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Abstract

The paper combines frame theory with the theory of
neural synchronization. It introduces oscillatory net-
works as a model for the realization of complex attribute
and substance concepts in the cortex. The network has
both perceptual and semantic capabilities. Coherency
chains and hierarchical binding mechanisms are postu-
lated.

Introduction
Frame theory provides us with a universal account not
only for the psychology of categorization, but also for the
decomposition of concepts. A frame is defined for a large
domain of things and contains a fixed set of attribute
dimensions each of which allows for a number of differ-
ent attribute values. Frames can be nested hierarchi-
cally and mutual constraints between attribute dimen-
sions can be incorporated (Barsalou, 1992). The frame-
theoretic approach is especially interesting for the de-
composition of substance concepts into attributive con-
cepts. Whereas attributive concepts represent features
that are volatile in the sense that one and the same thing
can fall under different attributive concepts at different
times (an object may, e.g., change its color, its size or
its speed), substance concepts represent permanent fea-
tures that govern the identity conditions of objects (a
tomato, e.g., ceases to exist when it no longer falls un-
der the substance concept [tomato], say, because it has
been mashed). If one now assumes that the attribute
values of a frame themselves predominantly are attribu-
tive concepts, each substance concept that corresponds
to a category captured by a frame is likely to be decom-
posable into the respective attributive concepts.

When it comes to the neuronal implementation of
frames, however, no biologically realistic models have
been proposed yet. This paper attempts to compen-
sate this disadvantage and tries to combine frame the-
ory with the theory of neural synchronization (Engel &
Singer, 2001), which has been developed as a solution to
the binding problem. According to this theory, neurons
synchronize their activity if they code properties of the
same object and de-synchronize if they code for different
objects. Synchronization, thus, is considered as a vital
mechanism for the binding of property representations
into object representations.

In the first half of the paper we will consider the com-
position of complex attributive concepts and their neural

correlates according to the theory of neural synchroniza-
tion. An example is the complex attributive concept
[red vertical], which is composed from the concepts [red]
and [vertical]. Complex concepts of this kind are usually
not lexicalized: There is, e.g., no syntactically primitive
expression for the concept [red vertical].

In the second half of the paper we will then turn to
complex substance concepts. According to frame theory,
a substance concept like [elephant] is complex because
it can be decomposed into less complex concepts. A po-
tential decomposition of the concept [elephant] might
not only involve concepts of prototypical properties of
elephants, e.g., [animate], [big], [gray], but also con-
cepts of prototypical parts of elephants, such as [trunk],
[tusks], [big ears], [short tail]. Many substance concepts
are lexicalized.

A main working hypothesis of ours is that the distinc-
tion between primitivity and complexity on the concep-
tual level corresponds to a distinction between locality
and distributivity on the neural level. We thus expect
the neural correlates of primitive attributive concepts
(e.g., for color, orientation) to be relatively local. In fact,
cortical areas for about 30 attribute dimensions could be
anatomically located in the monkey (Felleman & van Es-
sen, 1991). In contrast, the correlates of substance con-
cepts, we assume, are highly distributed neural states.
Substance concepts are thus not expected to be realized
by single cells – so-called grandmother cells – but by cell
assemblies that may pertain to highly distinct parts of
the cortex.

Another working hypothesis assumes that the mech-
anism that binds together the distributed neural activ-
ities in the case of complex attributive concepts is the
intra-cortical synchronization of the electrical discharges
of neurons (Engel, König, Gray, & Singer, 1990) and that
this mechanism can be modelled by oscillatory networks
(Schillen & König, 1994) in a biologically realistic way.

What we envisage is that the mechanism of neural syn-
chronization is general enough to bind together also the
representations of the attribute values for a complex sub-
stance concept within a frame. For this purpose neuronal
coherence chains are postulated. In the case of nested
frames – as is relevant, e.g., if the representations of the
parts of an object are integrated in the representation of
the object with its parts – a mechanism of hierarchical
binding is postulated.
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Figure 1: a) A single oscillator consists of an excitatory (x) and an inhibitory (y) neuron. Each neuron represents
the average activity of a cluster of biological cells. Lxx

0 describes the self-excitation of the excitatory neuron. Ix and
Iy amounts to external input. b) Synchronizing connections (solid) are realized by mutually excitatory connections
between the excitatory neurons and hold between oscillators within one layer. Desynchronizing connections (dotted)
are realized by mutually inhibitory connections between the inhibitory neurons and hold between different layers.
‘R’ and ‘G’ denote the red and green channel. The scheme applies to further neighbors and the remaining channels
as well. c) Feature module: Oscillators are arranged in a 3D-topology. The shaded circles visualize the range of
synchronizing (light gray) and desynchronizing (dark gray) connections of a neuron in the top layer (black pixel).
There are no interactions between oscillators within a column.

Oscillatory Networks

Von der Malsburg’s (1981) supposition that the syn-
chronous oscillation of neuronal responses constitutes a
mechanism that binds the responses of feature specific
neurons when these features are instantiated by the same
object has been frequently applied to explain the integra-
tion of distributed responses. Object-related neuronal
synchrony has been observed in numerous cell record-
ing experiments and experiments related to attention,
perception and expectation (reviewed by Singer, 1999).
Those data suggest the hypothesis that the neural basis
of object concepts are oscillation functions and that the
neural basis of predicate concepts are clusters of feature-
specific neurons.

From Gestalt psychology the principles governing ob-
ject concepts are well known. According to two of the
Gestalt principles, spatially proximal elements with sim-
ilar features (similar color/ similar orientation) are likely
to be perceived as one object or, in other words, repre-
sented by one and the same object concept. The Gestalt
principles are implemented in oscillatory networks by
the following mechanism: Oscillators that select input
from proximal stimulus elements with like properties
tend to synchronize, while oscillators that select input
from proximal stimulus elements with unlike properties
tend to de-synchronize. As a consequence, oscillators
selective for proximal stimulus elements with like prop-
erties tend to exhibit synchronous oscillation functions
when stimulated simultaneously. This oscillation can be
regarded as one object concept. In contrast, inputs that
contain proximal elements with unlike properties tend to
cause anti-synchronous oscillations, i.e., different object
concepts.

In our model a single oscillator consists of two mutu-
ally coupled excitatory and inhibitory neurons, which
represent a population of 100 to 200 biological cells
(Fig. 1). Populations of recurrently coupled excitatory
and inhibitory neurons can be found in primary visual
cortex. Here, excitatory (pyramidal) cells in layers 2 and

3 are tightly coupled to local inhibitory neurons in lay-
ers 2 to 6. If the number of excitatory and inhibitory
biological cells is large enough, the dynamics of each os-
cillator can be described by two variables x and y. They
evolve over time according to the following differential
equations:

ẋ = −τxx− gy(y) + Lxx
0 gx(x) + Ix +Nx (1)

ẏ = −τyy + gx(x)− Iy +Ny.

Here, τξ (ξ ∈ {x, y}) are constants that can be chosen to
match refractory times of biological cells, gξ are trans-
fer functions, Lxx

0 describes self-excitation of the excita-
tory cell population, Iξ are external inputs and Nξ white
noise, which models fluctuation within the cell popula-
tions. With Iξ above threshold, the solutions of (1) are
limit-cycle oscillations (Maye & Werning, 2004).

Oscillators are arranged on a three-dimensional grid
forming a feature module. Two dimensions represent the
spatial domain, while the feature is encoded by the third
dimension. Spatially close oscillators that represent sim-
ilar properties synchronize. The desynchronizing con-
nections establish a phase lag between different groups
of synchronously oscillating clusters. Feature modules
for different feature dimensions, e.g., color and orien-
tation, can be combined by establishing synchronizing
connections between oscillators of different modules in
case they code for the same stimulus region.

Stimulated oscillatory networks (e.g., by stimulus of
Fig. 2a, for other stimuli see Maye & Werning, 2004),
characteristically, show object-specific patterns of syn-
chronized and de-synchronized oscillators within and
across feature dimensions. Oscillators that represent
properties of the same object synchronize, while oscil-
lators that represent properties of different objects de-
synchronize. We observe that for each represented object
a certain oscillation spreads through the network. The
oscillation pertains only to oscillators that represent the
properties of the object in question.



Figure 2: a) Stimulus: one vertical red bar and one horizontal green bar. It was presented to a network with
32× 32× 4 oscillators. b) The two stable eigenmodes. The eigenmodes v1 and v2 are shown each in one line. The
four columns correspond to the four feature layers. Dark shading signifies negative, gray zero and light shading
positive components. c) The characteristic functions for the two eigenmodes.

The Neural Correlate of Complex
Attributive Concepts

An oscillation function x(t) of an oscillator is the activ-
ity of its excitatory neuron as a function of time during
a time window [0, T ]. Mathematically speaking, activ-
ity functions are vectors in the Hilbert space L2[0, T ] of
functions that are square-integrable in the interval [0, T ].
This space has the inner product

〈x(t)|x′(t)〉 =
∫ T

0

x(t) x′(t)dt. (2)

The degree of synchrony between two oscillations lies
between −1 and +1 and is defined as

∆(x, x′) =
〈x|x′〉√

〈x|x〉〈x′|x′〉
. (3)

From synergetics it is well known that the dynamics of
complex systems is often governed by a few dominat-
ing states, the eigenmodes. The corresponding eigenval-
ues designate how much of the variance is accounted for
by that mode. The two stable eigenmodes of a stimu-
lated network are shown in Fig. 2b. The overall dynam-
ics of the network is given by the Cartesian vector x(t)
that contains the excitatory activities of all oscillators
as components. The network state at any instant is con-
sidered as a superposition of the temporally constant,
but spatially variant eigenmodes vi weighted by the cor-
responding spatially invariant, but temporally evolving
characteristic functions ci(t) of Fig. 2c:

x(t) =
∑

ci(t)vi. (4)

The eigenmodes, for any stimulus, can be ordered along
their eigenvalues so that each eigenmode can be signified
by a natural number i beginning with 1 for the strongest.

The Hilbert space analysis allows us to interpret the
dynamics of oscillatory networks in semantic terms.
Since oscillation functions reliably co-vary with objects,
they may be assigned to some of the individual terms
a,b, ..., x, y, ... of a predicate language by the partial
function α.

The sentence a = b expresses a representational state
of the system (i.e., the representation of the identity of
the objects denoted by the individual terms a and b)
to the degree the oscillation functions α(a) and α(b)
of the system are synchronous. The degree to which a
sentence φ expresses a representational state of the sys-
tem, for any eigenmode i, can be measured by the value
di(φ) ∈ [−1,+1]. In case of identity sentences we have:

di(a = b) = ∆(α(a), α(b)). (5)

When we take a closer look at the first eigenmode of
Fig. 2b, we see that most of the vector components are
exactly zero (gray shading). However, few components
in the greenness and the horizontality layers are positive
(light shading) and few components in the redness and
the verticality layers are negative (dark shading). We
may interpret this by saying that the first eigenmode
represents two objects as distinct from one another. The
representation of the first object is the positive charac-
teristic function +c1(t) and the representation of the sec-
ond object is the negative characteristic function −c1(t)
(Because of the normalization of the ∆-function, only
the signs of the eigenmode components matter). These
considerations justify the following evaluation of non-
identity:

di(¬a = b) =

{
+1 if di(a = b) = −1,
−1 if di(a = b) > −1. (6)

A great advantage of the eigenmode analysis is that ob-
ject representations are no longer identified with the
actual oscillatory behavior of neurons, but with the
eigenmode-relative characteristic functions. In this ap-
proach the representation of objects does not require
strict synchronization of neural activity over long cor-
tical distances, but tolerates a travelling phase change
as it has been observed experimentally (Eckhorn et al.,
2001) as well as in our network simulation.

Feature layers function as representations of properties
and thus can be expressed by predicates F1, ...,Fp, i.e.,
to every predicate F a diagonal matrix β(F) ∈ {0, 1}k×k

can be assigned such that, by multiplication with any
eigenmode vector vi, the matrix renders the sub-vector



of those components that belong to the feature layer ex-
pressed by F. To determine to which degree an oscilla-
tion function assigned to an individual constant a per-
tains to the feature layer assigned to a predicate F, we
have to compute how synchronous it maximally is with
one of the oscillations in the feature layer. We are, in
other words, justified to evaluate the degree to which a
predicative sentence Fa (read: ‘a is F’, e.g., ‘This object
is red’) expresses a representational state of our system,
with respect to the eigenmode i, in the following way:

di(Fa) = max{∆(α(a), fj)|f = ci(t)β(F)vi}. (7)

If one, furthermore, evaluates the conjunction of two
sentences φ ∧ ψ by the minimum of the value of each
conjunct, we may regard the first eigenmode v1 of the
network dynamics resulting from the stimulus in Fig. 2a
as a representation expressible by the sentence

This is a red vertical object and that is a green hor-
izontal object.

We only have to assign the individual terms this (= a)
and that (= b) to the oscillatory functions −c1(t) and
+c1(t), respectively, and the predicates red (= R), green
(= G), vertical (= V) and horizontal (= H) to the red-
ness, greenness, verticality and horizontality layers as
their neuronal meanings. Simple computation then re-
veals:

d1(Ra ∧Va ∧Gb ∧Hb ∧ ¬a = b) = 1. (8)

Using further methods of formal semantics, the seman-
tic evaluation of sentences has been extended to sen-
tences comprising disjunction (∨), implication (→), and
existential as well as universal quantifiers (∃,∀). The
compositionality of meaning and the compositionality of
content could be proven (Werning, 2005). Co-variation
with content can always be achieved if the assignments α
and β are chosen to match the network’s perceptual ca-
pabilities. Werning (2003b) extends this approach from
an ontology of objects to an ontology of events. Wern-
ing (2003a) integrates relational concepts like [in]. All
complex attributive concepts that can be expressed by a
first order predicate language with identity are in prin-
ciple compositionally realizable in our network. We will
now turn to semantically complex substance concepts.

Simple Frames and Coherency Chains
Among semanticists still some authors believe that no
lexical concepts are decomposable (e.g., Fodor & Lep-
ore, 1992). According to those so-called atomist posi-
tions, only concepts that are linguistically expressible
by syntactically combined expressions can be complex.
In neuroscience, moreover, some authors still hold that
substantial features like that of being an elephant, or
even features as particular as that of being my grand-
mother are represented by highly specific single neurons
(Logothetis & Sheinberg, 1996).

The position we advocate is contrary to those, in two
respects: We think that (i) some lexical substance con-
cepts are decomposable into less complex concepts, and

Figure 3: Schematic view of a network that represents an
object as a cherry relative to the frame 9. Each oval rep-
resents an attribute dimension that is modelled by a fea-
ture module. Each of the small circles represents an at-
tribute value that corresponds to a layer of feature(Fij)-
selective neurons. The lines mark the strongest chain of
temporally coherent activity.

that (ii) the neural realization of those concepts is dis-
tributed over assemblies of neurons and meta-assemblies
thereof. In psychology, philosophy and linguistics var-
ious theories have been proposed to account for the
decomposition of concepts. The most prominent ones
are: prototype theory (Rosch, Mervis, Gray, Johnson,
& Boyes-Braem, 1976), lexical decomposition grammar
(Hale & Keyser, 1993), and frame theory (Barsalou,
1992). For our purposes a modified version of frame
theory seems to be most fruitful.

Frames are defined for large reference classes G of ob-
jects and allow for a categorization therein. Lowest-level
frames can be rendered by a matrix with one row per
attribute dimension (i) and the attribute values Fij of
the respective dimension in the j-th column:

dimensions

{ color
form

brightness
size


red green
round square
light dark
small big


︸ ︷︷ ︸

(9)

values

Relative to a frame, a category or concept C is rendered
by a matrix that results from an assignment of typical-
ity values Cij (∈ [0, 1]) to each attribute value. Cij tells
how typical the j-th attribute value, regarding the i-th
attribute dimension, is for an object that satisfies the
concept C. Relative to the frame shown above, the ma-
trix for the concept [cherry] might, e.g., look as follows:

0.8 0.2
1 0

0.1 0.9
0.9 0.1

 (10)

If we assume that the list of attribute values in each
dimension are a partitioning of the reference class G,
and if we choose an appropriate system of many-valued
logic, we can prove the following inequality for the fuzzy
value d(∈ [−1,+1]) of the existential claim ∃xCx (read:



‘There are C’s’, e.g., ‘There are cherries’):

d(∃xCx) ≥ max
π ∈ Π
x ∈ G

n
min
i=1

(Ciπ(i)d(Fiπ(i)x)). (11)

Here, C is the predicate expressing the concept C, Π is
the set of all variations of the index j at i-th position in a
sequence of length n, where n is the number of attribute
dimensions in the reference frame.

To the result of equation 11 we can directly apply
the neuronal interpretation of the value d(Fijx), which
has already been developed in equation 7. From these
considerations we may infer the following hypothesis:
Hypothesis 1 (Coherency chains). Provided that a
concept, relative to a frame, is completely decomposable
into primitive attributive concepts according to its matrix
C, the lowest boundary of the degree to which the net-
work represents an object as an instance of the concept
is given by the strength of the strongest (max) weighted
coherency chain (weights: Cij) that pertains to layers
of neurons selective for the attribute values (Fij) of the
frame in question. Here, any coherency chain is regarded
just as strong as the weakest (min) weighted coherence
among the activities of the feature-selective neurons in-
volved (see Fig. 3).

Nested Frames and Hierarchical Binding
So far all substance concepts that are analyzable by sim-
ple frames can in principle be dealt with. Their neu-
ral correlate can be conceived of as characteristic chains
of synchronized activity across various feature modules.
Long-range synchronization between distributed neu-
ronal populations has been experimentally demonstrated
(Engel, König, Kreiter, & Singer, 1991). In fact it has
been shown that oscillatory activity may be instrumental
for establishing long-range synchronization (König, En-
gel, & Singer, 1995). Some complex concepts, however,
are not directly decomposable into primitive attributive
concepts because their analysis requires nested frames.
This might, e.g., be because the objects of the category
in question have characteristic parts. A frame for an-
imals may, e.g., contain attribute dimensions for head,
legs and body. The attribute values for the dimension
legs might then be captured by another frame with at-
tribute dimensions of its own (number, length, orienta-
tion, etc.).

This hierarchy of frames poses a dilemma for the the-
ory of neural synchronization. If one, on the one hand,
were to bind the attribute values of daughter frames to
the attribute values of the mother frame by the over-
all synchronization of the corresponding feature-selective
neurons, the information to which frame an attribute
value belongs would be lost. If one, on the other hand,
were to refrain from binding the attribute values to-
gether by some synchronization mechanism, the informa-
tion that those attribute values are features of the parts
of one and the same object would not be preserved. To
illustrate this dilemma, take, e.g., an animal with long,
vertically oriented legs and a small horizontally oriented
body, say a flamingo. You can’t simply represent the

Figure 4: Schematic view of the successive composition
of the complex concept [traffic-light ] relative to the frame
9. The first row shows the characteristic patterns of
temporally coherent network activity for the concepts
of the object parts. A higher-order binding mechanism
stepwise composes the concept of the whole object from
the concepts of its parts.

flamingo by synchronizing neurons for the features long,
vertical, small and horizontal. But you can’t either as-
sume that there is no binding mechanism between the
features of the legs and those of the body. For, how do
you then represent the fact that legs and body belong to
the same object?

What is in need to escape the dilemma obviously is
a mechanism of hierarchical binding as schematically
shown in Fig. 4. To explore this option, we stimu-
lated our network with a complex figure: a red manikin
(Fig. 5a). The first eigenmode represents the stimulus as
one object, while the second and third eigenmode rep-
resent parts of the object (head, arms, belly, legs) as
distinct from each other (Fig. 5b). A look at the charac-
teristic functions of Fig. 5c reveals an interesting fact:
The representation of the whole object, i.e., the first
characteristic function, contains the second and third
characteristic function as an envelope. In the frequency
spectra of the characteristic functions (Fig. 5d) one rec-
ognizes that they are made up of the same frequencies,
although their temporal correlation measured by the ∆-
function is close to zero. One might hence hypothesize
that the envelope relation as well as the exploitation of
the same frequencies might provide a hierarchical bind-
ing mechanism consistent with the theory of neural syn-
chronization.

Conclusion

Both, complex attributive concepts as well as substance
concepts that can be directly composed from attributive
concepts can be modelled by oscillatory networks in a
biologically realistic way. With regard to the latter, co-
herency chains are required. Further research needs to be
done to account for substance concepts that decompose
into concepts of parts. Here, mechanisms of hierarchical
binding are postulated. Frame theory and the theory of
neural synchronization may be combined to identify the
neural correlate of complex concepts.



Figure 5: a) Stimulus: a red manikin with horizontally spread arms. b) The first three eigenmodes. v1 represents
the manikin’s body as a single object. v2 represents two parts of the body as distinct objects: the head (white) and
the pair of arms (black). v3 distinguishes between the body’s upper (head plus arms) and lower part (belly plus
legs). c) The characteristic functions of the three eigenmodes. c1(t), which represents the whole body, is an envelope
of the representations of the body parts ±c2/3(t). d) Power spectra of the three characteristic functions.
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