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Abstract

We present a mechanisation of (preference-based) conditional nor-
mative reasoning. Our focus is on Åqvist’s system E for conditional
obligation and its extensions. We present both a correspondence-
theory-focused metalogical study and a use-case application to Parfit’s
repugnant conclusion, focusing on the mere addition paradox. Our
contribution is explained in detail in [2]. This document presents a
corresponding (but sligthly modified) Isabelle/HOL dataset.
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1 Introduction

In this document we present the Isabelle/HOL dataset associated with [2],
in which “We report on the mechanization of (preference-based) conditional
normative reasoning. Our focus is on Åqvist’s system E for conditional
obligation, and its extensions. Our mechanization is achieved via a shal-
low semantical embedding in Isabelle/HOL. We consider two possible uses
of the framework. The first one is as a tool for meta-reasoning about the
considered logic. We employ it for the automated verification of deontic cor-
respondences (broadly conceived) and related matters, analogous to what has
been previously achieved for the modal logic cube. The equivalence is auto-
matically verified in one direction, leading from the property to the axiom.
The second use is as a tool for assessing ethical arguments. We provide a
computer encoding of a well-known paradox (or impossibility theorem) in
population ethics, Parfit’s repugnant conclusion.” [2]

2 Shallow Embedding of Åqvist’s system E

This is Aqvist’s system E from the 2019 IfColog paper [1].

2.1 System E
theory DDLcube

imports Main

begin
nitpick-params [user-axioms,show-all,format=2 ] — Settings for model finder
Nitpick

typedecl i — Possible worlds
type-synonym σ = (i⇒bool)
type-synonym α = i⇒σ — Type of betterness relation between worlds
type-synonym τ = σ⇒σ

consts aw::i — Actual world
abbreviation etrue :: σ (>) where > ≡ λw. True
abbreviation efalse :: σ (⊥) where ⊥ ≡ λw. False
abbreviation enot :: σ⇒σ (¬-[52 ]53 ) where ¬ϕ ≡ λw. ¬ϕ(w)
abbreviation eand :: σ⇒σ⇒σ (infixr∧51 ) where ϕ∧ψ ≡ λw. ϕ(w)∧ψ(w)
abbreviation eor :: σ⇒σ⇒σ (infixr∨50 ) where ϕ∨ψ ≡ λw. ϕ(w)∨ψ(w)
abbreviation eimpf :: σ⇒σ⇒σ (infixr→49 ) where ϕ→ψ ≡ λw. ϕ(w)−→ψ(w)

abbreviation eimpb :: σ⇒σ⇒σ (infixr←49 ) where ϕ←ψ ≡ λw. ψ(w)−→ϕ(w)

abbreviation eequ :: σ⇒σ⇒σ (infixr↔48 ) where ϕ↔ψ ≡ λw. ϕ(w)←→ψ(w)
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abbreviation ebox :: σ⇒σ (2) where 2ϕ ≡ λw. ∀ v. ϕ(v)
abbreviation ddediomond :: σ⇒σ (3) where 3ϕ ≡ λw. ∃ v. ϕ(v)

abbreviation evalid :: σ⇒bool (b-c[8 ]109 ) — Global validity
where bpc ≡ ∀w. p w

abbreviation ecjactual :: σ⇒bool (b-cl[7 ]105 ) — Local validity in world aw
where bpcl ≡ p(aw)

consts r :: α (infixr r 70 ) — Betterness relation

abbreviation esubset :: σ⇒σ⇒bool (infix ⊆ 53 )
where ϕ ⊆ ψ ≡ ∀ x. ϕ x −→ ψ x

We introduce the opt and max rules. These express two candidate truth-
conditions for conditional obligation and permission.
abbreviation eopt :: σ⇒σ (opt<->) — opt rule

where opt<ϕ> ≡ (λv. ( (ϕ)(v) ∧ (∀ x. ((ϕ)(x) −→ v r x) )) )
abbreviation econdopt :: σ⇒σ⇒σ (�<-|->)

where �<ψ|ϕ> ≡ λw. opt<ϕ> ⊆ ψ
abbreviation eperm :: σ⇒σ⇒σ (P<-|->)

where P<ψ|ϕ> ≡ ¬�<¬ψ|ϕ> — permission is the dual of obligation

abbreviation emax :: σ⇒σ (max<->) — max rule
where max<ϕ> ≡ (λv. ( (ϕ)(v) ∧ (∀ x. ((ϕ)(x) −→ (x r v −→ v r x)) )) )

abbreviation econd :: σ⇒σ⇒σ (#<-|->)
where #<ψ|ϕ> ≡ λw. max<ϕ> ⊆ ψ

abbreviation euncobl :: σ⇒σ (#<->)
where #<ϕ> ≡ #<ϕ|>>

abbreviation ddeperm :: σ⇒σ⇒σ (P<-|->)
where P<ψ|ϕ> ≡¬#<¬ψ|ϕ>

A first consistency check is performed.
lemma True

nitpick [expect=genuine,satisfy] — model found
oops

We show that the max-rule and opt-rule do not coincide.
lemma �<ψ|ϕ> ≡ #<ψ|ϕ>

nitpick [expect=genuine,card i=1 ] — counterexample found
oops

David Lewis’s truth conditions for the deontic modalities are introduced.
abbreviation lewcond :: σ⇒σ⇒σ (◦<-|->)

where ◦<ψ|ϕ> ≡ λv. (¬(∃ x. (ϕ)(x))∨
(∃ x. ((ϕ)(x)∧(ψ)(x) ∧ (∀ y. ((y r x) −→ (ϕ)(y)−→(ψ)(y))))))

abbreviation lewperm :: σ⇒σ⇒σ (
∫
<-|->)

where
∫
<ψ|ϕ> ≡¬◦<¬ψ|ϕ>

Kratzer’s truth conditions for the deontic modalities are introduced.
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abbreviation kratcond :: σ⇒σ⇒σ (	<-|->)
where 	<ψ|ϕ> ≡ λv. ((∀ x. ((ϕ)(x) −→

(∃ y. ((ϕ)(y)∧(y r x) ∧ ((∀ z. ((z r y) −→ (ϕ)(z) −→ (ψ)(z)))))))))
abbreviation kratperm :: σ⇒σ⇒σ (×<-|->)

where ×<ψ|ϕ> ≡¬	<¬ψ|ϕ>

2.2 Properties

Extensions of E are obtained by putting suitable constraints on the better-
ness relation.

These are the standard properties of the betterness relation.
abbreviation reflexivity ≡ (∀ x. x r x)
abbreviation transitivity ≡ (∀ x y z. (x r y ∧ y r z) −→ x r z)
abbreviation totality ≡ (∀ x y. (x r y ∨ y r x))

4 versions of Lewis’s limit assumption can be distinguished.
abbreviation mlimitedness ≡ (∀ϕ. (∃ x. (ϕ)x) −→ (∃ x. max<ϕ>x))

abbreviation msmoothness ≡
(∀ϕ x. ((ϕ)x −→ (max<ϕ>x ∨ (∃ y. (y r x ∧ ¬(x r y) ∧ max<ϕ>y)))))

abbreviation olimitedness ≡ (∀ϕ. (∃ x. (ϕ)x) −→ (∃ x. opt<ϕ>x))

abbreviation osmoothness ≡
(∀ϕ x. ((ϕ)x −→ (opt<ϕ>x ∨ (∃ y. (y r x ∧ ¬(x r y) ∧ opt<ϕ>y)))))

Weaker forms of transitivity can be defined. They require the notion of
transitive closure.
definition transitive :: α⇒bool

where transitive Rel ≡ ∀ x y z. Rel x y ∧ Rel y z −→ Rel x z

definition sub-rel :: α⇒α⇒bool
where sub-rel Rel1 Rel2 ≡ ∀ u v. Rel1 u v −→ Rel2 u v

definition assfactor ::α⇒α
where assfactor Rel ≡ λu v. Rel u v ∧ ¬Rel v u

In HOL the transitive closure of a relation can be defined in a single line
- Here we apply the construction to the betterness relation and its strict
variant.
definition tcr

where tcr ≡ λx y. ∀Q. transitive Q −→ (sub-rel r Q −→ Q x y)

definition tcr-strict
where tcr-strict ≡ λx y. ∀Q. transitive Q

−→ (sub-rel (λu v. u r v ∧ ¬v r u) Q −→ Q x y)
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Quasi-transitivity requires the strict betterness relation is transitive.
abbreviation Quasitransit

where Quasitransit ≡ ∀ x y z. (assfactor r x y ∧
assfactor r y z) −→ assfactor r x z

Suzumura consistency requires that cycles with at least one non-strict bet-
terness link are ruled out.
abbreviation Suzumura

where Suzumura ≡ ∀ x y. tcr x y −→ (y r x −→ x r y)

theorem T1 : Suzumura ≡ ∀ x y. tcr x y −→ ¬ (y r x ∧ ¬ (x r y)) by simp

Acyclicity requires that cycles where all the links are strict are ruled out.
abbreviation loopfree

where loopfree ≡ ∀ x y. tcr-strict x y −→ (y r x −→ x r y)

Interval order is the combination of reflexivity and Ferrers.
abbreviation Ferrers

where Ferrers ≡ (∀ x y z u. (x r u ∧ y r z) −→ (x r z ∨ y r u))

theorem T2 :
assumes Ferrers and reflexivity — fact overlooked in the literature
shows totality
— sledgehammer
by (simp add: assms(1 ) assms(2 ))

We study the relationships between these candidate weakenings of transi-
tivity.
theorem T3 :

assumes transitivity
shows Suzumura
— sledgehammer
by (metis assms sub-rel-def tcr-def transitive-def )

theorem T4 :
assumes transitivity
shows Quasitransit
— sledgehammer
by (metis assfactor-def assms)

theorem T5 :
assumes Suzumura
shows loopfree
— sledgehammer
by (metis (no-types, lifting) assms sub-rel-def tcr-def tcr-strict-def )

theorem T6 :
assumes Quasitransit
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shows loopfree
— sledgehammer
by (smt (verit, best) assfactor-def assms sub-rel-def tcr-strict-def transitive-def )

theorem T7 :
assumes reflexivity and Ferrers
shows Quasitransit
— sledgehammer
by (metis assfactor-def assms)

3 Meta-Logical Study
3.1 Correspondence - Max rule

The inference rules of E preserve validity in all models.
lemma MP: [[bϕc; bϕ → ψc]] =⇒ bψc

— sledgehammer
by simp

lemma NEC : bϕc =⇒ b2ϕc
— sledgehammer

by simp

2 is an S5 modality
lemma C-1-refl: b2ϕ → ϕc

— sledgehammer
by simp

lemma C-1-trans: b2ϕ → (2(2ϕ))c
— sledgehammer
by simp

lemma C-1-sym: bϕ → (2(3ϕ))c
— sledgehammer
by simp

All the axioms of E hold - they do not correspond to a property of the
betterness relation.
lemma Abs: b#<ψ|ϕ> → 2#<ψ|ϕ>c

— sledgehammer
by blast

lemma Nec: b2ψ → #<ψ|ϕ>c
— sledgehammer
by blast

lemma Ext: b2(ϕ1↔ϕ2) → (#<ψ|ϕ1> ↔ #<ψ|ϕ2>)c
— sledgehammer
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by simp

lemma Id: b#<ϕ|ϕ>c
— sledgehammer
by blast

lemma Sh: b#<ψ|ϕ1∧ϕ2> → #<(ϕ2→ψ)|ϕ1>c
— sledgehammer
by blast

lemma COK :b#<(ψ1→ψ2)|ϕ> → (#<ψ1|ϕ> → #<ψ2|ϕ>)c
— sledgehammer
by blast

The axioms of the stronger systems do not hold in general.
lemma b3ϕ → (#<ψ|ϕ> → P<ψ|ϕ>)c

nitpick [expect=genuine,card i=3 ] — counterexample found
oops

lemma b(#<ψ|ϕ> ∧ #<χ|ϕ>) → #<χ|ϕ∧ψ>c
nitpick [expect=genuine,card i=3 ] — counterexample found
oops

lemma b#<χ|(ϕ∨ψ)> → ((#<χ|ϕ>) ∨ (#<χ|ψ>))c
nitpick [expect=genuine,card i=3 ] — counterexample found
oops

Now we identify a number of correspondences under the max rule. Only the
direction property => axiom is verified.

Max-limitedness corresponds to D*, the distinctive axiom of F. The first
implies the second, but not the other around.
theorem T8 :

assumes mlimitedness
shows D∗: b3ϕ → #<ψ|ϕ> → P<ψ|ϕ>c
— sledgehammer
by (metis assms)

lemma
assumes D∗: b3ϕ → ¬(#<ψ|ϕ> ∧ #<¬ψ|ϕ>)c
shows mlimitedness
nitpick [expect=genuine,card i=3 ] — counterexample found
oops

Smoothness implies cautious monotony, the distinctive axiom of F+(CM),
but not the other way around.
theorem T9 :

assumes msmoothness
shows CM : b(#<ψ|ϕ> ∧ #<χ|ϕ>) → #<χ|ϕ∧ψ>c
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— sledgehammer
using assms by force

lemma
assumes CM : b(#<ψ|ϕ> ∧ #<χ|ϕ>) → #<χ|ϕ∧ψ>c
shows msmoothness
nitpick [expect=genuine,card i=3 ] — counterexample found
oops

Interval order corresponds to disjunctive rationality, the distinctive axiom
of F+(DR), but not the other way around.
lemma

assumes reflexivity
shows DR: b#<χ|ϕ∨ψ> → (#<χ|ϕ> ∨ #<χ|ψ>)c
nitpick [expect=genuine,card i=3 ] — counterexample found
oops

theorem T10 :
assumes reflexivity and Ferrers
shows DR: b#<χ|(ϕ∨ψ)> → (#<χ|ϕ> ∨ #<χ|ψ>)c
— sledgehammer
by (metis assms(1 ) assms(2 ))

lemma
assumes DR: b#<χ|ϕ∨ψ> → (#<χ|ϕ> ∨ #<χ|ψ>)c
shows reflexivity
nitpick [expect=genuine,card i=1 ] — counterexample found
oops

lemma
assumes DR: b#<χ|ϕ∨ψ>→(#<χ|ϕ> ∨ #<χ|ψ>)c
shows Ferrers
nitpick [expect=genuine,card i=2 ] — counterexample found
oops

Transitivity and totality jointly correspond to the Spohn axiom (Sp), the
distinctive axiom of system G, but not vice-versa. They also jointly corre-
spond to a principle of transitivity for the betterness relation on formulas,
but the converse fails.
lemma

assumes transitivity
shows Sp: b( P<ψ|ϕ> ∧ #<(ψ→χ)|ϕ>) → #<χ|(ϕ∧ψ)>c
nitpick [expect=genuine,card i=3 ] — counterexample found
oops

lemma
assumes totality
shows Sp: b( P<ψ|ϕ> ∧ #<(ψ→χ)|ϕ>) → #<χ|(ϕ∧ψ)>c
nitpick [expect=genuine,card i=3 ] — counterexample found

8



oops

theorem T11 :
assumes transitivity and totality
shows Sp: b( P<ψ|ϕ> ∧ #<(ψ→χ)|ϕ>) → #<χ|(ϕ∧ψ)>c
— sledgehammer
by (metis assms)

theorem T12 :
assumes transitivity and totality
shows transit: b( P<ϕ|ϕ∨ψ> ∧ P<ψ|ψ∨χ>) → P<ϕ|(ϕ∨χ)>c
— sledgehammer
by (metis assms(1 ) assms(2 ))

lemma
assumes Sp: b( P<ψ|ϕ> ∧ #<(ψ→χ)|ϕ>) → #<χ|(ϕ∧ψ)>c
shows totality
nitpick [expect=genuine,card i=1 ] — counterexample found
oops

lemma
assumes Sp: b( P<ψ|ϕ> ∧ #<(ψ→χ)|ϕ>) → #<χ|(ϕ∧ψ)>c
shows transitivity
nitpick [expect=genuine,card i=2 ] — counterexample found
oops

3.2 Correspondence - Opt Rule

Opt-limitedness corresponds to D, but not vice-versa.
theorem T13 :

assumes olimitedness
shows D: b3ϕ → �<ψ|ϕ> → P<ψ|ϕ>c
— sledgehammer
by (simp add: assms)

lemma
assumes D: b3ϕ → �<ψ|ϕ> → P<ψ|ϕ>c
shows olimitedness
nitpick [expect=genuine,card i=1 ] — counterexample found
oops

Smoothness implies cautious monotony, but not vice-versa.
theorem T14 :

assumes osmoothness
shows CM ′: b( �<ψ|ϕ> ∧ �<χ|ϕ> ) → �<χ|ϕ∧ψ>c
— sledgehammer
using assms by force

lemma
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assumes CM : b( �<ψ|ϕ> ∧ �<χ|ϕ> ) → �<χ|ϕ∧ψ>c
shows osmoothness
nitpick [expect=genuine,card i=1 ] — counterexample found
oops

Transitivity (on worlds) implies Sp and transitivity (on formulas), but not
vice-versa.
theorem T15 :

assumes transitivity
shows Sp ′: b( P<ψ|ϕ> ∧ �<(ψ→χ)|ϕ>) → �<χ|(ϕ∧ψ)>c
— sledgehammer
by (metis assms)

theorem T16 :
assumes transitivity
shows Trans ′: b( P<ϕ|ϕ∨ψ> ∧ P<ψ|ψ∨ξ> )→ P<ϕ|ϕ∨ξ>c
— sledgehammer
by (metis assms)

lemma
assumes Sp: b( P<ψ|ϕ> ∧ �<(ψ→χ)|ϕ> ) → �<χ|(ϕ∧ψ)>c
assumes Trans: b( P<ϕ|ϕ∨ψ> ∧ P<ψ|ψ∨ξ> ) → P<ϕ|ϕ∨ξ>c
shows transitivity
nitpick [expect=genuine,card i=2 ] — counterexample found
oops

Interval order implies disjunctive rationality, but not vice-versa.
lemma

assumes reflexivity
shows DR ′: b�<χ|ϕ∨ψ> → (�<χ|ϕ> ∨ �<χ|ψ>)c
nitpick [expect=genuine,card i=3 ] — counterexample found
oops

theorem T17 :
assumes reflexivity and Ferrers
shows DR ′: b�<χ|ϕ∨ψ> → (�<χ|ϕ> ∨ �<χ|ψ>)c
— sledgehammer
by (metis assms(2 ))

lemma
assumes DR: b�<χ|ϕ∨ψ> → (�<χ|ϕ> ∨ �<χ|ψ>)c
shows reflexivity
nitpick [expect=genuine,card i=1 ] — counterexample found
oops

lemma
assumes DR: b�<χ|ϕ∨ψ> → (�<χ|ϕ> ∨ �<χ|ψ>)c
shows Ferrers
nitpick [expect=genuine,card i=2 ] — counterexample found
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oops

3.3 Correspondence - Lewis’ rule

We have deontic explosion under the max rule.
theorem DEX : b(3ϕ ∧ #<ψ|ϕ> ∧ #<¬ψ|ϕ>) → #<χ|ϕ>c

— sledgehammer
by blast

But no deontic explosion under Lewis’ rule.
lemma DEX : b(3ϕ ∧ ◦<ψ|ϕ> ∧ ◦<¬ψ|ϕ>) → ◦<χ|ϕ>c

nitpick [expect=genuine,card i=2 ] — counterexample found
oops

The three rules are equivalent when the betterness relation meets all the
standard properties.
theorem T18 :

assumes mlimitedness and transitivity and totality
shows b◦<ψ|ϕ>↔�<ψ|ϕ>c
— sledgehammer
by (smt (z3 ) assms)

theorem T19 :
assumes mlimitedness and transitivity and totality
shows b◦<ψ|ϕ>↔#<ψ|ϕ>c
— sledgehammer
by (smt (z3 ) assms)

These are the axioms of E that do not call for a property.
theorem Abs ′: b◦<ψ|ϕ> → 2◦<ψ|ϕ>c

— sledgehammer
by auto

theorem Nec ′: b2ψ → ◦<ψ|ϕ>c
— sledgehammer
by auto

theorem Ext ′: b2(ϕ1↔ϕ2) → (◦<ψ|ϕ1> ↔ ◦<ψ|ϕ2>)c
— sledgehammer
by auto

theorem Id ′: b◦<ϕ|ϕ>c
— sledgehammer
by auto

theorem Sh ′: b◦<ψ|ϕ1∧ϕ2> → ◦<(ϕ2→ψ)|ϕ1>c
— sledgehammer
by auto
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One axiom of E, and the distinctive axioms of its extensions are invalidated
in the absence of a property of the betterness relation.
lemma D: b3ϕ → (◦<ψ|ϕ> →

∫
<ψ|ϕ>)c

nitpick [expect=genuine,card i=2 ] — counterexample found
oops

lemma Sp: b(
∫
<ψ|ϕ> ∧ ◦<(ψ→χ)|ϕ>) → ◦<χ|(ϕ∧ψ)>c

nitpick [expect=genuine,card i=3 ] — counterexample found
oops

lemma COK :b◦<(ψ1→ψ2)|ϕ> → (◦<ψ1|ϕ> → ◦<ψ2|ϕ>)c
nitpick [expect=genuine,card i=2 ] — counterexample found
oops

lemma CM : b(◦<ψ|ϕ>∧◦<χ|ϕ>)→ ◦<χ|ϕ∧ψ>c
nitpick [expect=genuine,card i=2 ] — counterexample found
oops

Totality implies the distinctive axiom of F, but not vice-versa.
theorem T20 :

assumes totality
shows b3ϕ → (◦<ψ|ϕ> →

∫
<ψ|ϕ>)c

— sledgehammer
using assms by blast

lemma
assumes b3ϕ → (◦<ψ|ϕ> →

∫
<ψ|ϕ>)c

shows totality
nitpick [expect=genuine,card i=3 ] — counterexample found
oops

Transitivity implies the distinctive axioms of G, but not vice-versa.
theorem T21 :

assumes transitivity
shows Sp ′′: b(

∫
<ψ|ϕ> ∧ ◦<(ψ→χ)|ϕ>) → ◦<χ|(ϕ∧ψ)>c

— sledgehammer
using assms by blast

theorem T22 :
assumes transitivity
shows Tr ′′: b(

∫
<ϕ|ϕ∨ψ>∧

∫
<ψ|ψ∨χ>)→

∫
<ϕ|ϕ∨χ>c

— sledgehammer
using assms by blast

lemma
assumes Sp ′′: b(

∫
<ψ|ϕ> ∧ ◦<(ψ→χ)|ϕ>) → ◦<χ|(ϕ∧ψ)>c

shows transitivity
nitpick — counterexample found
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oops

lemma
assumes Tr ′′: b(

∫
<ϕ|ϕ∨ψ>∧

∫
<ψ|ψ∨χ>)→

∫
<ϕ|ϕ∨χ>c

shows transitivity
nitpick — counterexample found
oops

lemma
assumes transitivity
shows COK :b◦<(ψ1→ψ2)|ϕ> → (◦<ψ1|ϕ> → ◦<ψ2|ϕ>)c
nitpick [expect=genuine,card i=2 ] — counterexample found
oops

lemma
assumes totality
shows COK :b◦<(ψ1→ψ2)|ϕ> → (◦<ψ1|ϕ> → ◦<ψ2|ϕ>)c
nitpick [expect=genuine,card i=3 ] — counterexample found
oops

Transitivity and totality imply an axiom of E and the distinctive axiom of
F+CM, but not vice-versa.
theorem T23 :

assumes transitivity and totality
shows COK ′:b◦<(ψ1→ψ2)|ϕ> → (◦<ψ1|ϕ> → ◦<ψ2|ϕ>)c
— sledgehammer
by (smt (verit, ccfv-SIG) assms(1 ) assms(2 ))

lemma
assumes COK ′:b◦<(ψ1→ψ2)|ϕ> → (◦<ψ1|ϕ> → ◦<ψ2|ϕ>)c
shows transitivity and totality
nitpick [expect=genuine,card i=3 ] — counterexample found
oops

theorem T24 :
assumes transitivity and totality
shows CM ′′: b(◦<ψ|ϕ>∧◦<χ|ϕ>)→ ◦<χ|ϕ∧ψ>c
— sledgehammer
by (metis assms)

lemma
assumes CM ′′: b(◦<ψ|ϕ>∧◦<χ|ϕ>)→ ◦<χ|ϕ∧ψ>c
shows transitivity and totality
nitpick [expect=genuine,card i=3 ] — counterexample found
oops

Under the opt rule transitivity alone imply Sp and Trans, but not vice-versa.
theorem T25 :

assumes transitivity
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shows b(P<ψ|ϕ> ∧ �<(ψ→χ)|ϕ>) → �<χ|(ϕ∧ψ)>c
— sledgehammer
by (metis assms)

lemma
assumes transitivity
shows b(P<ϕ|ϕ∨ψ> ∧ P<ξ|ψ∨ξ>)→P<ξ|ϕ∨ξ>c
nitpick [expect=genuine,card i=2 ] — counterexample found
oops

lemma
assumes Sp: b( P<ψ|ϕ> ∧ �<(ψ→χ)|ϕ>) → �<χ|(ϕ∧ψ)>c

and Trans: b(P<ϕ|ϕ∨ψ> ∧ P<ξ|ψ∨ξ>)→P<ξ|ϕ∨ξ>c
shows transitivity
nitpick [expect=genuine,card i=2 ] — counterexample found
oops

end

4 The Mere Addition Paradox: Opt Rule

This section studies the mere addition paradox [3], when assuming the opt
rule. The mere addition paradox is a smaller version of Parfit’s repugnant
conclusion.

We assess the well-known solution advocated by e.g. Temkin [4] among oth-
ers, which consists in abandoning the transitivity of the betterness relation.
theory mere-addition-opt

imports DDLcube

begin

consts A::σ Aplus::σ B::σ

Here is the formalization of the paradox.
axiomatization where
— A is striclty better than B
P0 : b(¬�<¬A|A∨B>∧�<¬B|A∨B>)c and
— Aplus is at least as good as A
P1 : b¬�<¬Aplus|A∨Aplus>c and
— B is strictly better than Aplus
P2 : b(¬�<¬B|Aplus∨B> ∧ �<¬Aplus|Aplus∨B>)c

Sledgehammer finds P0-P2 inconsistent given transitivity of the betterness
relation in the models:
theorem T0 :

assumes transitivity
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shows False
— sledgehammer
by (metis P0 P1 P2 assms)

Nitpick shows consistency in the absence of transitivity:
theorem T1 :

True
nitpick [satisfy,expect=genuine,card i=3 ] — model found
oops

Now we consider what happens when transitivity is weakened suitably rather
than abandoned wholesale. We show that this less radical solution is also
possible, but that not all candidate weakenings are effective.

Sledgehammer confirms inconsistency in the presence of the interval order
condition:
theorem T2 :

assumes reflexivity Ferrers
shows False
— sledgehammer
by (metis P0 P1 P2 assms(2 ))

Nitpick shows consistency if transitivity is weakened into acyclicity or quasi-
transitivity:
theorem T3 :

assumes loopfree
shows True
nitpick [satisfy,expect=genuine,card=3 ] — model found
oops

theorem T4 :
assumes Quasitransit
shows True
nitpick [satisfy,expect=genuine,card=4 ] — model found
oops

end

5 The Mere Addition Paradox: Lewis’ rule

We run the same queries as before, but using Lewis’ rule. The outcome is
pretty much the same. Thus, the choice between the opt rule and Lewis’
rule does not make a difference.
theory mere-addition-lewis

imports DDLcube

begin
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consts a::σ aplus::σ b::σ

axiomatization where
— A is striclty better than B
PPP0 : b(¬◦<¬a|a∨b>∧◦<¬b|a∨b>)c and
— Aplus is at least as good as A
PPP1 : b¬◦<¬aplus|a∨aplus>c and
— B is strictly better than Aplus
PPP2 : b(¬◦<¬b|aplus∨b> ∧ ◦<¬aplus|aplus∨b>)c

Sledgehammer finds PPP0-PPP2 inconsistent given transitivity of the bet-
terness relation in the models:
theorem T0 :

assumes transitivity
shows False
— sledgehammer
by (metis PPP0 PPP1 PPP2 assms)

Nitpick shows consistency in the absence of transitivity:
lemma T1 :

True
nitpick [satisfy,expect=genuine,card i=3 ,show-all] — model found
oops

Sledgehammer confirms inconsistency in the presence of the interval order
condition:
theorem T2 :

assumes reflexivity Ferrers
shows False
— sledgehammer
by (metis PPP0 PPP1 PPP2 assms(1 ) assms(2 ))

Nitpick shows consistency if transitivity is weakened into acyclicity or quasi-
transitivity:
theorem T3 :

assumes loopfree
shows True
nitpick [satisfy,expect=genuine,card=3 ] — model found
oops

theorem T4 :
assumes Quasitransit
shows True
nitpick [satisfy,expect=genuine,card=4 ] — model found
oops

end
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6 The Mere Addition Paradox: Max Rule

There are surprising results with the max rule. Transitivity alone generates
an inconsistencty only when combined with totality. What is more, given
transitivity (or quasi-transitivity) alone, the formulas turn out to be all
satisfiable in an infinite model.
theory mere-addition-max

imports DDLcube

begin

consts A::σ Aplus::σ B::σ i1 ::i i2 ::i i3 ::i i4 ::i i5 ::i i6 ::i i7 ::i i8 ::i

axiomatization where
— A is striclty better than B
PP0 : b(¬#<¬A|A∨B>∧#<¬B|A∨B>)c and
— Aplus is at least as good as A
PP1 : b¬#<¬Aplus|A∨Aplus>c and
— B is strictly better than Aplus
PP2 : b(¬#<¬B|Aplus∨B> ∧ #<¬Aplus|Aplus∨B>)c

Nitpick finds no finite model when the betterness relation is assumed to be
transitive:
theorem T0 :

assumes transitivity
shows True
nitpick [satisfy,expect=none] — no model found
oops

Nitpick shows consistency in the absence of transitivity:
theorem T1 :

shows True
nitpick [satisfy,expect=genuine,card i=3 ] — model found
oops

Sledgehammer confirms inconsistency in the presence of the interval order
condition:
theorem T2 :

assumes reflexivity and Ferrers
shows False
— sledgehammer
by (metis PP0 PP1 PP2 assms(1 ) assms(2 ))

Nitpick shows consistency if transitivity is weakened into acyclicity:
theorem T3 :

assumes loopfree
shows True
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nitpick [satisfy,expect=genuine,card=3 ] — model found
oops

If transitivity or quasi-transitivity is assumed, Nitpick shows inconsistency
assuming a finite model of cardinality (up to) seven (if we provide the exact
dependencies)–for higher cardinalities it returns a time out (depending on
the computer it may prove falsity also for cardinality eight, etc.:
theorem T4 :

assumes
transitivity and
OnlyOnes: ∀ y. y=i1 ∨ y=i2 ∨ y=i3 ∨ y=i4 ∨ y= i5 ∨ y= i6 ∨ y= i7

shows False
using assfactor-def PP0 PP1 PP2 assms

— sledgehammer()
— proof found by Sledgehammer, but reconstruction fails
oops

theorem T5 :
assumes

Quasitransit and
OnlyOnes: ∀ y. y=i1 ∨ y=i2 ∨ y=i3 ∨ y=i4 ∨ y= i5 ∨ y= i6 ∨ y=i7

shows False
using assfactor-def PP0 PP1 PP2 assms
— sledgehammer()
— proof found by Sledgehammer, but reconstruction fails
oops

Infinity is encoded as follows: there is a surjective mapping G from domain i
to a proper subset M of domain i. Testing whether infinity holds in general
Nitpick finds a countermodel:
abbreviation infinity ≡ ∃M . (∃ z::i. ¬(M z) ∧ (∃G. (∀ y::i. (∃ x. (M x) ∧ (G x)
= y))))

lemma infinity nitpick[expect=genuine] oops — countermodel found

Now we run the same query under the assumption of (quasi-)transitivity:
we do not get any finite countermodel reported anymore:
lemma

assumes transitivity
shows infinity
— nitpick — no countermodel found anymore; nitpicks runs out of time
— sledgehammer — but the provers are still too weak to prove it automatically;

see [2] for a pen and paper proof
oops

lemma
assumes Quasitransit
shows infinity
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— nitpick — no countermodel found anymore; nitpicks runs out of time
— sledgehammer — but the provers are still too weak to prove it automatically;

see [2] for a pen and paper proof
oops

Transitivity and totality together give inconsistency:
theorem T0 ′:

assumes transitivity and totality
shows False
— sledgehammer
by (metis PP0 PP1 PP2 assms(1 ) assms(2 ))

end

7 Conclusion

In this document we presented the Isabelle/HOL dataset associated with
[2]. We described our shallow semantic embedding of Åqvist’s dyadic deon-
tic logic E and its extensions. We showcased two key uses of the framework:
first, for meta-reasoning about the logic, particularly for verifying deontic
correspondences similar to modal logic; second, for assessing ethical argu-
ments, exemplified by encoding Parfit’s mere addition paradox, a smaller
version of his so-called repugnant conclusion.
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