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Abstract

Gestalt-based feature binding becomes problematic if di-erent objects overlap in their posi-
tional con/guration and/or feature space, or if features vary over the spatial extent of an object.
If synchronization is to be a viable mechanism for binding the responses of disparate feature
selective neurons in the brain, it must cope with resulting ambiguities. In this article the synchro-
nization properties of an oscillator network for multidimensional feature binding are investigated.
For non-uniform feature distributions in a stimulus, its components are adequately represented
by the eigenmodes of the oscillatory dynamics. The signi/cance of the eigenmodes corresponds
to the salience of di-erent stimulus interpretations.
c© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

The temporal properties of neuronal responses constitute a coding dimension for dy-
namic relations between these neurons. Synchronized neuronal activity has been used
to explain a mechanism that binds the responses of feature speci/c neurons, if these
features are instantiated by the same object [10]. This integration of distributed re-
sponses is necessary for perceiving an object as a single entity. Neuronal synchrony
has been observed in numerous cell recording experiments (reviewed by Singer [7])
and experiments related to attention [8], perception [2], expectation [5] and mental rep-
resentations [11]. In experiments on the perception of plaid stimuli [9] and temporally
structured displays [1] synchronization was not relevant.
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The question arises, which elements of a visual scene should be bound during the
process of perception. According to two of the Gestalt principles of perception, spatially
proximal elements with similar feature values will be grouped. Most real-world objects,
however, are non-uniform in one or more of their feature dimensions, e.g., within one
object illumination, edge orientation and/or color can vary. On the other hand, two
distinct objects that are overlapping and are possibly similar in one or more feature
dimensions, could generate the same retinal activation pattern like a single object with
non-uniform properties. How, then, can the brain distinguish both percepts?
In [6], the synchronization properties of an oscillator network has been investigated

for a stimulus that was uniform in one feature dimension (orientation), but di-ered
in two others (features were orientation, disparity and color). It turned out that the
oscillators receiving input from the same object synchronized with each other, while
the oscillatory functions of oscillators receiving input from two distinct objects di-ered
by a phase shift. This corresponds to the perception of two distinct objects.
For an even number of feature dimensions or varying feature values within the

object, the binding task can become ambiguous. A possible solution is the simultaneous
representation of candidate binding solutions for later selection. In a preceding article
[3] it has been shown that the dynamics of an oscillator network can simultaneously
represent multiple binding solutions. In the next section the extension of the model to
multiple feature dimensions will be introduced. Section 3 shows the results that were
obtained from ambiguous stimuli. The paper concludes with a semantic interpretation
of the results obtained.

2. Oscillator network for multidimensional feature binding

A network of coupled oscillators was used to implement Gestalt-based feature bind-
ing in the temporal domain. The subnetwork for binding a single feature has been
detailed in [3], but the general structure will be shortly reproduced.
A single oscillator consists of an excitatory and inhibitory neuron with recurrent

synaptic connections. Each model neuron is considered a representative of a larger
group (100 to 200) of spatially proximal and physiologically similar biological neurons.
Oscillators are arranged on a three-dimensional grid. Two dimensions represent the
retinotopic mapping of the spatial domain, while the third dimension represents discrete
values of a single feature. If a speci/c feature (value) is present in the receptive
/eld, the corresponding oscillator will be activated by an input signal. The oscillators
are locally connected by synchronizing and desynchronizing connections. This network
exhibits binding of a single feature and will be called a “feature module” in accordance
with [6]. A mathematical analysis of a single oscillator as well as of the network was
carried out in [4].
The current work extends this model to multiple features. Here, the network consists

of several feature modules, one for each feature dimension. For the qualitative design
of the coupling between the feature modules, two criteria were relevant:

1. The distinctive features of a single object should synchronize the activity of os-
cillators activated by this object in the respective feature modules. For this
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Fig. 1. Schematic of the coupling between two feature modules. Only three connections are drawn out. The
single oscillator in module A has connections to all oscillators in the shaded region of module B. This
schema is applied to all other oscillators and feature modules.

reason, feature modules are coupled by synchronizing connections that preserve
topology.

2. No particular relations are speci/ed between the magnitudes in each feature channel
of a single object. Therefore, couplings between feature modules are unspeci/c in
the feature dimensions.

Fig. 1 illustrates a subset of the network. In order to synchronize di-erent feature
modules, the excitatory neurons of oscillators were coupled. Quantitatively, the coupling
strength LAB(i; j) between oscillator i in feature module A and oscillator j in feature
module B is given by

LAB(i; j) =




L0√
2��2

e−(d(i; j)=2�)2 if d(i; j)¡r;

0 else:
(1)

The distance in geometric space between the receptive /elds of both oscillators is de-
noted by d(i; j) and the weight parameter is L0. Connections emanating from oscillator
i are allowed to contact oscillators in a surround of size r from the target oscillator j.

3. Results

For the experiments two feature dimensions were used: color and orientation. In
order to investigate the binding capabilities of the network, two types of stimuli were
tested (Figs. 2a–d). The /rst contained a horizontal and vertical bar that overlapped in
the center. When both bars share the same color, this is usually perceived as a cross.
This stimulus is uniform in the color dimension, but non-uniform in the orientation
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Fig. 2. (a)–(d) The top /gure shows the stimulus. The small bar to the right depicts the diameter of
couplings within a feature module. Shown below are the eigenmodes with the three largest eigenvalues
arranged from top to bottom. The magnitudes of the eigenvalues are given to the right of the stimu-
lus. Each eigenmode was split into the components for each active layer in every module. From left to
right each row displays the mode for color 1 and color 2 of the color module and vertical and horizon-
tal orientation of the orientation module. (e, f) Time course of the magnitude of the order parameters
for stimulus c (e) and b (f). The coupling parameters were L0 = 0:1; r = 2 and the module parameters
�x = �y = 1; mx = my = 2; �x = 2; �y = 1; I0 = 2; Lxx

0 = 0:6; J0 = 0:5; W0 = 0:1; rx = ry = 4.
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dimension. If the bars have di-erent colors, they are non-uniform in both feature di-
mensions. In the other type of stimulus there was no overlap between the two bars.
The input to the network was computed from these stimuli. Since the feature values

are binary in each dimension (2 colors, 2 orientations), at most two layers of each
feature module received input.
The dynamic equations (given in [3]) were then solved numerically by a fourth-order

Runge–Kutta method. The activity of all excitatory neurons at each integration step
constituted a vector x(t). The eigenvectors ei of the covariance matrix C= 〈xxT〉 were
computed. In the eigenspace the dynamics take the form

x(t) =
∑

i

ai(t)ei ;

where the ai(t) denote superposition coeJcients that are determined by projecting the
activity x(t) into the eigenspace. In [4], it was shown that the eigenvectors approximate
the eigenmodes of the solution of the system of ODEs describing the network dynamics,
if the time course of the superposition coeJcients is sinusoidal and there are strong
di-erences in the variances of each principal direction (expressed by the magnitude of
the corresponding eigenvalues). Under these conditions the superposition coeJcients
associated with each eigenvector correspond to the order parameters associated with
each eigenmode. Order parameters are shown in Figs. 2e and f and eigenvalues in
Figs. 2a–d.
For display purposes the eigenvectors were split into the contributions from each

activated layer and reshaped to a matrix. To analyze the eigenmodes, the sign of the
components of each mode (visualized by light and dark shades of grey) are taken into
account. Regions with the same sign are activated together, while regions with opposite
signs are activated alternately. This shows which parts of the stimulus are bound by
correlated activity of the oscillators.
When considering the eigenmode with the highest eigenvalue (the /rst row in

Figs. 2a–d), a number of interesting observations can be made. To begin with, only
oscillators that are stimulated by input in their receptive /eld become activated. The
activity of spatially proximal oscillators is synchronized. The activity of oscillators in
di-erent feature modules activated by the same bar is synchronized as well. Finally,
if the bars have di-erent colors, the oscillations are desynchronized. The most promi-
nent mode therefore exhibits the binding expected according to the theory of dynamic
binding.
When the same analysis is applied to the eigenmodes with the second largest eigen-

value (second row), alternative interpretations emerge. This is most obvious in the
stimulus in Fig. 2b. The orientation components of this mode (the two rightmost sub-
plots) display the di-erence in orientation of the two bars constituting a (monochro-
matic) cross. The result for stimulus 2c has been analyzed in [3]. There, only the color
domain was used. Taking the orientation domain additionally into account does not
change the interpretation obtained. The second eigenmode of stimulus 2d represents an
interpretation in which the two bars are bound together. This is an alternative to the
/rst mode which represents two separate bars. The same interpretation is displayed by
the third eigenmode for stimulus 2a.
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The eigenvalues and the time-course of the order parameters show that the conditions
under which eigenvectors of the covariance matrix can be considered an approximation
of the eigenmodes of the underlying system of di-erential equations are ful/lled.

4. Discussion

The dynamics of the network can be understood in semantic terms. We are allowed
to regard oscillation functions as internal representations of individual objects. They
may be assigned as meanings of some of the individual terms of a /rst-order pred-
icate language with identity. Let Ind be the set of individual terms, then the partial
function

� : Ind → Osc (2)

is a constant individual assignment of the language into the set of oscillation functions
Osc. The sentence b = c(b; c∈ Ind) expresses a representational state of the system
to the degree the oscillation functions �(b) and �(c) of the system are synchronous.
Provided that Cls is the set of sentences, the degree to which a sentence expresses
a representational state of the system, for any eigenmode e, can be measured by the
function

ve :Cls → [ − 1;+1]: (3)

In case of identity sentences we have

ve(b= c) = P(�(b); �(c)); (4)

where P measures the synchrony of oscillation function by rendering a value be-
tween −1 and +1 as de/ned by [12]. Most vector components of a given eigen-
mode are exactly zero, while few in some cases are positive and few in some cases
are negative. Since the contribution of an eigenmode e to the entire network state
temporally evolves according to a function a(t), any positive eigenmode component
e j = +|e j| contributes to the activity of the jth oscillator with +|e j|a(t), while any
negative component el = −|el| contributes with −|el|a(t) to the activity of the lth
oscillator. Since the P-function is normalized, only the signs of the constants mat-
ter to determine that the activities of the jth and the lth oscillator, contributed by
an eigenmode, are exactly anti-parallel, while any two with a(t) temporally evolving
components of equal signs contribute mutually parallel activity. We may interpret this
by saying that each eigenmode represents maximally two objects as di-erent from
one another. The representation of the /rst object is the positive function +a(t) and
the representation of the second object is the negative function −a(t). Both positive
and the negative functions can be assigned to individual constants, b and c, respec-
tively. These considerations, for every eigenmode e, justify the following evaluation of
non-identity:

ve(@b= c) =

{
+1 if ve(b= c) = −1;

−1 if ve(b= c)¿ − 1:
(5)
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Feature clusters function as representations of properties. They can be expressed by
monadic predicates. We will assume that our language has a set of monadic predicates
Pred such that each predicate denotes a property featured by some feature cluster. To
every predicate F ∈Pred we now assign a diagonal matrix %(F)∈ {0; 1}k×k that, by
multiplication with any eigenmode e, renders the sub-vector of those components that
belong to the feature cluster expressed by F , i.e., its neuronal intension (k the number
of oscillators):

% :Pred → {0; 1}k×k : (6)

The neuronal intension of a predicate, for every eigenmode, determines its neuronal
extension, i.e., the set of those oscillations that the neurons on the assigned feature
layer, per eigenmode, contribute to the dynamics of the network. Hence, for every
predicate F its neuronal extension in the eigenmode e comes to the set of activity
functions {fj|f = %(F)ea(t)}. To determine to which degree an oscillation function
assigned to an individual constant b is in the neuronal extension of a predicate F , we
have to compute how synchronous it maximally is with one of the oscillation functions
in the neuronal extension:

ve(Fb) = max{P(�(b); fj)|f = %(F)ea(t)}: (7)

[12] extends this semantics to all truth-functional connectives. The network generates
a multitude of eigenmodes. Eigenmodes seem to represent di-erent epistemic possibil-
ities and play a similar role for neuronal representation, as possible worlds play for
semantics.
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