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Abstract
We present a uniform proof-theoretic proof of the Gödel–McKinsey–Tarski embedding for a class of first-order intuitionistic
theories. This is achieved by adapting to the case of modal logic the methods of proof analysis in order to convert axioms into
rules of inference of a suitable sequent calculus. The soundness and the faithfulness of the embedding are proved by induction
on the height of the derivations in the augmented calculi. Finally, we define an extension of the modal system for which the
result holds with respect to geometric intuitionistic.
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1 Introduction

In 1932, Gödel published a short note in which he presented an interpretation of intuitionistic logic
into the modal propositional system S4 [6]. He proved the soundness by induction on the height
of derivation in the axiomatic calculus for intuitionistic logic and he conjectured that the converse
statement held too.

It was only fifteen years later that McKinsey and Tarski proved the faithfulness of the embedding
as well [9], by a semantic argument that exploited algebraic methods in combination with topological
representation theorems by Stone [15]. The Gödel–McKinsey–Tarski translation and its equivalent
formulations build a bridge between intuitionistic and modal logics, by interpreting the modal
operator � in terms of provability (in an informal sense).

The Gödel–McKinsey–Tarski translation can be used to view intuitionistic logic from a classical
perspective (or better yet, as a fragment of an extension of classical logic). Further work on the
Gödel–McKinsey–Tarski translation have extended the interpretation in more than one direction.

First, there are several modal logics in which intuitionistic logic can be soundly and faithfully
embedded, e.g. S4, Grz, GL and also S3 [1]. Second, it was shown how to extend the translation to
the setting of first-order intuitionistic logic [14] and to various intermediate logics [1, 2].

In this paper, we take a different route and we study the soundness and the faithfulness of the
embedding with respect to first-order intuitionistic theories. Previous works in this area focused
on specific theories, specifically on the interpretation of Heyting arithmetic in Peano arithmetic
extended with modal operators [5, 7, 10]. However, a general and uniform approach to the problem
has not been developed yet. We identify a class of theories, determined by the shape of their axioms,
for which the soundness and the faithfulness of the translation holds.

Proof analysis of first-order theories has obtained considerable results in the last twenty years. In
particular, Negri and von Plato [11] showed how to convert mathematical axioms into sequent rules
while preserving cut-elimination. The resulting system does not enjoy a full subformula property,
but a weaker version thereof, which often allows a good structural analysis of the theory.
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2 Constructive Theories Through a Modal Lens

The methods of proof analysis allow us to present a uniform proof of the soundness and the
faithfulness of the Gödel–McKinsey–Tarski embedding for first-order Horn theories. Furthermore,
the proof that we offer is constructive, in the sense that it avoids appeal to Zorn’s lemma or variants
thereof, and it is also direct. In fact, the methods that we use are purely proof-theoretic and we
explicitly define a proof transformation procedure that enables to obtain a modal proof from an
intuitionistic one and vice versa.

This is interesting because it yields a modal interpretation of many constructive mathematical
theories in terms of (informal) provability and furthermore it allows to exploit modal systems in
order to obtain metalogical results. In particular, the relevance is both conceptual and technical.
From a conceptual point of view, it allows to look at mathematical intuitionistic theories as
expressing something in terms of provability and it is coherent with epistemic interpretations of
intuitionistic logic.

From a technical point of view, we exploit the embedding result to obtain a syntactic proof of
the disjunction property and of the witness property for first-order Horn theories, which would be
harder to obtain working in a multisuccedent intuitionistic sequent calculus. Another interesting
aspect is that this result connects geometric logic, i.e. a fragment of classical logic conservative over
intuitionistic logic, with the modal embedding. Therefore, we can consider the results here presented
as an attempt to unify various areas of logic.

Section 2 is devoted to the presentation of the sequent calculus for first order S4 and to the
extension of the methods of proof analysis to such system, establishing the usual desired structural
properties, especially cut admissibility. The relation with the corresponding axiomatic presentation
is investigated in Section 3. Section 4 discusses Horn theories, which are a subclass of universal
theories and we describe some mathematical examples of theories that are axiomatized by Horn
sentences. In Sections 5 and 6, we present the extension of Gödel–McKinsey–Tarski embedding
to Horn theories. Such result is obtained by two separate (nontrivial) lemmas of soundness and
faithfulness of the translation. We exploit the translation in order to give an alternative proof of the
disjunction property and of the witness property for Horn theories. Finally, Section 7 deals with the
extension of the embedding to geometric logic, by introducing an extension of the modal logic S4.
We conclude the paper by sketching some possible future lines of research.

2 Theories based on S4

The language of first-order modal logic contains:

• Individual variables: x0, x1, x2, · · ·
• Function symbols (ni ≥ 0): f n0

0 , f n1
1 , f n2

2 , · · ·
• Predicate symbols (ni ≥ 1): Pn0

0 , Pn1
1 , Pn2

2 , · · ·
• The usual connectives ∧, ∨ and →, the universal and the existential quantifiers ∀ and ∃ and the

unary modal operator �.

Formulas and terms are inductively defined as usual, we use P, Q, R to denote atomic formulas.
Sequents are syntactic objects of the form Γ ⇒ Δ, where Γ and Δ are finite multisets of

formulas. �Γ is the multiset that contains the formulas �A for every A in Γ .
The degree of a formula is defined as the number of logical symbols occurring in it. The notations

¬A, A ↔ B and ♦A abridge A → ⊥, (A → B)∧ (B → A) and ¬�¬A, respectively. We consider the
sequent calculus G3s4 for the quantified modal logic S4 in Figure 1.

We show that the calculus G3s4 can be extended with rules corresponding to certain axioms while
preserving the structural properties of the original system.
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Constructive Theories Through a Modal Lens 3

FIGURE 1 The G3s4 sequent calculus.

DEFINITION 2.1
A geometric formula is a sentence of the form: ∀x(A → B), where A and B do not contain →,
∀ and �.

Any geometric formula can be equivalently reformulated as a sentence of the shape:

∀x(P1 ∧ ... ∧ Pm → ∃y1M1 ∨ ... ∨ ∃ynMn)

with m, n ≥ 0 (when m = 0, then P1 ∧ ... ∧ Pm is �, when n = 0, then ∃y1M1 ∨ ... ∨ ∃ynMn is ⊥)
and where Mj is a finite conjunction of atomic formulas Qj1 ∧ . . . ∧ Qjkj and yj are not free in Pi for
every i ∈ {1, ..., m} [12]. The expression Qx, where Q is a quantifier, denotes the string of quantifiers
Qx1 . . . Qxn. A geometric theory is a theory whose axioms are all geometric sentences.

DEFINITION 2.2
For every geometric axiom:

∀x(P1 ∧ ... ∧ Pm → ∃y1M1 ∨ ... ∨ ∃ynMn)
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4 Constructive Theories Through a Modal Lens

its corresponding geometric rule scheme is:

Q1[z1/y1], P, � ⇒ � ... Qn[zn/yn], P, � ⇒ �

P, � ⇒ �
Geom

where P = P1, ..., Pn and, for every j, Qj = Qj1, ..., Qjnj , with Mj = Qj1 ∧ ... ∧ Qjnj . Qj[zj/yj] denotes
the substitution of zj with yj in each Qjlj and yk do not occur in the conclusion.

In order to ensure the admissibility of contraction, it may be necessary to add to the system the
following closure condition.
Closure condition. Given a system of geometric rules, for every instance of the form:

Q1[z1/y1], P1, ..., Pm−2, P, P, � ⇒ � ... Qn[zn/yn], P1, ..., Pm−2, P, P, � ⇒ �

P1, ..., Pm−2, P, P, � ⇒ �
Geom

We need to add its closure under contraction:

Q1[z1/y1], P1, ..., Pm−2, P, � ⇒ � ... Qn[zn/yn], P1, ..., Pm−2, P, � ⇒ �

P1, ..., Pm−2, P, � ⇒ �

To give a concrete example, consider the case of a theory L = {R}, where R is euclidean, i.e.
∀x∀y∀z(xRy ∧ xRz → yRz), and consider the following instance:

xRy, xRy, yRy, � ⇒ �

xRy, xRy, � ⇒ �
Euc

In this case the closure condition is:
xRy, yRy, � ⇒ �

xRy, � ⇒ �
Euc c.c.

For further discussion on geometric theories and examples thereof, the interested reader is referred
to [12].

Given a set of geometric axioms T, we denote with G3s4T the sequent calculus obtained by adding
to G3s4 the corresponding geometric rules together with the rules obtained by the closure condition.

DEFINITION 2.3
The height of derivation is defined as usual as the number of sequents occurring in one of the
maximally long branches.

REMARK

Before proceeding, we would like to spend a few words on the formulation of the rule R�. As it
will be clear from the discussion in Section 3, the rule corresponds in a sense to the modal axiom
�A → ��A. The additional contexts Π and Δ in the conclusion are used to obtain admissibility of
weakening with preservation of height.

We proceed with the structural analysis of the calculus.

LEMMA 2.4
For every variable x and every term t, the rule

� ⇒ �

�[x/t] ⇒ �[x/t] Sub[x/t]

is height-preserving admissible in G3s4T.
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Constructive Theories Through a Modal Lens 5

PROOF. The proof follows the pattern of the corresponding proof in [12]. �

LEMMA 2.5
The rules

� ⇒ �

A, � ⇒ �
LW

� ⇒ �

� ⇒ �, A
RW

are height-preserving admissible in G3s4T.

PROOF. By induction on the height of the derivations, exploiting Lemma 2.4 in order to avoid
possible clashes of variables with respect to the rules L∃, R∀ and Geom. �

A rule is invertible if, whenever the conclusion is derivable so is (are) the premise(s).

LEMMA 2.6
Every rule except for R� is height-preserving invertible in G3s4T.

PROOF. The rules L� and Geom are invertible by Lemma 2.5. We limit ourselves to discuss the case
of R∀ as an example. If n = 0, then Γ ⇒ Δ, ∀xA is an initial sequent and so is Γ ⇒ Δ, A[x/t]. If
n > 0, we distinguish cases according to the last rule applied. If the last rule is any rule different from
R�, apply the induction hypothesis to the premise(s) (together with height-preserving substitution
to avoid clashes of variables) and then apply the rule again. If the last rule is R�, we have:

��, � ⇒ B

��, �′ ⇒ �B, �, ∀xA R�

In this case we apply again the rule R� to obtain �Γ , Γ ′ ⇒ �B, Δ, A[x/t]. �

LEMMA 2.7
The rules

A, A, � ⇒ �

A, � ⇒ �
LC

� ⇒ �, A, A

� ⇒ �, A RC

are height-preserving admissible in G3s4T.

PROOF. By simultaneous induction on the height of the derivations.
We discuss the left rule of contraction. If n = 0, then A, A, Γ ⇒ Δ is an initial sequent and so

is A, Γ ⇒ Δ. If n > 0, then we distinguish cases according to the last rule applied. If A is not
principal, or if it is principal in L∀ or L� or is an active formula in the antecedent of rule R�,
apply the induction hypothesis to the premise(s) and then apply the rule again. If it is principal in a
propositional rule or in L∃ we apply invertibility of the corresponding rule by Lemma 2.6 and then
we apply the induction hypothesis. If A is principal in a geometric rule we distinguish two subcases.
If only one A is principal, we apply the induction hypothesis to the premise and then we apply the
rule again. If both A’s are principal, we exploit the closure condition.

The case of the right rule of contraction is similar, the most significant case to discuss is that in
which the last rule applied is R�:

��, � ⇒ A

��, �′ ⇒ �A,�A, � R�

In this case the conclusion follows by applying again the rule to the premise. �

D
ow

nloaded from
 https://academ

ic.oup.com
/jigpal/advance-article/doi/10.1093/jigpal/jzad029/7502597 by R

uhr-U
niversitaet Bochum

, Bibl. Fak. Biologie user on 12 April 2024



6 Constructive Theories Through a Modal Lens

THEOREM 2.8 (Cut admissibility).
The rule

� ⇒ �, A A, �′ ⇒ �′

�, �′ ⇒ �, �′ Cut

is admissible in G3s4T.

PROOF. The proof runs by double induction, with main induction hypothesis on the degree of the
cut formula and secondary induction hypothesis on the sum of the height of the derivations. We
distinguish cases.

1. The left premise is the conclusion of an application of a geometric rule. If it is a zeroary
geometric rule, then the conclusion of the cut is an instance of the rule again. If it is the conclusion
of an n-ary geometric rule, we have:

In this case, the cuts are replaced by n cuts of lesser height and the conclusion is obtained by applying
the rule again:

We can assume that no clashes of variables occur by height-preserving substitution. The n cuts are
removed by the secondary induction hypothesis.

2. The right premise of the cut is the conclusion of a geometric rule. We distinguish two
subcases:

2.1. If the cut formula is not principal, we consider two further subsubcases. If the geometric rule
is a zeroary rule, then the conclusion is also an instance of it. If it is an n-ary rule, we have:

We construct the following derivation:

we assume that no clashes of variables occur due to the admissibility of substitution with
preservation of height.

2.2. If the cut formula is principal, we have:
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Constructive Theories Through a Modal Lens 7

In this case, we reason by induction on the height of the left premise of the cut. If Γ ⇒ Δ, P1
is an initial sequent, then P1 occurs in Γ . In this case, the proof is as follows:

�′, P1, P2, .., Pn ⇒ �′

�, �′, P2, .., Pm ⇒ �, �′ Weak

If Γ ⇒ Δ, P1 is the conclusion of a rule, then P1 is not principal. We distinguish cases
according to the last rule applied.

2.2.1. The cases in which the last rule is a geometric one have been dealt with in 1.
2.2.2. The last rule applied is different from R�. We permute the cut upwards and we

eliminate it by secondary induction hypothesis, applying height-preserving admissibility
of substitution in order to avoid clashes of variables.

2.2.3. The last rule applied is R� and we have:

In this case, the desired result is obtained by applying rule R� to �Γ ′′, Γ ′′ ⇒ B.

3. The last rule applied is not a geometric rule in both premises.

3.1. If the cut formula is not principal in the left premise of the cut in a rule different from R�,
we permute the cut upwards, we eliminate it by secondary induction hypothesis and then we
apply the rule again. If it is not principal in R�, the conclusion follows by applying again the
rule R� with weakening to the premise. The case in which the cut formula is not principal in
the right premise of the cut is analogous.

3.2. If the cut formula is principal in both premises, we discuss only the modal cases (for the other
cases the reader is referred to [19]). The possible combinations are 〈R�, R�〉 and 〈R�, L�〉.
In the first case, we have:

We construct the following derivation:

The topmost cut is removed by secondary induction hypothesis on the sum of the height of
the derivations, whereas the lowermost by main induction hypothesis on the complexity of the
cut formula.
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8 Constructive Theories Through a Modal Lens

Finally, in the second case, we have:

The proof is transformed as follows:

The topmost cut is removed by secondary induction hypothesis on the sum of the height of
the derivations and the lower cut is removed by main induction hypothesis on the degree of
the cut formula. �

Let G3s4 ⊕ T denote the sequent calculus obtained by adding every axiom of the theory T as an
initial sequent.

COROLLARY 2.9
For every geometric theory T:

G3s4 ⊕ T �⇒ A if and only if G3s4T �⇒ A

PROOF. The direction from left to right easily follows by showing that every axiom of T is
derivable in G3s4T. For the direction from right to left, we exploit the admissibility of cut and
contraction. �

3 Equivalence with axiomatic system

In this section, we show that the analytic system here presented is equivalent to an axiomatic calculus.
The calculus QS4 is obtained by adding to an axiomatization of the modal logic S4 the axiom
∀xA → A[t/x] and the rule scheme: � A → B _ Gen � A → ∀xB , where x does not occur free in A.
The notions of proof and derivation in QS4 are defined as usual in the axiomatic calculi. The system
QS4 is sound and complete with respect to the class of first-order ref lexive and transitive Kripke
frames with increasing domains [8]. Indeed, the reader can easily observe that the converse Barcan
formula �∀xA → ∀x�A is provable both in the axiomatic system and in the sequent calculus. Within
the sequent calculus, it is also easy to check that the Barcan formula is not derivable (it is sufficient
to consider ∀x�P → �∀xP).
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Constructive Theories Through a Modal Lens 9

QS4

Given a finite set of geometric axioms T, QS4T is the system obtained by adding as axioms the
formulas in T.

THEOREM 3.1
If QS4T � A, then G3s4T �⇒ A.

PROOF. The proof is by induction on the height of the derivation. The modal axioms are easily
seen to be provable and so are the classical tautologies. Modus ponens can be simulated via cut. We
discuss the case of the rule Gen, to give an example:

The axioms are seen to be provable using the geometric rules of G3s4T. �
The other direction is slightly more delicate and it requires to use the axiomatic calculus.

THEOREM 3.2
If G3s4T � Γ ⇒ Δ, then QS4 � ∧

Γ → ∨
Δ, where

∧
Γ (

∨
Δ) is the conjunction (disjunction)

of the formulas in Γ (Δ).

PROOF. The proof is by induction on the height of the derivation in the system G3s4T. The cases of
initial sequents and logical rules are routine. We limit ourselves to discussing the cases of the rule
R� and of the geometric rules.
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10 Constructive Theories Through a Modal Lens

(R�) We streamline the proof, leaving some details for the reader to fill out. We first construct
the derivation D:

The leftmost formula is an instance of the axiom 4; � �
∧

Γ → �
∧

Γ and �
(�

∧
Γ → ��

∧
Γ ∧ �

∧
Γ ) → (�

∧
Γ → �(�

∧
Γ ∧ ∧

Γ ) are easily seen to
be derivable. The expression adm denotes an admissible rule; Cut is also a step that can
easily be shown to be admissible. We then conclude the proof as follows:

where the topmost formulas are instances of modal axioms or obtained through the
induction hypothesis.

(Geom) The cases of geometric axioms are as follows:

Q1[z1/y1], P, � ⇒ � ... Qn[zn/yn], P, � ⇒ �

P, � ⇒ �
Geom

The induction hypothesis yields derivations of:

�
∧

Qi[zi/yi] ∧
∧

P ∧
∧

Γ →
∨

Δ

for i ∈ {1, . . . , n}. We proceed as follows:

Hence, we can get a proof of:

� (
∨

1≤i≤n

∃zi

∧
Qi) ∧

∧
P ∧

∧
Γ →

∨
Δ

with some propositional passages. Finally, we get the conclusion as follows:

� ∧
P∧ ∧

�→∨
� ∨ (

∨
1≤i≤n ∃zi

∧
Qi) � (

∨
1≤i≤n ∃zi

∧
Qi) ∧ ∧

P∧ ∧
�→∨

�

� ∧
P ∧ ∧

� → ∨
�

adm

�

4 Horn theories and rules

In the second section, we have shown how to add rules corresponding to geometric axioms
while preserving the structural properties of the underlying modal calculus. However, the class of
geometric axioms is too large to establish the soundness of the Gödel–McKinsey–Tarski translation.
Therefore, we focus our attention on a proper subclass of geometric theories.
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Constructive Theories Through a Modal Lens 11

DEFINITION 4.1
A Horn theory is a theory whose axioms are of the form

∀x(P1 ∧ ... ∧ Pn → Q)

where Pi are atomic for every i and Q is either an atomic formula or ⊥.

Roughly speaking, Horn axioms are are universal closure of implications in which the succedent
is an atomic formula and the antecedent is a conjunction of atomic formulas. There are numerous
examples of mathematical Horn theories.

• Groups Consider the language L = {·, 1,−1 , =}. The axioms are:

1. ∀xyz(x · (y · z) = (x · y) · z) associativity
2. ∀x(x · 1 = x) right unit
3. ∀x(1 · x = x) left unit
4. ∀x(x · x−1 = 1) right inverse
5. ∀x(x−1 · x = 1) left inverse

In order to avoid the presence of existential quantifiers, we have considered an equivalent
formulation of the theory obtained by expanding the language, adding the inverse and the unit
as a unary and a zeroary operation symbol, respectively [18]. To obtain commutative groups,
we add the axiom

∀x∀y(x = y → y = x)

• Rings Consider the language L = {·, +, −, ·, =, 0, 1}. The axioms are:
Addition

1. ∀xyz(x + (y + z) = (x + y) + z) associativity
2. ∀xy(x + y = y + x) commutativity
3. ∀x(x + 0 = x) unit
4. ∀x(x + (−x) = 0) inverse

Multiplication

1. ∀xyz(x · (y · z) = (x · y) · z) associativity
2. ∀x(x · 1 = x) right unit
3. ∀x(1 · x = x) left unit

Distributivity

1. ∀xyz(x · (y + z) = (x · y) + (x · z)) left distributivity
2. ∀xyz((y + z) · x = (y · x) + (y · z)) right distributivity

A commutative ring is obtained by adding the axiom ∀xy(x·y = y·x). Once again, we considered
a suitable formulation of ring theory, by adding a specific function symbol for the inverse of
the sum +.

• Irref lexive graphs. Consider the language {R}, where R is a binary relation symbol. The
axioms are:

1. ∀x¬R(x, x) irref lexivity
2. ∀x∀y(R(x, y) → R(y, x)) symmetry
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12 Constructive Theories Through a Modal Lens

• Partial orders. Consider the language {�, =}. The axioms are:

1. ∀x(x � x) Reflexivity
2. ∀xyz(x � y ∧ y � z → x � z) Transitivity
3. ∀xy(x � y ∧ y � x → x = y) Antisymmetry

Clearly, also strict orders, i.e. irref lexive and transitive orders can be treated.
• Equivalence relations. Consider the language {∼}. The axioms are:

1. ∀x(x ∼ x) ref lexivity
2. ∀xyz(x ∼ y ∧ y ∼ z → x ∼ z) transitivity
3. ∀xy(x ∼ y → y ∼ x) symmetry

• Lattices. Consider the language {�, �, =}. The axioms are dual for � and �:

1. ∀xyz(x � (y � z) = (x � y) � z) associativity
2. ∀xy(x � y = y � x) commutativity
3. ∀xy(x � (x � y) = x) absorption

Since Horn axioms are a subclass of geometric ones, the rules obtained from Horn axioms are a
particular case of geometric rules: in particular, they have a single premise (or no premises) and they
do not contain variable restrictions.

DEFINITION 4.2
For every Horn axiom ∀x(P1 ∧ ... ∧ Pn → Q), the Horn rule scheme is as follows:

P1, ..., Pn, Q, � ⇒ �

P1, ..., Pn, � ⇒ �
Horn

if Q = ⊥, then the rule is zeroary.

Since Horn rules are a subclass of geometric rules, the results of the previous section hold with
respect to these rules as well.

COROLLARY 4.3
For every Horn theory T, the calculus G3s4T enjoys admissibility of weakening, contraction and cut.

PROOF. Immediate from Theorem 2.8.
�

REMARK

Notice that intuitionistic Horn theories T with the equality schema, i.e. ∀x∀y(x = y ∧ A(x) → A(y))
for every formula A, correspond to sequent calculi extended with the rules corresponding to the
axioms in T and with the Horn rules:

t = t, � ⇒ �

� ⇒ �
Ref

P(s), P(t), t = s, � ⇒ �

P(t), t = s, � ⇒ �
Repl

see [11] for a proof of the result. This will be contrasted with the case of modal logic in Section 7
and, specifically, in Lemma 7.4.
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Constructive Theories Through a Modal Lens 13

FIGURE 2 The G3i sequent calculus.

5 Soundness of the translation

The language of first-order intuitionistic logic is defined as usual [18]. The sequent calculus for
intuitionistic logic enjoys the formulation displayed in Figure 2, where sequents are built from
multisets of formulas. A few comments to the formulation of G3i are in order. First, we opted for a
multi-succedent version of the system as it is closer to the modal system G3s4 and this is important
in order to establish the faithfulness of the translation. Second, the principal formula of rule L →
is repeated in the left premise and the rules R → and R∀ have a context restriction on the premise
(otherwise the rules would be unsound).

From now on, we denote by G3iT and G3s4T the extensions of G3i and of G3s4 by rules
corresponding to the Horn theory T, respectively. We summarize the results of proof analysis for
the calculus G3iT.

THEOREM 5.1
The rules of substitution, weakening and contraction are height preserving admissible in G3iT.
Every rule except for R → and R∀ is height-preserving invertible. The cut rule is admissible.

PROOF. See [13]. �
We recall the formulation of the modal translation. The present formulation can be found in [1]

and differs from the original from Gödel (see [6]).

DEFINITION 5.2
The Gödel–McKinsey–Tarski translation is a map from the language of intuitionistic logic to that of
modal logic. It is inductively defined as follows:
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14 Constructive Theories Through a Modal Lens

• (P)∗ = �P, for P atomic.
• (⊥)∗ = ⊥
• (A#B)∗ = A∗#B∗, where # ∈ {∧, ∨}
• (A → B)∗ = �(A∗ → B∗)
• (∃xA)∗ = ∃xA∗
• (∀xA)∗ = �∀xA∗

In this section, we will show that every intuitionistic derivation can be transformed into a
derivation in the modal calculus of the translation of the endsequent. We first prove an auxiliary
lemma, see also [19].

LEMMA 5.3
The sequent ⇒ A∗ ↔ �A∗ is provable in G3s4.

PROOF. One direction, namely �A∗ ⇒ A∗ immediately follows by an application of rule L�. The
other direction, i.e. A∗ ⇒ �A∗, is proved by induction on the degree of A.

1. If A is atomic, then �P ⇒ ��P is easily derivable by two applications of R�.
2. If A is B → C, then �(B∗ → C∗) ⇒ ��(B∗ → C∗) is easily seen to be provable; the same

argument applies to the universal quantifier.
3. If A is of the form B ∧ C, then we proceed as follows:

The topsequent on the right is easily derivable by applying rule R� and R∧.
4. If A is of the form B ∨ C, we have:

The sequents �B∗ ⇒ �(B∗ ∨ C∗) and �C∗ ⇒ �(B∗ ∨ C∗) are derivable by applying rule R�
followed by R∨.

5. If A is of the form ∃xB, then we proceed as follows.

Once again the topsequent on the right is easily derivable by applying rule R� and then
rule R∃. �

We finally prove the soundness of the translation by a proof-theoretic argument based on induction
on the height of the derivations. By Γ ∗, we denote the multiset that contains the formulas A∗ for
every formula A in Γ .
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Constructive Theories Through a Modal Lens 15

THEOREM 5.4 (Soundness).
If G3iT � Γ ⇒ Δ, then G3s4T � Γ ∗ ⇒ Δ∗.

PROOF. The proof is by induction on the height of the derivations in G3iT. If n = 0, the proof is
immediate. If n > 0, we distinguish cases according to the rule applied.

1. If the last rule applied is a rule whose principal formula is a finite conjunction, a disjunction
or an existential quantifier, then apply the induction hypothesis to the premises and then apply
the rule again.

2. If the last rule applied is L → or L∀, then we apply the induction hypothesis to the premise,
and then we apply the corresponding rule again (an extra weakening step is required only in the
case of L → due to the repetition of the principal formula in the left premise of the rule). The
desired conclusion follows by an application of rule L�. We give an example of this qualitative
analysis:

A → B, � ⇒ �, A B, � ⇒ �

A → B, � ⇒ �
L→

We transform the proof as follows:

3. If the last rule applied is a Horn rule, we have:

�, P1, P2, .., Pn, Q ⇒ �

�, P1, .., Pn ⇒ �
Horn

By applying the induction hypothesis to the premise, we obtain a derivation of the sequent
Γ ∗,�P1, ..,�Pn,�Q ⇒ Δ∗. We proceed as follows:

4. The other cases (R→ and R∀) are rather routine. In particular, consider the case of R∀, we
have:

� ⇒ A[x/y]

� ⇒ ∀xA(x), � R∀

By applying the induction hypothesis, we get a derivation of Γ ∗ ⇒ A∗[x/y]. We exploit the fact
that, for every A, the sequent A∗ ⇒ �A∗ is provable in G3s4T by Lemma 5.3 by invertibility
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16 Constructive Theories Through a Modal Lens

of the rules R∧ and R →. Then we complete the transformation as follows:

The rule is admissible via cuts with A∗ ⇒ �A∗ for every formula A in the multiset Γ . �
Notice that soundness is a delicate passage, which requires the restriction of the class of geometric

theories to the smaller class of Horn theories. In particular, it is necessary to exclude the presence of
disjunctions and existential quantifiers in the succedent.

In fact, try to consider the case of the axiom of trichotomy in linear orders on the language {<, =}:
∀x∀y(x < y ∨ y < x ∨ x = y)

It is easy to observe that its ∗-translation is not provable in G3s4T, where T is the theory of linear
orders.

LEMMA 5.5
The sequent

⇒ �∀x�∀y(�(x < y) ∨ �(y < x) ∨ �(x = y))

is not derivable in G3s4LO, i.e. the sequent calculus obtained by adding the rule corresponding to
the linearity axiom.

PROOF. If the sequent ⇒ �∀x�∀y(�(x < y) ∨ �(y < x) ∨ �(x = y)), via cuts we can easily infer
the derivability of the sequent ⇒ �(x < y),�(y < x),�(x = y). It is easy to observe that this
sequent is derivable if and only if one among ⇒ x < y, ⇒ y < x or ⇒ x = y, which is not the case.�

6 Faithfulness of the translation

A proof of the faithfulness of the embedding for pure logic was presented in [19]. Furthermore,
embedding results of intuitionistic logic into modal logics have been obtained by exploiting the
methodology of labelled sequent calculi [3, 4]. By adopting labelled system the faithfulness proof
follows from a straightforward induction on the height of derivations in the modal calculus. Our
proof extends these results to first-order Horn theories: we reason by induction on the height of the
derivations and we use the standard cut-free sequent calculus G3s4T.

In order to prove the faithfulness lemma directly, i.e. by induction on the height of the derivations
in the modal calculus, we need to devise a suitable strengthening of the induction hypothesis that
takes into account the built-in contraction contained in the left rule for the universal quantifier.

LEMMA 6.1 (Faithfulness).
Let Π and Σ be multisets of atomic formulas, Γ ∀ a multiset of formulas ∀xA∗, Λ and Δ multisets
of formulas. Then:

If G3s4T � Π , Γ ∀, Λ∗ ⇒ Δ∗, Σ , then G3iT � Π , Γ ∀−, Λ ⇒ Δ, Σ

where Γ ∀− contains formulas ∀xA for every ∀xA∗ in Γ ∀.
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Constructive Theories Through a Modal Lens 17

PROOF. The proof is by induction on the height of the derivations in G3s4T. If n = 0, then the proof
is immediate. If n > 0, we distinguish cases according to the last rule applied.

• If the last rule is different from L� or R�, we can simply apply the induction hypothesis and
then the rule again (if necessary, as in the case of L∀, we add an extra step of contraction). In
particular, if the last rule applied is a Horn rule, we apply the induction hypothesis and then the
rule again, because the active formulas of the rule are all atomic.

• If the last rule is L�, we have:

	, �∀, 
∗,�A, A ⇒ �∗, �

	, �∀, 
∗,�A ⇒ �∗, � Geom

where �A = B∗ for some formula B. By definition of the ∗-translation, B is of the shape
∀xC, C → D or P, with P atomic. If B is ∀xC or P, we apply the induction hypothesis to the
premise and then we apply height-preserving admissibility of contraction to obtain the desired
conclusion. If B = C → D, we have:

	, �∀, 
∗,�(C∗ → D∗), C∗ → D∗ ⇒ �∗, �

	, �∀, 
∗,�(C∗ → D∗) ⇒ �∗, � L�

In this case, we proceed as follows:

the application of the induction hypothesis (IH) is justified by the fact that invertibility preserves
the height of the derivations.

• If the last rule is R�, then the principal formula is in Δ∗ and we distinguish three subsubcases
according to the shape of the principal formula in Δ∗, which can be �P,�∀xB∗ or �(B∗ → C∗)
(the three cases are exhaustive due to the definition of the modal interpretation).

– If it is of the form �P, we have:

�
′′′, 
′′′ ⇒ P

	, �∀, (
′′)∗, (
′)∗ ⇒ �′∗,�P, � R�

with Λ∗ = (Λ′′)∗, (Λ′)∗ and (Λ′′)∗ = �Λ′′′. Now, formulas in Λ′′′ can be of three types:
atomic formulas, implications and universal quantifiers. Namely,

Λ′′′ = Q1, ..., Qn, ∀xD∗
1(x), ..., ∀xD∗

l (x), B∗
1 → C∗

1 , ..., B∗
j → C∗

j

with l, j ≥ 0. We apply height-preserving invertibility of L → to reduce the complexity
of the implication formulas. Then we apply the induction hypothesis to the 2j derivations
thus obtained. To simplify the explanation and the notation, we assume that there is a
single occurrence for each of the three types of formulas, i.e. n = l = j = 1, the
generalization is straightforward. Hence, we have Λ′′′ = Q, ∀xD∗(x), B∗ → C∗.

D
ow

nloaded from
 https://academ

ic.oup.com
/jigpal/advance-article/doi/10.1093/jigpal/jzad029/7502597 by R

uhr-U
niversitaet Bochum

, Bibl. Fak. Biologie user on 12 April 2024



18 Constructive Theories Through a Modal Lens

We proceed as follows:

The contraction step is justified because Λ′′ = {Q, ∀xD(x), B → C}. The applications of
the induction hypothesis are justified because the applications of the invertibility lemma
are height-preserving.

– The cases in which the formula in Δ∗ is of the shape �(A∗ → B∗) or �∀xA∗(x) are
actually similar. In particular, we apply the invertibility of the right rule for → and ∀ in
order to be able to apply the induction hypothesis and we repeat the procedure described
for the atomic case. We sketch the case of the universal quantifier:

�
′′′, 
′′′ ⇒ ∀xB∗

	, �∀, (
′′)∗, (
′)∗ ⇒ �′∗,�∀xB∗, � R�

We apply height-preserving invertibility of R∀ and we obtain �Λ′′′, Λ′′′ ⇒ B∗[x/y]
where y is a fresh variable. Then we apply height-preserving invertibility of L → to the
implicative formula in Λ′′′ (if present) and we can thus apply the induction hypothesis.
Finally, we conclude the proof by an application of R∀ and weakening admissibility to
add the missing contexts.

This concludes the proof. �
Combining the faithfulness lemma with the results presented in the previous section, we obtain

the embedding result.

THEOREM 6.2 (Embedding).
Let T be a Horn theory, then:

G3iT �⇒ A if and only if G3s4T �⇒ A∗

PROOF. From left to right, we exploit the soundness theorem and from right to left we exploit the
faithfulness lemma. �

We can exploit the soundness and faithfulness result in order to obtain an alternative proof of the
disjunction property and of the witness property for Horn theories in a multisuccedent intuitionistic
calculus.1 Namely, instead of searching a proof in the multisuccedent intuitionistic system, we can
solve the problem by working in the modal calculus.

THEOREM 6.3 (Disjunction and witness property).
For every Horn theory T, the following statements hold:

1. If G3iT �⇒ A ∨ B, then G3iT �⇒ A or G3iT �⇒ B.
2. If G3iT �⇒ ∃xA(x), then G3iT �⇒ A[t/x] for some term t.

1For similar result in the field of structural proof theory, the reader can consult [11, 20]
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Constructive Theories Through a Modal Lens 19

PROOF. The proofs are similar and we limit ourselves to discussing the first item. If G3iT �⇒ A∨B,
then by soundness we obtain G3s4T �⇒ A∗ ∨ B∗. By invertibility of rule R∨ and cuts with A∗ ⇒
�A∗ and B∗ ⇒ �B∗, we get G3s4T �⇒ �A∗,�B∗. The derivation must have the following form:

where π contains only applications of Horn rules, Γ is a multiset of atomic formulas and C is either
A∗ or B∗, depending on the principal formula of R�. This yields G3s4T �⇒ A∗ or G3s4T �⇒ B∗.
By faithfulness of the translation, we get the desired conclusion. �

7 Geometric logic and the modal embedding

As we have already observed, the soundness of the modal translation breaks down in the presence of
geometric axioms or, more in general, of axioms containing disjunctions or existential quantifiers in
the succedent.

Indeed, the modal interpretation still holds for pure logic, in the sense that given an axiom A in
first-order geometric logic, we have:

G3i ⊕ A � Γ ⇒ Δ if and only if G3s4 ⊕ A∗ � Γ ∗ ⇒ Δ∗

However, this solution cannot be regarded as satisfactory. In general, the axiom A is not equivalent
over S4 to its ∗-translation. Therefore, we are actually considering a different theory and not the
same theory over a modal base.

A very natural question consists in asking which kind of modal system is suitable to reach the
following result:

G3i ⊕ A � Γ ⇒ Δ if and only if G3? ⊕ A � Γ ∗ ⇒ Δ∗

To obtain such system, we need to properly extend G3S4 with an infinite set of sequents (see also
[16, 17] for a similar approach in the context of infinitary propositional logic and with labelled
systems). In particular, we require:

P ⇒ �P for every atomic first-order formula P

To obtain an analytic system for this logic, we need to slightly modify the rule governing the modal
operator.

�at,�	, 	 ⇒ A

�at,�	, 	′ ⇒ �,�A R�+

In other words, we require that the atomic propositional formulas are not removed by the application
of the rule for the modal operator. Let G3s4T+ be the system obtained by replacing the rule R� with
the
rule R�+.

LEMMA 7.1
The rules of substitution, weakening and contraction are height-preserving admissible in the calculus
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20 Constructive Theories Through a Modal Lens

G3s4T+.
Every rule except for R�+ is height-preserving admissible.

PROOF. The proofs run by induction and they are minor modifications of the ones for G3s4T,
therefore we omit the details.

�

THEOREM 7.2
The cut rule is admissible in G3s4T+.

PROOF. The proof runs by double induction with main induction hypothesis on the degree of the
cut formula and secondary induction hypothesis on the sum of the height of the derivations of the
premises of the cut.

The new relevant case is the one in which the cut formula is atomic and principal in an application
of the rule R�+ in the right premise of the cut.

The cut cannot be simply permuted upwards as the rule R�+ might not be applicable. Hence, we
argue by induction on the left premise of the cut. The case in which it is an initial sequent is trivial.
If it is the conclusion of a rule, then P is not principal. If the last rule applied is R�+, we consider
the premise and we apply the rule again to get the desired conclusion. If the last rule applied is any
other rule, we permute the cut upwards and we apply the rule again. �

Although this section is devoted to a syntactic approach to the issue, we would like to point out
that a very natural semantics for the system G3s4T+ emerges by considering first-order Kripke
models for modal logic with increasing domains and by imposing a monotonicity condition on
atomic formulas.

LEMMA 7.3
Let T be a geometric theory. The following statements hold:

1. G3s4T+ �⇒ P → �P
2. There is not a collapse of the modality in G3s4T+, i.e. there is a formula A such that G3s4T+

does not prove ⇒ A ↔ �A.

PROOF. Item 1. follows from a routine root-first application of the rule R→ and R�+. Notice that
the sequent is not provable in G3S4T.

Item 2. follows by noticing that ⇒(P → Q) → �(P → Q) is not derivable. Suppose towards
a contradiction that it is derivable, then by invertibility of the rule L→ so is ⇒ P,�(P → Q).
However, the only applicable rule is R�+, which gives ⇒ P → Q, an underivable sequent. �

We add a remark concerning equality. As it is well known, equality is characterized by the addition
of the axiom of ref lexivity ∀x(x = x) and the axiom schema of replacement, i.e.

∀x∀y(x = y ∧ A(x) → A(y))

for every formula A. As it is well-known, in first-order classical (and intuitionistic) logic the rules
for equality:

t = t, � ⇒ �

� ⇒ �
Ref

P(s), P(t), t = s, � ⇒ �

P(t), t = s, � ⇒ �
Geom
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Constructive Theories Through a Modal Lens 21

can be added to a base sequent calculus while preserving the structural properties of the base system
(see also Section 4). In first-order modal logic, the situation is more complex. Indeed, the addition of
equality rules to the system G3s4T does not allow for the derivability of the sequent t = s, A(t) ⇒
A(s) for every formula A, a quick counterexample is given by the sequent t = s,�P(t) ⇒ �P(s).
However, the stronger system G3s4T+ does the trick and we can prove the following proposition.

LEMMA 7.4
Given any geometric theory T, consider the system G3s4T+ extended with the rules for equality.
The sequent:

t = s, A(t) ⇒ A(s)

is derivable.

PROOF. The proof is by induction on the degree of the formula A. We limit ourselves to discussing
the case in which the formula A is of the shape �B. In this case, we have:

The topmost sequent is derivable by induction on the degree of the formula.
�

REMARK

Let us observe that the underivability of the full equality schema in G3s4T extended with the usual
rules for equality does not hinder the modal interpretation of Horn intuitionistic theories presented
in Section 6 in Theorem 6.2. Indeed, G3s4T extended with the rules for equality is not equivalent
to the an axiomatic modal calculus extended with the equality schema, but it is enough to obtain a
sound and faithful interpretation of any Horn intuitionistic theory with the equality schema.

REMARK

We observe that the equivalence with an axiomatic system can be established for the system G3s4T+.
In particular, it is enough to consider the system obtained by adding to the axiomatic system QS4,
possibly extended with geometric axioms, the set of axioms {� P → �P | P atomic}. This shows that
the modification of the rule R�+ is not arbitrary. We leave the details of the proof of the equivalence
between the two systems to the reader.

The crucial result for G3s4T+ is that for every formula A, we have Al ↔ A∗, where l is a light
translation thus defined.

DEFINITION 7.5
The light Gödel–McKinsey–Tarski translation is a map from the language of intuitionistic logic to
that of modal logic. It is inductively defined as follows:

• (P)l = P, for P atomic.
• (⊥)l = ⊥
• (A#B)l = Al#Bl, where # ∈ {∧, ∨}
• (A → B)l = �(Al → Bl)
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22 Constructive Theories Through a Modal Lens

• (∃xA)l = ∃xAl

• (∀xA)l = �∀xAl

LEMMA 7.6
G3s4T+ �⇒ Al ↔ A∗ for every formula A.

PROOF. Immediate by induction on the degree of the formula A. �
To complete our investigations, we show the following.

THEOREM 7.7
G3s4T+ ⊕ Al is equivalent to G3s4T+ ⊕ A.

PROOF. It is trivial to observe that Al → A, so one direction is easily established via suitable cuts.
The converse does not hold in general, so we look at the structure of the derivations. Suppose we
have a derivation employing an axiom ⇒ Al as initial sequent. It will be of the form:

⇒ �∀x�(P1 ∧ ... ∧ Pm → ∃y1Q1 ∨ ... ∨ ∃ynQn)

This can be simulated as follows:

�
The modal embedding is established for geometric axiomatic extensions by the following theorem.

THEOREM 7.8
For every geometric theory T, G3iT � Γ ⇒ Δ if and only if G3s4T+ � Γ l ⇒ Δl.

PROOF. From left to right we argue by induction on the height of the derivation. The only new case
to check is the one of the geometric rules. If the last rule applied is a geometric rule, we have:

Q1[z1/y1], P, �l ⇒ �l ... Qn[zn/yn], P, �l ⇒ �l

P, �l ⇒ �l Geom

Due to the definition of the translation, the atomic formulas are not modified. Hence, we proceed as
follows:

From right to left, the strategy follows the pattern detailed in the case of G3s4T. �

THEOREM 7.9
For every geometric theory T, G3iT � Γ ⇒ Δ if and only if G3s4T+ � Γ ∗ ⇒ Δ∗.
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Constructive Theories Through a Modal Lens 23

PROOF. We consider the following chain of equivalences. Clearly, G3iT � Γ ⇒ Δ if and only if
G3s4T+ � Γ l ⇒ Δl. The latter is equivalent to G3s4T+ � Γ ∗ ⇒ Δ∗, which yields the desired
conclusion. �

8 Concluding remarks

We have applied the methods of proof analysis to systems of modal logics and we have proved an
extension of the Gödel–McKinsey–Tarski embedding to first-order Horn theories.

There are various points that might be interesting future lines of research. First, it would be
interesting to study a similar approach in terms of labelled sequent calculi.

Second, it is worth investigating the possibility of extending the approach to systems with
first-order axioms containing modal formulas. For example, consider the formula: ∀x(P(x) →
♦∃yQ(x, y)), which inside a labelled sequent calculus might be converted into the rule [13]:

a ∈ D(w), w : P(a), wRo, b ∈ D(o), o : Q(a, b), � ⇒ �

a ∈ D(w), w : P(a), � ⇒ �
Geom, o, b fresh

with a double variable condition on worlds and elements of the domain. It is worth considering the
scope of such an approach.

Third, in this paper, we have applied the methods of proof analysis to a domain that lies outside of
classical and intuitionistic logic. This naturally poses the intriguing question whether the conversion
of axioms into rules can be obtained also considering as a base calculus another non-classical system.
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