now assumes that the attribute values of a frame predominantly are attribu-
tive concepts, each substance concept that corresponds to a category captured by a frame is
likely to be decomposable into the respective attributive concepts.
∗E-mail address: werning@phil.uni-duesseldorf.de
†E-mail address: a.maye@uke.uni-hamburg.de
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When it comes to the neuronal implementation of frames, however, few biologically
realistic models have been proposed yet.1 This paper attempts to compensate this disadvan-
tage and tries to combine frame theory with the theory of neural synchronization (Engel &
Singer, 2001), which has been proposed as a solution to the binding problem. According to
this theory, neurons synchronize their activity if they code properties of the same object and
de-synchronize if they code for different objects. Synchronization, thus, is considered as a
vital mechanism for the binding of property representations into object representations.

In the first half of the paper we will consider the composition of complex attributive
concepts and their neural correlates according to the theory of neural synchronization. An
example is the complex attributive concept [red vertical ], which is composed from the con-
cepts [red ] and [vertical ]. Complex concepts of this kind are usually not lexicalized: There
is, e.g., no syntactically primitive expression for the concept [red vertical ].

In the second half of the paper we will then turn to complex substance concepts. Ac-
cording to frame theory, a substance concept like [elephant] is complex because it can be de-
composed into less complex concepts. A potential decomposition of the concept [elephant]
might not only involve concepts of prototypical properties of elephants, e.g., [animate] ,
[big] , [gray] , but also concepts of prototypical parts of elephants, such as [trunk] , [tusks] ,
[big ears] , [short tail] . Many substance concepts are lexicalized.

A main working hypothesis of ours is that the distinction between primitivity and com-
plexity on the conceptual level corresponds to a distinction between locality and distribut-
edness on the neural level. We thus expect the neural correlates of primitive attributive
concepts (e.g., for color, orientation) to be relatively local. In fact, cortical areas for more
than 30 attribute dimensions could be anatomically located in the monkey (Felleman &
van Essen, 1991). In contrast, the correlates of substance concepts, we assume, are highly
distributed neural states. Substance concepts are thus not expected to be realized by sin-
gle cells – so-called ‘grandmother cells’ (Gross, 2002) – as, e.g., Quian Quiroga, Reddy,
Kreiman, Koch, and Fried (2005) argue, but by cell assemblies that may pertain to highly
distinct parts of the cortex (Hebb, 1949; Wennekers & Palm, 2000).

Another working hypothesis assumes that the mechanism that binds together the dis-
tributed neural activities in the case of complex attributive concepts is the intra-cortical syn-
chronization of the electrical discharges of neurons (Engel, König, Gray, & Singer, 1990)
and that this mechanism can be modeled by oscillatory networks (Schillen & König, 1994)
in a biologically realistic way.

What we envisage is that the mechanism of neural synchronization is general enough
to bind together also the representations of the attribute values for a complex substance
concept within a frame. For this purpose neuronal coherency chains are postulated. In the
case of nested frames – as is relevant, e.g., if the representations of the parts of an object are
integrated in the representation of the object with its parts – a mechanism of hierarchical

1Werning (2005b) explicitly discusses Smolensky’s Integrated Connectionist/Symbolic Architecture
(Smolensky, 1991/1995a, 1995b; Smolensky & Legendre, 2005a, 2005b). Together with Shastri and Ajjana-
gadde’s (1993) it shares some of the advantages of the model proposed in the present paper. However, the main
disadvantage of Smolensky’s as well as Shastri and Ajjanagadde’s models is that they cannot explain how inter-
nal semantic states get empirical content. There is no co-variation relation between internal states and external
content. (see also Fodor & McLaughlin, 1990, and Fodor, 1997, for this line of criticism). This failure is due
to the fact that unlike our model – for a detailed vindication of co-variation see Werning (2005a) – their models
have no perceptual capabilities.
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binding is postulated.

2. Oscillatory Networks

Von der Malsburg’s (1981) supposition that the synchronous oscillation of neuronal re-
sponses constitutes a mechanism that binds the responses of feature specific neurons when
these features are instantiated by the same object has been frequently applied to explain the
integration of distributed responses. Object-related neuronal synchrony has been observed
in numerous cell recording experiments and experiments related to attention, perception
and expectation (reviewed by Singer, 1999). Those data suggest the hypothesis that the
neural basis of object concepts are oscillation functions and that the neural basis of predi-
cate concepts are clusters of feature-specific neurons.

From Gestalt psychology the principles governing object concepts are well known. Ac-
cording to some of the Gestalt principles, spatially proximal elements with similar features
(similar color/similar orientation) are likely to be perceived as one object or, in other words,
represented by one and the same object concept. The Gestalt principles are implemented in
oscillatory networks by the following mechanism: Oscillators that select input from proxi-
mal stimulus elements with like properties tend to synchronize, while oscillators that select
input from proximal stimulus elements with unlike properties tend to de-synchronize. As a
consequence, oscillators selective for proximal stimulus elements with like properties tend
to exhibit synchronous oscillation functions when stimulated simultaneously. This oscil-
lation can be regarded as one object concept. In contrast, inputs that contain proximal
elements with unlike properties tend to cause anti-synchronous oscillations, i.e., different
object concepts.

In our model a single oscillator (Fig. 1a) consists of two mutually coupled excitatory
and inhibitory neurons. They are assigned the variables x and y, which statistically represent
the electrical discharge behavior of a population of 100 to 200 biological cells. Populations
of recurrently coupled excitatory and inhibitory neurons can be found in the primary visual
cortex. Here, excitatory (pyramidal) cells in layers 2 and 3 are tightly coupled to local
inhibitory neurons in layers 2 to 6. If the number of excitatory and inhibitory biological
cells is large enough, the dynamics of each oscillator can be statistically described by the
temporal evolution of the variables x and y according to the following differential equations:

ẋ = −τxx−gy(y)+Lxx
0 gx(x)+ Ix +Nx (1)

ẏ = −τyy+gx(x)− Iy +Ny.

Here, τξ (ξ ∈ {x,y}) are constants that can be chosen to match refractory times of bio-
logical cells. gξ are semi-linear transfer functions chosen to prevent neurons from reaching
saturation:

gξ(x) =

{
mξ(x−θξ) if x > θξ

0 else.
(2)

Lxx
0 describes self-excitation of the excitatory cell population, Iξ are external inputs and Nξ

white noise, which models fluctuation within the cell populations. With Iξ above threshold,
the solutions of (1) are limit-cycle oscillations (Maye, 2003).
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(a) (b)

(c) (d)

Figure 1. Oscillatory network. a) A single oscillator consists of an excitatory (x) and an
inhibitory (y) neuron. Each neuron represents the average activity of a cluster of biological
cells. Lxx

0 describes the self-excitation of the excitatory neuron. Ix and Iy amounts to external
input. b) Synchronizing connections (solid) are realized by mutually excitatory connections
between the excitatory neurons and hold between oscillators within one layer. Desynchro-
nizing connections (dotted) are realized by mutually inhibitory connections between the
inhibitory neurons and hold between different layers. ‘R’ and ‘G’ denote the red and green
channel. The cylinder segments correspond to Hubel and Wiesel’s (1968) columns, whole
cylinders to hypercolumns. c) A module for a single feature dimension (e.g., color) consists
of a three-dimensional topology of oscillators. There is one layer per feature and each layer
is arranged to reflect two-dimensional retinotopic structure. The shaded circles visualize
the range of synchronizing (light gray) and desynchronizing (dark gray) connections of a
neuron in the top layer (black pixel). d) Two coupled feature modules are shown schemat-
ically. The single oscillator in module A has connections to all oscillators in the shaded
region of module B. This schema is applied to all other oscillators and feature modules.
Reprinted from Werning (2005b) and Maye & Werning (2004).

feature module A feature module B

y

x

fe
at

ur
e

layer l-1

r

layer l+1

layer l



The Cortical Implementation of Complex Attribute and Substance Concepts 439

Figure 2. a) Stimulus: one vertical red bar and one horizontal green bar. It was presented to
a network with 32×32×4 oscillators. b) The two stable eigenmodes. The eigenvectors v1
and v2 are shown each in one line. The four columns correspond to the four feature layers.
Dark shading signifies negative, gray zero and light shading positive components. c) The
characteristic functions for the two eigenmodes.

Oscillators are arranged on a three-dimensional grid forming a feature module (Fig. 1c).
Two dimensions represent the spatial domain, while the feature is encoded by the third
dimension. Spatially close oscillators that represent similar properties synchronize. The
desynchronizing connections establish a phase lag between different groups of syn-
chronously oscillating clusters. Synchronizing (resp. de-synchronizing) connections be-
tween two oscillators are realized by mutually excitatory (inhibitory) connections between
the excitatory (inhibitory) neurons of both oscillators (Fig. 1b). Feature modules for differ-
ent feature dimensions, e.g., color and orientation, can be combined by establishing syn-
chronizing connections between oscillators of different modules in case they code for the
same stimulus region (Fig. 1d).

Stimulated oscillatory networks (e.g., by stimulus of Fig. 2a, for other stimuli see Maye
& Werning, 2004), characteristically, show object-specific patterns of synchronized and de-
synchronized oscillators within and across feature dimensions. Oscillators that represent
properties of the same object synchronize, while oscillators that represent properties of
different objects de-synchronize. We observe that for each represented object a certain
oscillation spreads through the network. The oscillation pertains only to oscillators that
represent the properties of the object in question.

3. The Neural Correlate of Complex Attributive Concepts

An oscillation function x(t) of an oscillator is the activity of its excitatory neuron as a
function of time during a time window [0,T ]. Mathematically speaking, activity functions
can be conceived of as vectors in the Hilbert space L2[0,T ] of functions that are square-
integrable in the interval [0,T ]. Thus, a precise measure of synchrony can be established and
a powerful algebraic framework for the semantic interpretation of the network is provided.
The Hilbert space L2[0,T ] has the inner product

〈x(t)|x′(t)〉=
∫ T

0
x(t) x′(t)dt. (3)

The degree of synchrony between two oscillations lies between−1 and +1 and can now
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be defined as

∆(x,x′) =
〈x|x′〉√
〈x|x〉〈x′|x′〉

. (4)

The dynamics of complex systems is often governed by a few dominating states,
the eigenmodes. The corresponding eigenvalues designate how much of the dynamics
is accounted for by that mode. The two stable eigenmodes of a stimulated network are
shown in Fig. 2b.2 The overall dynamics of the network is given by the Cartesian vector
x(t) = (x1(t), ...,xk(t))T that contains the excitatory activities of all k oscillators as compo-
nents. The network state at any instant is considered as a superposition of the temporally
constant, but spatially variant eigenvectors vi weighted by the corresponding spatially in-
variant, but temporally evolving characteristic functions ci(t) of Fig. 2c:

x(t) = ∑ci(t)vi. (5)

The eigenmodes, for any stimulus, can be ordered along their eigenvalues so that each
eigenmode can be signified by a natural number i beginning with 1 for the strongest (vi is
the corresponding eigenvector).

The Hilbert space analysis allows us to interpret the dynamics of oscillatory networks
in semantic terms. Since oscillation functions reliably co-vary with objects, they may be
assigned to some of the individual terms a,b, ...,x,y, ...∈ Ind of a predicate language by the
partial function

α : Ind→ L2[0,T ]. (6)

The sentence a = b expresses a representational state of the system (i.e., the represen-
tation of the identity of the objects denoted by the individual terms a and b) to the degree
the oscillation functions α(a) and α(b) of the system are synchronous. The degree to which
a sentence φ expresses a representational state of the system, for any eigenmode i, can be
measured by the value di(φ) ∈ [−1,+1]. In case of identity sentences we have:

di(a = b) = ∆(α(a),α(b)). (7)

When we take a closer look at the eigenvector of the first eigenmode in Fig. 2b, we see
that most of the vector components are exactly zero (gray shading). However, few com-
ponents in the greenness and the horizontality layers are positive (light shading) and few
components in the redness and the verticality layers are negative (dark shading). We may
interpret this by saying that the first eigenmode represents two objects as distinct from one
another. The representation of the first object is the characteristic function +c1(t) and the
representation of the second object is its mirror image−c1(t) (Because of the normalization
of the ∆-function, only the signs of the eigenvector components matter). These considera-

2Only the stable eigenmodes, i.e. those eigenmodes whose characteristic function does not converge to
zero, will be of concern to us when it comes to semantic interpretation. A related stability constraint has been
proposed recently by Atmanspacher and beim Graben (2005).
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tions justify the following evaluation of non-identity:3

di(¬a = b) =

{
+1 if di(a = b) =−1,
−1 if di(a = b) >−1.

(8)

A great advantage of the eigenmode analysis is that object representations are no longer
identified with the actual oscillatory behavior of neurons, but with the eigenmode-relative
characteristic functions. In this approach the representation of objects does not require
strict synchronization of neural activity over long cortical distances, but tolerates a traveling
phase change as it has been observed experimentally (Eckhorn et al., 2001) as well as in
our network simulation.

Feature layers function as representations of properties and thus can be expressed by
predicates F1, ...,Fp, i.e., to every predicate F a diagonal matrix β(F) ∈ {0,1}k×k can be
assigned such that, by multiplication with any eigenvector vi, the matrix renders the sub-
vector of those components that belong to the feature layer expressed by F. To determine
to which degree an oscillation function assigned to an individual constant a pertains to the
feature layer assigned to a predicate F, we have to compute how synchronous it maximally
is with one of the oscillations in the feature layer. We are, in other words, justified to
evaluate the degree to which a predicative sentence Fa (read: ‘a is F’, e.g., ‘This object is
red’) expresses a representational state of our system, with respect to the eigenmode i, in
the following way (the f j are the components of the vector f):

di(Fa) = max{∆(α(a), f j)|f = ci(t)β(F)vi}. (9)

If one, furthermore, evaluates the conjunction of two sentences φ∧ψ by the minimum of
the value of each conjunct, we may regard the first eigenvector v1 of the network dynamics
resulting from the stimulus in Fig. 2a as a representation expressible by the sentence

This is a red vertical object and that is a green horizontal object.

We only have to assign the individual terms this (= a) and that (= b) to the oscillatory func-
tions −c1(t) and +c1(t), respectively, and the predicates red (= R), green (= G), vertical
(= V) and horizontal (= H) to the redness, greenness, verticality and horizontality layers
as their neuronal meanings. Simple computation then reveals:

d1(Ra∧Va∧Gb∧Hb∧¬a = b) = 1. (10)

Using further methods of formal semantics, the semantic evaluation of sentences has
been extended to sentences comprising disjunction (∨), implication (→), and existential as
well as universal quantifiers (∃,∀). The compositionality of meaning and the composition-
ality of content could be proven (Werning, 2005b). Co-variation with content can always be
achieved if the individual assignment α and the predicate assignment β are chosen to match
the network’s perceptual capabilities. Werning (2003b) extends this approach from an on-
tology of objects to an ontology of events. Werning (2003a) integrates relational concepts

3The negation is sharp: it allows only −1 and +1 as values. In its definition we follow Gödel’s (1932)
intuitionist min-max-system. Double negation digitalizes the semantic value of the original sentence. The
deeper reasons for this choice of the negation lie in systematic considerations concerning the envisaged calculus
and the proof of completeness and compositionality theorems (Werning, 2005a).
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like [in]. All complex attributive concepts that can be expressed by a first order predicate
language with identity are in principle compositionally realizable in our network. We will
now turn to semantically complex substance concepts.

4. Simple Frames and Coherency Chains

Among semanticists still some authors believe that lexical concepts are altogether not de-
composable (e.g., Fodor & Lepore, 1992). According to those so-called atomist positions,
only concepts that are linguistically expressible by syntactically combined expressions can
be complex. In neuroscience, moreover, some authors still hold that substantial features like
that of being an elephant, or even features as particular as that of being my grandmother are
represented by highly specific single neurons (Logothetis & Sheinberg, 1996).

The position we advocate is contrary to those, in two respects: We think that (i) some
lexical substance concepts are decomposable into less complex concepts, and that (ii) the
neural realization of those concepts is distributed over assemblies of neurons and meta-
assemblies thereof. In psychology, philosophy and linguistics various theories have been
proposed to account for the decomposition of concepts. The most prominent ones are: pro-
totype theory (Rosch, Mervis, Gray, Johnson, & Boyes-Braem, 1976), lexical decomposi-
tion grammar (Hale & Keyser, 1993), and frame theory (Barsalou, 1992). For our purposes
a modified version of frame theory seems to be most fruitful.

Frames are defined for a large reference class or domain D of objects and allow for a
categorization therein. Lowest-level frames can be rendered by a matrix with one row per
attribute dimension i and the attribute values Fi j of the respective dimension in the j-th
column:

dimensions

{ color
f orm

brightness
size


red green

round square
light dark
small big


︸ ︷︷ ︸

(11)

values

Relative to a frame, a category or concept C is rendered by a matrix that results from an
assignment of typicality values Ci j (∈ [0,1]) to each attribute value. Ci j tells how typical the
j-th attribute value, regarding the i-th attribute dimension, is for an object that satisfies the
concept C. Relative to the frame shown above, the matrix for the concept [cherry] might,
e.g., look as follows:4 

0.8 0.2
1 0

0.1 0.9
0.9 0.1

 (12)

4Alternatively structured typicality matrices have been proposed, e.g., by Smith, Osherson, Rips, and Keane
(1988). It has been extensively debated whether representations that are based on typicality measures are com-
patible with compositionality constraints (Osherson & Smith, 1981; Kamp & Partee, 1995; Fodor & Lepore,
1996). The authors, with Robbins (2002) and others, believe that they are, but for time and space reasons cannot
enter into this discussion here.
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If we assume that the list of attribute values in each dimension are a partitioning of
domain D, and if we choose an appropriate system of many-valued logic, we can prove the
following inequality for the truth degree d(∈ [−1,+1]) of the existential claim ∃xCx (read:
‘There are C’s’, e.g., ‘There are cherries’):

d(∃xCx)≥ max
π ∈Π

x ∈ D

m
min
i=1

(Ciπ(i)d(Fiπ(i)x)). (13)

Here, C is the predicate expressing the concept C, Π is the set of all variations of the
index j ∈ {1, ...,n} at i-th position in a sequence of length m, where m is the number of
attribute dimensions in the reference frame. For a proof of the inequality see the appendix.

On the right side of the inequality (13) we can directly apply the neuronal interpreta-
tion of the value d(Fi jx), which has already been developed in equation (9). From these
considerations we may infer the following hypothesis about coherency chains:

Hypothesis 1 (Coherency chains). Provided that a concept, relative to a frame, is com-
pletely decomposable into primitive attributive concepts according to its matrix C, the
lowest boundary of the degree to which the network represents an object as an instance
of the concept is given by the strength of the strongest (max) weighted coherency chain
(weights: Ci j) that pertains to layers of neurons selective for the attribute values (Fi j) of
the frame in question. Here, any coherency chain is regarded just as strong as the weak-
est (min) weighted coherence among the activities of the feature-selective neurons involved
(see Fig. 3).

5. Nested Frames and Hierarchical Binding

So far all substance concepts that are analyzable by simple frames can in principle be dealt
with. Their neural correlate can be conceived of as characteristic chains of synchronized ac-
tivity across various feature modules. Long-range synchronization between distributed neu-
ronal populations has been experimentally demonstrated (Engel, König, Kreiter, & Singer,
1991). In fact it has been shown that oscillatory activity may be instrumental for establish-
ing long-range synchronization (König, Engel, & Singer, 1995). Some complex concepts,
however, are not directly decomposable into primitive attributive concepts because their
analysis requires nested frames. This might, e.g., be because the objects of the category in
question have characteristic parts. A frame for animals may, e.g., contain attribute dimen-
sions for head, legs and body. The attribute values for the dimension legs might then be
captured by another frame with attribute dimensions of its own (number, length, orienta-
tion, etc.).

This hierarchy of frames poses a dilemma for the theory of neural synchronization. If
one, on the one hand, were to bind the attribute values of daughter frames to the attribute
values of the mother frame by the overall synchronization of the corresponding feature-
selective neurons, the information to which frame an attribute value belongs would be lost.
If one, on the other hand, were to refrain from binding the attribute values together by some
synchronization mechanism, the information that those attribute values are features of the
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Figure 3. Schematic view of a network that represents an object as a cherry relative to
the frame (11). Each oval represents an attribute dimension that is modeled by a feature
module. Each of the small circles represents an attribute value that corresponds to a layer
of feature(Fi j)-selective neurons. The lines mark the strongest chain of temporally coherent
activity.

Figure 4. Schematic view of the successive composition of the complex concept [traffic-
light] relative to the frame (11). The first row shows the characteristic patterns of temporally
coherent network activity for the concepts of the object parts. A higher-order binding mech-
anism stepwise composes the concept of the whole object from the concepts of its parts.
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Figure 5. a) Stimulus: a red manikin with horizontally spread arms. b) The eigenvectors of
the first three eigenmodes. v1 represents the manikin’s body as a single object. v2 represents
two parts of the body as distinct objects: the head (white) and the pair of arms (black). v3
distinguishes between the body’s upper (head plus arms) and lower part (belly plus legs).
c) The characteristic functions of the three eigenmodes. c1(t), which represents the whole
body, is an envelope of the representations of the body parts ±c2/3(t). d) Power spectra of
the three characteristic functions.

parts of one and the same object would not be preserved. To illustrate this dilemma, take,
e.g., an animal with long, vertically oriented legs and a small horizontally oriented body,
say a flamingo. You can’t simply represent the flamingo by synchronizing neurons for the
features long, vertical, small and horizontal. But you can’t either assume that there is no
binding mechanism between the features of the legs and those of the body. For, how do you
then represent the fact that legs and body belong to the same object?

What is in need to escape the dilemma obviously is a mechanism of hierarchical binding
as schematically shown in Fig. 4. To explore this option, we stimulated our network with
a complex figure: a red manikin (Fig. 5a). The first eigenmode represents the stimulus as
one object, while the second and third eigenmode represent parts of the object (head, arms,
belly, legs) as distinct from each other (Fig. 5b). A look at the characteristic functions of
Fig. 5c reveals an interesting fact: The representation of the whole object, i.e., the first char-
acteristic function, contains the second and third characteristic function in an envelope-like
way. In the frequency spectra of the characteristic functions (Fig. 5d) one recognizes that
they are made up of the same frequencies, although their temporal correlation measured by
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the ∆-function is close to zero. One might hence hypothesize that the envelope-like relation
as well as the exploitation of the same frequencies might provide a hierarchical binding
mechanism consistent with the theory of neural synchronization. Further investigation is
needed here.

6. Conclusion

Both, complex attributive concepts as well as substance concepts that can be directly com-
posed from attributive concepts can be modeled by oscillatory networks in a biologically
realistic way. With regard to the latter, coherency chains are required. Further research
needs to be done to account for substance concepts that decompose into concepts of parts.
Here, mechanisms of hierarchical binding are postulated. Frame theory and the theory of
neural synchronization may be combined to identify the neural correlate of complex con-
cepts.
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Appendix

To prove the inequality (13), we will first turn to the case of classical first order logic
and will afterwards give a semantic interpretation in a many-valued system. We make the
following assumptions:

1. On a given domain D there are i = 1, ...,m attribute dimensions (color, size, form,
etc.), such that the content of a substance concept is uniquely determined by the
values in those attribute dimensions.

2. For each attribute dimension i, there is a symmetric and reflexive (but not necessarily
transitive) relation 'i of comparison with the interpretation: x 'i y if and only if x
is the same as y with respect to the attribute dimension i (Example: x has the same
color/size/form as y).

3. For each attribute dimension i, we have a class of values Fi1, ..,Fin(i) (e.g., red, green,
blue, yellow, white, black in the dimension of color) whose extensions are a partition-
ing of the domain.

We may now use assumption 2 for each attribute dimension i to define a functional con-
cept Bi that maps any substance concept C to the property of being alike with the instances
of C in the respective attribute dimension. Using the λ-operator for abstraction we get:

Bi(C) = λx(∃y (x'i y∧Cy)). (14)
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Example: If C denotes the set of cherries and i marks the attribute color, then Bi(C) denotes
the set of all things in the domain that have the color of some cherries.

Assumption 1 allows us to say that the content of a substance concept is fully deter-
mined by the values of all m functional concepts:

Cx↔
m∧

i=1

Bi(C)x. (15)

Example: Cherries are exactly those things that have the color, size, form, etc. of
cherries.

Assumption 3, finally, justifies us to presuppose that every object x of the domain ex-
emplifies some value in each attribute dimension. I.e., for each i, we have:

n(i)∨
j=1

Fi jx. (16)

Example: Everything has some color, i.e., it is red, green, blue, yellow, white, or black (if
those are all possible values in the dimension of color; colorless and varicolored might be
adopted as further values if one wishes to).

To simplify the notation, we will assume that the number of values n(i) in all attribute
dimensions i be the same. To achieve this, we may set

n =
m

max
i=1

n(i) (17)

and introduce empty predicates Fi j such that the denotation of Fi j is ∅ if j > n(i).
We can now derive the following bi-conditional (‘→’ by conjunction of premise (16);

‘←’ by simplification), for each i:

Bi(C)x↔ (
n∨

j=1

Fi jx)∧Bi(C)x. (18)

By insertion of (18) in (15) we get:

Cx↔
m∧

i=1

((
n∨

j=1

Fi jx)∧Bi(C)x). (19)

The distribution of the conjunction into the disjunction leads to:

Cx↔
m∧

i=1

n∨
j=1

(Fi jx∧Bi(C)x). (20)

Since p∧q is equivalent to p∧ (p→ q) we may derive:

Cx↔
m∧

i=1

n∨
j=1

(Fi jx∧ (Fi jx→ Bi(C)x)). (21)
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Let Π now be the set of all functions π : {1, ...,m} → {1, ...,n}, i.e., the set of all nm vari-
ations of m-ary sequences from the index set {1, ...,n}. Then the law of distributivity (out-
multiplication of the disjunction) allows us to infer:

Cx↔
∨

π∈Π

m∧
i=1

(Fiπ(i)x∧ (Fiπ(i)x→ Bi(C)x)). (22)

Existential generalization on both sides of the bi-conditional yields:

∃xCx↔∃x
∨

π∈Π

m∧
i=1

(Fiπ(i)x∧ (Fiπ(i)x→ Bi(C)x)). (23)

The first order sentence (23) can be semantically evaluated in Gödel’s (1932) many-valued
intuitionist min-max system that we have already chosen to interpret the first order sen-
tences (7) to (10) of the main text. In the Gödel system the disjunction is evaluated as the
maximum of the truth-degrees of the disjuncts. The conjunction comes to the minimum
of the truth-degrees of the conjuncts. The existential quantifier, finally, is evaluated as the
supremum over the domain (Gottwald, 2001):

d(∃xCx) = sup
x∈D

d(Cx). (24)

The semantic interpretation of sentence (23) thus is:

d(∃xCx) = sup
x∈D

max
π∈Π

m
min
i=1

min{d(Fiπ(i)x),d(Fiπ(i)x→ Bi(C)x)}. (25)

According to the main text, a substance concept expressed by the predicate C is rendered
by a matrix of typicality values Ci j. Those values tell how typical the j-th attribute value
is for instances of C with respect to the i-th attribute dimension. It is possible to conceive
of typicality as the truth degree of some fuzzy-valued implication, e.g.: Red is typical
for tomatoes to the degree it is true that red things have the color of tomatoes. We will
henceforth define typicality in precisely this manner:5

Ci j =

{
d(Fi jx→ Bi(C)x) if d(Fi jx→ Bi(C)x) > 0
0 else.

(26)

We assume that the truth-degree of the conditional is independent of the choice of x.
Inserting the typicality value in (25) we arrive at:6

d(∃xCx) = sup
x∈D

max
π∈Π

m
min
i=1

min{d(Fiπ(i)x),Ciπ(i)}. (27)

5We cut the range of values at 0 to avoid negative typicality values. Other typicality measures are discussed,
e.g., by Smith et al. (1988).

6Cutting off potential negative truth degress for Fi jx→ Bi(C)x does not imperil the equality because the
least possible value for any predicative sentence Fiπ(i)x in the semantics of the main paper is 0, itself.
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Since the supremum of a set is always greater or equal to the maximum of the set and
the minimum of two numbers in the interval [0,1] is always greater or equal to their product,
we can finally derive the inequality of the main text:

d(∃xCx)≥ max
π ∈Π

x ∈ D

m
min
i=1

Ciπ(i)d(Fiπ(i)x). (28)

Remark: Instead of the disjunction (16), one may prefer to capture the partioning condition
of assumption 3 in a many valued system semantically by a sum:

n(i)

∑
j=1

d(Fi jx) = 1. (29)

Provided that the truth-degrees are transposed to range from 0 to 1,

n(i)

∑
j=1

d(Fi jx)≥ 1 (30)

may be taken to express the exhaustivity of a class of fuzzy sets, whereas

n(i)

∑
j=1

d(Fi jx)≤ 1 (31)

may replace the classical exclusivity condition.
With equation (29), the proof must be slightly altered, but leads to the same result.

Instead of sentence (19), one then semantically has:

d(Cx) =
m

min
i=1

min{(
n

∑
j=1

d(Fi jx)),d(Bi(C)x)}. (32)

Now the sum of some non-negative real numbers is always greater or equal to their
maximum. We thus may derive the inequality:

d(Cx)≥
m

min
i=1

min{( n
max
j=1

d(Fi jx)),d(Bi(C)x)}. (33)

And distributivity gives us:

d(Cx)≥
m

min
i=1

n
max
j=1

min{d(Fi jx),d(Bi(C)x)}. (34)

The right side of this inequality, however, is just the semantic value of the right side of
sentence (20). Due to the parallelism of the lattice properties of the min-max-algebra and
the ∧-∨-algebra, one may from here on proceed as shown above, being aware that one has
turned from equation to inequality a couple of steps earlier.
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