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Universitätsstrasse 1, D-40225, D¨usseldorf

Abstract

Using two different models of oscillatory activity in the primary visual cortex, we
analyze the synchronization properties of the networks by an eigenmode decomposi-
tion. Both models use clusters of feature-sensitive neurons representing local object
properties like color and orientation. Whereas in the mean-field model oscillators
communicate via their current amplitude, in the phase model oscillator interaction was
controlled by phase difference. In both cases, eigenmode analysis decomposes the
complex synchronization patterns into a time-invariant, spatial component, the eigen-
modes, and characteristic functions describing their weight in network state over time.
We find that characteristic functions can be associated with representations of objects
in a visual scene, and eigenmodes represent different epistemic possibilities.

1. Introduction

Synchronization of neuronal activity is a recurring phenomenon in experiments analyzing
cortical activity. In a basic explanation for a functional role it is seen as a mechanism for
binding the responses of distributed neuronal populations responding to different properties
of a visual stimulus (von der Malsburg, 1981; Gray et al., 1989; Engel et al., 1990). It can
dynamically establish relations between neuronal populations (Singer, 1999), obviating the
need for a combinatorially prohibitive number of specialized neurons (‘grandmother cells’)
representing all possible feature combinations in visual stimuli.

Despite the experimental evidence for the relevance of neuronal synchronization in gen-
erating perceptual states (Fries et al., 1997; Engel et al., 1999; Bhattacharya et al., 2001),
the particular mechanisms still have to be revealed. In regard to perceptual binding of vi-
sual stimuli it is assumed that neurons responding to the shape and other properties of the
same object tend to synchronize their activity while the activity of neurons activated by
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different objects remains uncorrelated. However, objects consisting of characteristic parts
pose a dilemma for this simple binding mechanism. If synchronization is used to bind the
properties within each of the object’s parts it cannot be used at the same time to bind the
parts into a holistic perception of the object. Otherwise different assignments of the same
set of properties to the object parts would not generate different object representations. For
example, a brown cow with white legs would be indistinguishable from a white cow with
brown legs.

In an accompanying article by Werning and Maye and in (Werning & Maye, 2005)
we show how this dilemma can be overcome by looking at synchronization as a mecha-
nism for implementing frame theory. Here we analyze the temporal properties of a neural
network using eigenmode decomposition. We argue that eigenmodes reflect different inter-
pretations of a stimulus. The characteristic functions associated with each eigenmode can
serve as object representations which take into account hierarchical relations between the
different parts of a stimulus. Computing eigenmodes and characteristic functions yields a
decomposition of oscillatory network dynamics into a spatial and a temporal component,
respectively. Based on these components, in (Werning, 2005) a first order predicate lan-
guage with identityPL= has been developed to show in detail how oscillatory networks
can fully implement the semantics of concepts. There it was concluded that clusters of
synchronously activated cells can be interpreted as compositionally structured conceptual
representations of visual scenes.

The explanatory power of the eigenmodes relies on the simultaneous analysis of a large
number of neurons or neuronal populations. Currently, accordant experimental data are
scarce. We therefore used two different models to simulate neuronal oscillatory networks.
The mean-field model is biologically inspired and consistent with experimental findings on
neuronal synchrony. By reducing this model to its basic functional principles we arrived at
a network of phase coupled oscillators producing qualitatively the same results.

The next section describes the models in detail. Section 3. explains eigenmode analysis,
followed by a presentation of simulations and results in section 4.. The eigenmodes are
interpreted and conclusions are drawn in section 5..

2. Network Models

2.1. Mean-Field Model

The state variables in this model describe the average activity of a small population (≈
100. . .200) of spatially proximal and physiologically similar biological neurons. Wilson
and Cowan (1972) showed that two recurrently connected populations, one of excitatory
and the other of inhibitory neurons, can generate stable limit cycle oscillations. In the
following time, networks of coupled oscillators have been used to model multidimensional
feature binding (Schillen & König, 1994), contour integration and enhancement (Li, 2000),
and odor recognition (Li & Hertz, 2000).

Equations describing the dynamics of a single oscillator have been derived using mean-
field theory (Wilson & Cowan, 1972; Schuster & Wagner, 1990). Our model focuses on
the interaction between coupled oscillators and does not use a mean-field approach in the
strict sense. To distinguish this model which is based on equations derived by a mean-
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field approach from the phase-coupled oscillator model in the next section, we will call it
mean-field model.

In detail, the dynamics of a single oscillator (see Fig. 1a) with lateral coupling to other
oscillators is given by:

τxẋi = −xi −gy(yi)+J0gx(xi)+∑
j

Ji jgx(x j)+hi +ηx (1a)

τyẏi = −yi +gx(xi)−∑
j

Wi jgy(y j)+ηy. (1b)

The activity of the excitatory and the inhibitory populations is denoted byx and y,
respectively.Ji j describes the coupling strength between the excitatory populations of os-
cillator i and j. Accordingly,Wi j is the coupling between inhibitory populations.J0 models
local self-excitation,η is white noise, and time constantsτ can be used to match refractory
times of biological neurons.

For the transfer functionsgα,α ∈ {x,y}, typically sigmoidal functions are used. The
saturation property of this function prevents diverging network activity. Reaching saturating
activity, however, would be disadvantageous for the neurons from a metabolistic viewpoint.
In order to show that non-divergent network dynamics is possible without saturating activity
we used semi-linear transfer functions with threshold,

gα(x) =

{
mα(x−θα) if x > θα

0 else
. (2)

Conditions for non-divergent network activity have been derived analytically by Wers-
ing et al. (2001).

The external inputhi was used to represent the output of feature-sensitive neurons in
the visual pathway. Oscillators receiving unimodal feature information of a visual stimulus
constitute a feature module. Within a feature module oscillators are arranged on a three-
dimensional grid. Neurons within a single layer respond to the same feature value at the
respective location in the visual field. Different layers respond to different feature values of
the same modality.

Figure 1b shows the coupling scheme. Neighboring oscillators in a layer have con-
nections between their excitatory neurons. These connections reduce phase differences
between coupled oscillators, thereby synchronizing their activity. Neighboring oscillators
in different layers have connections between their inhibitory neurons. These connections
increase phase differences. We consider large phase differences to be equivalent to desyn-
chronized states in biological oscillatory networks. The coupling strength falls off exponen-
tially with increasing distance. The connection scheme can be seen as an implementation of
two Gestalt laws of perception (Wertheimer, 1924/1950) according to which elements that
are spatially proximal or share similar properties have the tendency to be grouped together.
The model was set up to be consistent with anatomical findings in primary visual cortex.
There, excitatory projection neurons in layer 2 and 3 are connected to local inhibitory in-
terneurons in layers 2 to 6 (Thomson & Bannister, 2003).

Multi-modal feature integration is attained by coupling different feature modules. Syn-
chronizing connections between any single oscillator in one feature module and all os-
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Figure 1.a) A single oscillator.b) A feature module is composed of a three-dimensional arrange-
ment of oscillators (represented by small cubes). Slices with grey levels visualize connection type
and strength of the oscillator at the center of the feature module. Two feature modules have been
used, one color module and one orientation module. The arrow between the feature modules sym-
bolizes synchronizing connections between a single oscillator at the origin and all oscillators with
the same receptive field position in the other feature module (visualized by a cylinder). This connec-
tion scheme is applied to all other positions as well. Parameters:τx = τy = 1, mx = my = 2, θx = 2,
θy = 1, hi = 2, J0 = 0.4, Ji j = J/

√
2πσ2exp(−r2

i j/2σ2) (Wi j accordingly),J = 0.6 if i and j are in
the same feature module andJ = 0.08 if j is in a different module,W = 0.05,r = 4, η = 0.4.

cillators with the same receptive field position in all other feature modules mediate the
synchronization of oscillators activated by different properties of the same object.

2.2. Model with Phase-Coupled Oscillators

In order to verify the results obtained in the mean-field model we performed the same exper-
iments with a model using an alternative description of neuronal oscillators. Models with
phase-coupled oscillators do not consider the particular mechanism by which oscillations
are generated. A single oscillator is assumed to generate asymptotically stable limit-cycle
oscillations (Kuramoto, 1984; Sturm & König, 2001) of frequencyω. Its current state is
given by the phaseφ(t) and the amplitudea(t). The output of the neuronal population
modeled by a single oscillator is:

xi(t) = ai(t)sin(φi(t)).

Neighboring oscillators are coupled by synchronizing or desynchronizing connections.
They can interact via their phase, their amplitude, or both. The current model is confined
to phase interactions only. In the case of synchronizing connections, the phase difference
between two oscillators is used to advance the phase of the lagging oscillator and to retreat
the phase of the leading oscillator (vice versa for desynchronizing connections). In our
model the dynamics of an oscillator is given by:

φ̇i = ω−∑
j

si ja j sin(φi −φj)+ηi (3a)

ȧi = −ai +hi. (3b)
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Weightssi j comprise couplings within a feature module as well as between feature
modules. Synchronizing connections havesi j > 0, whereas desynchronizing connections
are given bysi j < 0. The same connection scheme as for the mean-field model is applied.
Again,η is a noise term andhi describes external input from the feature detectors.

Phase-coupled oscillator models have been applied for reproducing experimental re-
sults from the visual cortex (Sompolinsky & Golomb, 1991). Apart from a more concise
formulation and better analytical amenability, an important advantage of this model is the
possibility to separately investigate the effects of phase and amplitude interaction between
oscillators. In the current model we included phase interaction only. This is sufficient to
reproduce qualitatively the same results as in the mean-field model. Amplitude interaction
will be considered in future models.

3. Eigenmode Analysis

Upon stimulation the networks described in the previous section generate oscillatory pat-
terns that simulate oscillatory activity of a larger number of neurons in primary visual cor-
tex. In neurobiological experiments these patters are typically analyzed using pairwise
measures like cross-correlation or coherence. Analyzing the temporal dynamics of a larger
network using measures that take into account only pairs of oscillators is a very tedious task,
though. What we want instead is a method for analyzing all oscillators simultaneously.

From synergetics it is well known that the dynamics of complex systems is often gov-
erned by a few dominating states and can, therefore, be described by a small set of corre-
sponding order parameters (Haken, 1990). These states are the eigen- or principal modes of
the system, the corresponding eigenvalues designate how much of the variance is accounted
for by that mode.

In principle, eq. (1) can be solved analytically by linearization around the fix point and
combination of both equations into a second order differential equation (which yields a
vectorial form of the fundamental equation of a harmonic oscillator, for that matter). The
eigenvectors of the solution constitute a set of eigenstates that characterize the dynamics
of the network. Analytic determination of the fix point, however, is possible only for a
small and rather uninteresting subset of stimuli, e.g., infinitely long lines or homogeneous
activation.

Another way of describing oscillatory network activity by superposition of eigenstates
is to determine the principal components of the activity based on a numerical simulation of
the network. This is possible for arbitrary stimuli. Computationally, the principal compo-
nents are eigenvectors of the covariance matrixC:

D =




x1(t1) x1(t2) · · · x1(tm)
x2(t1) x2(t2) · · · x2(tm)

...
...

.. .
...

xn(t1) xn(t2) · · · xn(tm)




C = DDT

V V−1 = C
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Matrix D contains the activity of oscillators at equidistant time points.V is the matrix of
eigenvectors and the diagonal matrixcontains the corresponding eigenvalues. The eigen-
modes constitute an orthonormal coordinate system in which the variance of the network
activity in each direction is determined by the magnitude of the respective eigenvalues.
The network activity can be described by a superposition of the eigenmodesvi with time-
dependent weightsci(t):

x(t) = ∑
i

ci(t)vi

The weightsci(t) are determined by projecting the network activity on the respective
eigenmodei:

ci(t) = x(t)T vi.

We will call the weightsci(t) characteristic functions because they correspond to dis-
tinct interpretations of the stimulus.

If functionsci(t) have a sinusoidal time course they can be expressed bykieλit+φi . Here,
ki is the amplitude of the oscillation and the imaginary part of the complex eigenvaluesλi

is its frequency. The network activity can then be written as

x(t) = ∑
i

kivie
λit+φi ,

which is isomorphic to the analytic solution. In general, the eigenvectors of the covariance
matrix will differ from the eigenvectors of the analytic solution of eq. (1). However, if there
are strong differences in the variances of the principal directions, they can be considered as
approximations of the eigenmodes of the analytic solution. Strong differences of variances
are given when the ordered sequence of eigenvaluesλi is quickly decreasing, which was the
case in all our experiments.

4. Results

We investigated multi-dimensional feature binding in networks consisting of two feature
modules, one responding to colors and the other to edge orientations. A number of sim-
ple (Maye, 2003; Maye & Werning, 2004) and more complex stimuli (Werning & Maye,
2005) have been applied. The network dynamics were determined by numerical integration
of eqs. (1) and (3). Figure 2 shows a representative result for a stimulus consisting of a
red vertical and a green horizontal (Fig. 2a). Cross-correlation analysis revealed zero-lag
phase synchronization between oscillators which are activated by the same object (Fig. 2b).
We performed eigenmode analyses on the resulting network activity. The eigenmodes were
ordered according to their eigenvalue and reshaped to visualize the contribution of the os-
cillators in different layers of the feature modules (Fig. 2c).

Eigenmode analysis decomposes the network dynamics into a set of orthogonal states.
In the following, we interprete the eigenmodes with the two largest eigenvalues. In the first
eigenmode, i.e. the one which accounts for most of the variance, all oscillators activated by
the stimulus make the same positive contribution. This corresponds to an oscillation pattern
in which all oscillators are synchronized. This in turn can be interpreted as a representation
of the stimulus as a single object.
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In the second eigenmode, neurons sensitive for red and for vertical orientation make a
negative contribution, whereas neurons sensitive to green and horizontal make a positive
contribution. This corresponds to an antiphasic oscillation between the oscillators activated
by the red vertical and those activated by the green horizontal. This in turn can be in-
terpreted as the network binding the properties red and vertical into one object and green
and horizontal into another. Taken together the first two eigenmodes reflect two alternative
groupings of the stimulus elements.
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Figure 2.a) A stimulusshowing a red vertical and a green horizontal (visualized by different
shades of gray).b) The cross-correlogram shows zero phase-lag synchronization between
the two oscillators at the position marked by white arrows in a).c) Four largest eigenmodes
(from top to bottom) generated by the mean-field model.d) Characteristic functions asso-
ciated with the eigenmodes.e) Fourier spectrum of the characteristic functions. Note the
different scales on the y-axis.

Projecting the network activity into the eigenmode space yields the characteristic func-
tions ci(t) (Fig. 2d). While eigenmodes depict the spatial distribution of activity, the as-
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Figure 3.Eigenmode analysis of the dynamics of the phase model.a) eigenmodes,b) characteristic
functions,c) Fourier spectrum of the characteristic functions. Note the different scales on the y-axis.
Parameters:ω = hi = 1, si j = 0.625/− 0.125/0.125 for synchronizing connections within a layer
/ desynchronizing connections to neighboring layers / synchronizing connections to other feature
module,r = 1, η = 0.2
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sociated characteristic functions show the contribution of each eigenmode to the network
activity over time. From Figures 2d and 3b it can be seen that the characteristic function for
the first eigenmode constitutes an envelope for the function of the second eigenmode. This
result suggests a mechanism for the definition of hierarchical relations between different
interpretations of the stimulus. The network dynamics is the representational basis of these
interpretations and eigenmode analysis is just one way to extract a pictorial version. Selec-
tion of an interpretation would be possible by synchronization with network states which
are dominated by the respective eigenmode, i.e. by synchronization with the corresponding
characteristic function. In an accompanying article (see article by Werning and Maye in
this issue) we show how characteristic functions can indeed serve as object representations.

A Fourier transform has been used to analyze the spectral components of the charac-
teristic functions (Fig. 2e). It shows that subordinate hierarchy levels are associated with
increasing frequencies. The hypothesis that different frequency bands are involved in stim-
ulus processing at different spatial scales is supported by experiments (Frien & Eckhorn,
2000). We tested if this effect is depending on the noise level in the network. Doubling the
noise (η= 0.4) did not change the results qualitatively.

Exactly the same analyses were applied to the dynamics generated by the phase model.
The results are shown in Figure 3.

5. Conclusion

The results demonstrate that eigenmodes can represent different binding solutions and,
therefore, different interpretations of the stimulus. This capability is prerequisite for a hi-
erarchical binding mechanism which allows recognition of an object as a single entity as
well as distinguishing its parts. Our results predict that this binding mechanism employs
synchronization of neural activity in different frequency bands.

A comparison of the two modeling approaches shows that, qualitatively, the results are
model independent. It is known that nonlinear oscillators interacting through amplitude
coupling can be reduced to a phase model in the condition of weak coupling (Kuramoto,
1984). Since amplitude interactions between oscillators were eliminated in the phase model
we conclude that phase interactions are sufficient to generate the observed results. This
leaves amplitude interactions with the possibility for another functional role which will be
the focus of future investigations.

Our results suggest that understanding the function of neuronal synchrony is likely to
involve the analysis of temporal correlations between a large number of neurons. Applica-
tion of our analysis to experimental data is limited by the low spatial resolution of current
experimental techniques. The most advanced method in this respect uses voltage sensitive
dyes in conjuction with optical imaging (Leznik et al., 2002; Jancke et al., 2004). It allows
analyzing the activity of larger cortical patches with high temporal and spatial resolution.
Together with the eigenmode analysis presented here, this might be a promising approach
for studying the functional role of neuronal oscillations.
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