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Abstract

To test the hypothesis that synchronous neural os-
cillation constitutes the cortical representation of
objects, an oscillatory network is designed and stim-
ulated with non-uniform, ambiguous and illusionary
objects. Alternative perceptive possibilities corre-
spond to a multitude of eigenmodes of the network
dynamics. A semantic interpretation of the net-
work is developed. The data support the view that
oscillation functions are the neural basis of object
concepts, while clusters of feature responsive neu-
rons constitute the basis of predicate concepts.

Introduction

Cognition is defined over conceptual structures, (i)
which have content and (ii) are in principle (not
necessarily by the subject itself) expressible by lan-
guages with object and predicate terms. The first
condition derives from the fact that cognitive pro-
cesses are epistemic in the sense that the criterion of
truth-conduciveness, which is reserved for bearers of
content, applies. The second condition grounds in
the assumption that cognition presupposes catego-
rization. Truth-conducive processes would be prac-
tically useless and without any evolutionary benefit
if they did not subsume objects under categories. To
do so the cognitive system must dispose over object
and predicate concepts.

The role of the object concept in cognition and
perception has been of particular interest not only
in the developmental literature (reviewed by Scholl
& Leslie, 1999), but also in neural modeling. Von
der Malsburg’s (1981) supposition that the syn-
chronous oscillation of neural responses constitutes
a mechanism that binds the responses of feature
specific neurons when these features are instanti-
ated by the same object has been frequently applied
to explain the integration of distributed responses.
Object-related neural synchrony has been observed
in numerous cell recording experiments (reviewed by
Singer, 1999) and experiments related to attention
(Steinmetz et al., 2000), perception (Fries, Roelf-
sema, Engel, König, & Singer, 1997), expectation
(Riehle, Grün, & Aertsen, 1997) and mental rep-

resentation (Werning, 2003a).1 Those data suggest
the hypothesis that the neural basis of object con-
cepts are oscillation functions and that the neural
basis of predicate concepts are clusters of feature
specific neurons (Werning, 2005b).

From Gestalt psychology the principles govern-
ing object concepts are well known. According to
two of the Gestalt principles, spatially proximal el-
ements with similar features (similar color / similar
orientation) are likely to be perceived as one object
or, in other word, represented by one and the same
object concept. Most real-world objects, however,
are non-uniform in one or more of their feature di-
mensions, e.g., within one object illumination, edge
orientation and/or color can vary. Aside from non-
uniformity there are cases of ambiguous stimuli: two
distinct objects that overlap with each other and are
alike in one or more feature dimensions, can gener-
ate the same retinal activation pattern as a single
object with non-uniform properties. Furthermore,
some stimuli as a matter of illusion arouse the per-
ception of an object where no object really exists.
Cases of non-uniformity, ambiguity and illusionary
perception not only challenge the applicability of the
Gestalt principles, but also provide an interesting
test for our hypothesis about the neural basis of ob-
ject and predicate concepts.

Using structural principles well known from the
neurophysiology of the visual cortex, we designed an
oscillator network for multidimensional feature bind-
ing and presented non-uniform, ambiguous and illu-
sionary stimuli as input. To confirm our hypothesis,
it should be expected that, even under these chal-
lenging condition, (i) the network assigns exactly one
oscillation function (i.e., one object concept) to each
object normally perceived by human subjects and
(ii) the clusters of neurons (i.e., the predicative con-
cepts) responsive for properties of the object show
activity that is rendered by the oscillation function
representing the object in question. We will, further-
more, take a look at the way the network manages to

1In some experiments, e.g., on the perception of plaid
stimuli (Thiele & Stoner, 2003) synchronization was ap-
parently not relevant.
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Figure 1: a) A single oscillator. b) Synchroniz-
ing (solid) and desynchronizing (dashed) connec-
tions between neighboring oscillators. R and G de-
note the two color channels; the scheme has to be
applied to other neighbors and the remaining chan-
nels as well.

represent the various, more or less likely, perceptive
possibilities. To account for the representational ca-
pabilities of the network, a formally explicit seman-
tic interpretation will be given.

Multidimensional feature binding
Schillen and König (1994) investigate the synchro-
nization properties of an oscillator network for a
stimulus that is uniform in one feature dimension
(orientation), but differs in two others (features
dimensions chosen are orientation, disparity and
color). It turned out that the oscillators receiving
input from the same object synchronized with each
other, while the oscillatory functions of oscillators
receiving input from two distinct objects differed by
a phase shift. This corresponds to the perception of
two distinct objects.

For an even number of feature dimensions or vary-
ing feature values in the object, the binding task can
become ambiguous. A possible solution is the simul-
taneous representation of multiple representational
candidates. Maye (2003) shows that the dynamics
of an oscillator network can simultaneously represent
multiple binding solutions.

We used a network of coupled oscillators to imple-
ment Gestalt-based feature binding in the temporal
domain. The subnetwork for binding a single feature
has been detailed by Maye (2003), but the general
structure will be shortly reproduced: A single oscil-
lator consists of an excitatory and inhibitory neu-
ron with recurrent synaptic connections (Fig. 1a).
Each model neuron is considered a representative
of a larger group (100 to 200) of spatially proximal
and physiologically similar biological neurons. Os-
cillators are arranged on a three-dimensional grid.
Two dimensions represent the retinotopic mapping
of the spatial domain, while the third dimension rep-
resents discrete values of a single feature. If a spe-
cific feature value is present in the receptive field,
the corresponding oscillator will be activated by an
input signal. The oscillators are locally connected
by synchronizing and desynchronizing connections

Figure 2: Scheme of the coupling between two fea-
ture modules. Only three connections are drawn out.
The single oscillator in module A has connections to
all oscillators in the shaded region of module B. This
schema is applied to all other oscillators and feature
modules.

(Fig. 1b). This network implements binding within
a single feature dimension and will be called a fea-
ture module. A mathematical analysis of a single
oscillator as well as of the network has been carried
out by Maye (2002).

The current work extends this model to multiple
features. Here, the network consists of several fea-
ture modules, one for each feature dimension. For
the qualitative design of the coupling between the
feature modules, two criteria were relevant: (i) The
distinctive features of a single object should synchro-
nize the activity of oscillators activated by this ob-
ject in the respective feature modules. For this rea-
son, feature modules are coupled by synchronizing
connections that preserve the topology. (ii) No par-
ticular entailments (e.g., ‘green things are vertical’)
are specified between features of different feature
dimensions. Therefore, couplings between feature
modules are unspecific across feature layers. Fig. 2
illustrates a subset of the network.

In order to synchronize different feature modules,
the excitatory neurons of oscillators were coupled.
Quantitatively, the coupling strength LAB(i, j) be-
tween oscillator i in feature module A and oscillator
j in feature module B is given by:

LAB(i, j) =

{
L0√
2πσ2 e−( d(i,j)

2σ )2

if d(i, j) < r

0 else
(1)

The distance in geometric space between the recep-
tive fields of both oscillators is denoted by d(i, j) and
the weight parameter is L0. Connections emanating
from oscillator i are allowed to contact oscillators in
a surround of size r from the target oscillator j.
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Figure 3: a–d) Stimuli on top. Small right bar de-
picts diameter of coupling range within modules.
Eigenvalues to the right. Below, the eigenmodes
with the three largest eigenvalues, from top to bot-
tom. Each eigenmode was split into the components
for each active layer in every module. From left to
right each row displays the mode for the first (R)
and second color (G) of the color module and verti-
cal (V) and horizontal (H) orientation of the orien-
tation module. e–f) The characteristic functions for
stimulus c (e) and b (f), only.3

Non-uniform and ambiguous stimuli

For the first series of experiments two feature dimen-
sions were used: color and orientation. In order to
investigate the binding capabilities of the network,
two types of stimuli were tested (Fig. 3a–d). The
first contained a horizontal and a vertical bar that
overlap in the center. When both bars share the
same color, this is usually perceived as a cross. This
stimulus is uniform in the color dimension, but non-
uniform in the orientation dimension. If the bars
have different colors, they are non-uniform in both
feature dimensions. In the other type of stimuli two
non-overlapping bars were shown. In one case they
had the same color and were parallel so that they
might be perceived either as one object (a grating)
or as two objects. In the other case both bars were
different in color and orientation. The input to the
network was computed from these stimuli. Since the
feature values are binary in each dimension (two col-
ors, two orientations), at most two layers of each

feature module received input. The dynamic equa-
tions (Maye, 2003) were then solved numerically by
a fourth order Runge-Kutta method. The activity
of the j-th oscillator is characterized mathematically
by the activity function xj(t) during a time window
[0, T ]. Activity functions are vectors in the Hilbert
space L2[0, T ], which comprises all functions square-
integrable in the interval [0, T ]. In case of real-valued
functions, this space has the inner product

〈x(t)|y(t)〉 =
∫ T

0

x(t) y(t)dt. (2)

The degree of synchrony between two functions is
defined as

∆(x, y) = 〈x|y〉/
√
〈x|x〉〈y|y〉 (3)

and lies between −1 and +1. The degree of syn-
chrony corresponds to the cosine of the angle be-
tween the Hilbert vectors x and y. The vec-
tors are parallel (synchronous), anti-parallel (anti-
synchronous) and orthogonal (uncorrelated) de-
pending on whether ∆(x, y) is +1,−1 or 0. The over-
all dynamics of the network is given by the Cartesian
vector x(t) = (x1(t), ..., xk(t))T (k the number of os-
cillators of the network).

From synergetics it is well known that the dynam-
ics of complex systems is often governed by a few
dominating states. These states are the eigenmodes
of the system. The corresponding eigenvalues des-
ignate how much of the variance is accounted for
by that mode. The eigenmodes e of the network
dynamics are computed as the eigenvectors of the
auto-covariance matrix C, where its components Cij

are given as4
Cij = 〈xi|xj〉.

The network state at any instant is considered as a
superposition of the eigenmodes ei:

x(t) =
∑

i

oi(t)ei,

where the oi(t) are the temporally evolving superpo-
sition coefficients determined by projecting the ac-
tivity x(t) into the eigenspace. oi(t) will be called
the characteristic function of the i-th eigenmode.

3Coupling parameters: L0 = 0.1, r = 2; module pa-
rameters as defined by Maye (2003): τx = τy = 1, mx =
my = 2, θx = 2, θy = 1, I0 = 2, Lxx

0 = 0.6, J0 =
0.5, W0 = 0.1, rx = ry = 4. Parameters apply to Fig. 4
as well.

4To compute the components of the auto-covariance
matrix, the integral was approximated by a sum over
discrete unitary time steps

〈x|y〉 ≈
X

0<t≤T

x(t)y(t).
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Maye (2002) demonstrates that the eigenvectors
approximate the eigenmodes of the solution of the
system of ODEs describing the network dynamics
if the time course of the superposition coefficients
is sinusoidal and if there are strong differences in
the variances of each principal direction (expressed
by the magnitude of the corresponding eigenvalues).
Under these conditions the superposition coefficients
associated with each eigenvector correspond to the
order parameters associated with each eigenmode.
The temporally evolving order parameters, i.e., the
characteristic functions, are shown in Fig. 3e–f and
eigenvalues in Fig. 3a–d.

For display purposes the eigenvectors were split
into the contributions from each activated layer and
reshaped to a matrix. To analyze the eigenmodes,
the signs of the components of each mode (visual-
ized by light and dark shades of grey) are taken into
account. Regions with the same sign are activated
together, while regions with opposite signs are ac-
tivated alternately. This shows which parts of the
stimulus are bound by synchronous activity of the
oscillators.

Considering the eigenmode with the highest eigen-
value (the first row in Fig. 3a–d), a number of inter-
esting observations can be made. To begin with,
only oscillators that are stimulated by input in their
receptive field become activated. The activity of
spatially proximal oscillators is synchronized. The
activity of oscillators in different feature modules
activated by the same bar is synchronized as well.
Finally, if the bars have different colors, the oscilla-
tions are de-synchronized.

Applying the hypothesis that an object is repre-
sented by synchronous oscillation, the patterns of
synchrony in the first eigenmodes of the four stim-
ulations are to be read as representing: (3a) two
objects, i.e., one R-colored V-oriented and one G-
colored H-oriented object, (3b) one R-colored and
partially V- and H-oriented object, (3c) one R-
colored and V-oriented object, (3d) one R-colored
V-oriented object and one G-colored H-oriented ob-
ject.

When the same analysis is applied to the eigen-
modes with the second largest eigenvalue (second
row), alternative representations are to be read from
the distribution of synchrony. This is most obvious
in the stimulus in Fig. 3b. The two, differently orien-
tated components of the cross are now represented
as distinct objects. The stimulus of 3c in the sec-
ond eigenmode is no longer represented as one, but
as two objects. The second eigenmode of stimulus
3d represents an alternative possibility to the one
in the first mode: now the two bars are bound to-
gether as one object. This perceptive possibility is
also displayed by the third eigenmode for stimulus
3a.

The eigenvalues and the time-course of the order
parameters show that the conditions under which

Figure 4: Stimulus showing a Kanisza triangle (a)
and a similar stimulus without an illusory object (b).
From left to right, the two columns in each figure dis-
play the eigenmode components of the two layers in
the color modules for white and black. The orienta-
tion module was not used. Rows show eigenmodes
with decreasing eigenvalues.

eigenvectors of the covariance matrix can be con-
sidered an approximation of the eigenmodes of the
underlying system of differential equations are ful-
filled.

Illusionary stimuli

In the second series of experiments, a Kanisza tri-
angle was presented as stimulus (Fig. 4a, top). It
generates the percept of a white triangle in front of
three black circles at the corners. The perception
of this stimulus involves integration of contours that
are induced by collinear line fragments at the cor-
ners of the illusionary triangle. This can be viewed
as an instance of the Gestalt law of good contin-
uation. The current model, however, does not ac-
count for contour integration. Hence, edge informa-
tion was omitted altogether. Extending the model
to exhibit contour integration is possible by means of
an anisotropic connection schema of the oscillators
in the orientation module as suggested by Li (1998).

Analyzing again the signs of the components of the
eigenmodes, the most prominent eigenmode (first
row in Fig. 4a) shows no distinction between the illu-
sory figure and the background. This corresponds to
a possible perception that only groups the three cir-
cle segments, on the one hand, and the background,
on the other hand, to objects. The second eigen-
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mode, however, clearly distinguishes the triangular
object from the background. Due to missing edge in-
formation the shape of the triangle is not perfectly
rendered (black, corresponding to the representation
of the triangular object, seems to “flow out” on all
three sides). Despite the vague information about
contours, the negative pattern of synchrony (black)
for the triangle in the left color layer is clearly dis-
tinguishable from the positive pattern of synchrony
(white) for the rest of the stimulus, which is dis-
tributed over both color layers.

In order to figure out in how far the eigenmodes
are due to the illusory figure a control stimulus was
tested. It had a similar structure but did not gener-
ate visual illusions (Fig. 4b top). For this stimulus
none of the eigenmodes exhibits a difference between
a foreground object in between the circles and the
background. Subsequent eigenmodes distinguish be-
tween individual circles (data not shown).

Semantic interpretation
The dynamics of the network can be understood in
semantic terms. We are allowed to regard oscilla-
tion functions as internal representations of individ-
ual objects, i.e., as object concepts. They may be
assigned as meanings of some of the individual terms
of a predicate language. Let Ind be the set of indi-
vidual terms, then the partial function

α : Ind→ L2[0, T ] (4)

is a constant individual assignment of the language
into the set of activity functions L2[0, T ]. The sen-
tence a = b (a, b ∈ Ind) – read, e.g., ‘this object is
identical with that object’ – expresses a representa-
tional state of the system to the degree the oscilla-
tion functions α(a) and α(b) of the system are syn-
chronous. Provided that Cls is the set of sentences,
the degree to which a sentence expresses a represen-
tational state of the system, for any eigenmode e,
can be measured by the function

ve : Cls→ [−1,+1]. (5)

In case of identity sentences we have:

ve(a = b) = ∆(α(a), α(b)). (6)

Most vector components of a given eigenmode are
exactly zero (illustrated by middle gray), while few
in some cases are positive (light grey) and few in
some cases are negative (dark grey). Since the con-
tribution of an eigenmode e to the entire network
state temporally evolves according to the character-
istic function o(t), any positive eigenmode compo-
nent ei = +|ei| contributes to the activity of the i-th
oscillator with +|ei|o(t), while any negative compo-
nent ej = −|ej | contributes with −|ej |o(t) to the
activity of the j-th oscillator. Since the ∆-function
is normalized, only the signs of the constants matter
to determine that the activities of the i-th and the

j-th oscillator, contributed by an eigenmode, are ex-
actly anti-parallel, while any two, with o(t) tempo-
rally evolving components of equal signs contribute
mutually parallel activity. We may interpret this
by saying that each eigenmode represents maximally
two objects as different from one another. The rep-
resentation of the first object is the positive function
+o(t) and the representation of the second object is
the negative function −o(t). Both, the positive and
the negative function can be assigned to individual
constants, a and b, respectively, and thus play the
role of object concepts. These considerations, for
every eigenmode e, justify the following evaluation
of non-identity:

ve(¬a = b) =

{
+1 if ve(a = b) = −1,
−1 if ve(a = b) > −1. (7)

Feature clusters function as representations of prop-
erties. They can be expressed by monadic predi-
cates. We will assume that our language has a set
of monadic predicates Pred (containing, e.g., ‘red’,
‘green’, ‘vertical’, ‘horizontal’) such that each pred-
icate denotes a property featured by some neural
feature cluster. To every predicate F ∈ Pred we
now assign a diagonal matrix β(F ) ∈ Rk×k that,
by multiplication with any eigenmode e, renders the
sub-vector of the F -components, i.e., those vector
components that belong to the feature cluster ex-
pressed by F . The components of the matrix β(F )
are defined as follows:

(β(F ))ij =


1 if i = j and i indexes

an F -component,
0 else.

(8)

We are, hence, justified to call β(F ) the neural in-
tension of the predicate F , or in other words, the
(neural basis of the) predicate concept expressed by
F .

The neural intension of a predicate, for every
eigenmode, determines its neural extension, i.e., the
set of those oscillations that the neurons on the as-
signed feature layer, per eigenmode, contribute to
the dynamics of the network. Hence, for every predi-
cate F its neural extension in the eigenmode e comes
to the set of activity functions

{fj |f = β(F )eo(t)},

where the fj are the vector components of f . To de-
termine to which degree an oscillation function as-
signed to an individual constant a is in the neural
extension of a predicate F , we have to compute how
synchronous it maximally is with one of the oscil-
lation functions in the neural extension. This value
then gives us the degree to which the sentence Fa
(‘the object a satisfies the predicate F ’) expresses a
representational state of the system:

ve(Fa) = max{∆(α(a), fj)|f = β(F )eo(t)}. (9)
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Table 1: Object concepts and the representational
states of the network expressible by a sentence φ, per
stimulus and eigenmode ei. R, G: color predicates;
H, V : predicates for orientation; a, b, c: individual
terms.

i φ such that vei(φ) = 1 obj concept

(3a) 1 Ra ∧ V a ∧ Gb ∧ Hb ∧ ¬a = b α(a) = −o1(t)
2 — α(b) = +o1(t)
3 Rc ∧ V c ∧ Gc ∧ Hc α(c) = +o3(t)

(3b) 1 Ra ∧ V a ∧ Ha α(a) = +o1(t)
2 Rb ∧ Rc ∧ V b ∧ Hc ∧ ¬b = c α(b) = −o2(t)
3 — α(c) = +o2(t)

(3c) 1 Ra ∧ V a α(a) = +o1(t)
2 Rb ∧ Rc ∧ V b ∧ V c ∧ ¬b = c α(b) = +o2(t)
3 — α(c) = −o2(t)

(3d) 1 Ra ∧ V a ∧ Gb ∧ Hb ∧ ¬a = b α(a) = −o1(t)
2 Rc ∧ V c ∧ Gc ∧ Hc α(b) = +o1(t)
3 — α(c) = +o2(t)

Werning (2005a) extends this semantics to all logi-
cal constants of a first order predicate language and
proves that it is compositional with respect to mean-
ing and content. The conjunction, in particular, is
evaluated by the minimum of the values of the con-
juncts. Let φ, ψ be sentences of such a language,
then, for any eigenmode e, we have:

ve(φ ∧ ψ) = min{ve(φ), ve(ψ)}. (10)

For each stimulus the network activity is governed
by a number of eigenmodes specific for that stimu-
lus. Each eigenmode represents different perceptive
possibilities. The semantic interpretation of the net-
work states now allows us to provide a precise anal-
ysis of the network’s representations and the object
concepts involved therein (see table 1).

Conclusion

The view on the neural basis of the object concept
we presented in this paper competes, i.a., with a
view recently proposed by Hurford (2003). He ar-
gues that object concepts and predicate concepts are
processed separately, viz. in the dorsal and the ven-
tral stream of the visual system, respectively (for
discussion see Werning, 2003b). We, in contrast,
hold that predicate and objects concepts are pro-
cessed at the same location, at the same time and
by the same mechanism. Since the generation of an
object concept is governed by the Gestalt principles,
which are formulated in terms of feature similarity,
the processing of the object concept is inseparably
intertwined with the generation of property repre-
sentations. The theory of neural synchrony com-
bined with the model of oscillatory networks takes
this interdependence into account. The simulations
reported here confirm our hypothesis that object
concepts are to be identified with neural oscillations.
Our hypothesis leads to successful predictions and
explanations even under such ambitious conditions
as non-uniform, ambiguous and illusionary stimuli.
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