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Abstract
This article provides a systematic analysis of the well-known notions of weak and strong permission in input/output (I/O)
logic. We extend the account of permission initially put forward by Makinson and Van der Torre to the whole family of
I/O systems developed during the last two decades. The main contribution is a series of characterization results for strong
permission, based on establishing the so-called non-repetition property. We also study an input/output logic not yet covered
in the literature. It supports reasoning by cases—a natural feature of human reasoning. The output is not closed under logical
entailment. At the same time, it avoids excess output using a consistency check—a technique familiar from non-monotonic
logic. This makes it well suited for contrary-to-duty reasoning. The axiomatic characterization is in terms of a generalized
OR rule. We discuss the implications of all this for our understanding of the notion of the coherence of a normative system.

Topics for future research are identified.
1

1 Introduction

In the Handbook of Deontic Logic and Normative Systems, the chapter on permission [8] highlighted
the existence of different varieties of permission. Makinson and Van der Torre [16] distinguished
negative permission in the context of a set of regulative norms from static and dynamic permission in
the context of permissive and regulative norms.2 Boella and Van der Torre [2] introduced permission
as an exception in the context of an explicitly hierarchical normative system that includes permissive
norms. This was further developed by Hansen [6]. Moreover, Stolpe [31] studied permission as
derogation.

All these notions of permission were studied using either variants of unconstrained input/output
(I/O) logic as developed by Makinson and Van der Torre [14] or a version of constrained I/O logic
based on so-called outfamilies [15] introduced by the same authors. However, over the past two
decades, new variants of input/output logic have been introduced, in particular intuitionistic I/O

1This article is an extended version of a paper presented at the 15th International Conference on Deontic Logic and
Normative Systems (DEON) [18]. The main additions include extending the results to more logics, introducing an I/O
operation left undefined in previous work (which we shall call here core basic output), and discussion of new topics
(coherence, obligation under exception and deontic explanation). We thank an anonymous reviewer for his comments.

2Sometimes, permissive norms are seen as a subclass of regulative norms. In this article, when we refer to ‘regulative
norms’, we mean rules that detach obligations, and when we refer to ‘permissive norms’, we mean rules that detach strong
permissions.
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Permissive and regulative norms in deontic logic 729

logics [19, 21], I/O logics without weakening [20, 27] and I/O logics with a built-in consistency
check [23, 26]. The first ones use intuitionistic logic rather than classical logic as the base logic. The
second ones no longer require the output to be closed under logical entailment. The third ones have a
consistency check which filters out excess output. They share some aspects with unconstrained I/O
logic, e.g. they are monotonic. Moreover, they share some aspects with constrained I/O logic, e.g.
they can handle contrary-to-duty reasoning. They have therefore been promoted as providing a good
balance between the two traditional categories of I/O logic.

In this article, we provide a systematic analysis of weak and strong permissions from an
input/output perspective. In particular, we address the following research questions:

1. How to define the notion of permission both semantically and proof-theoretically? A com-
pleteness or characterization theorem is required.

2. How to generalize and apply traditional notions of permission in the I/O logic framework (as
defined in [16]) to the whole family of existing I/O systems?

3. How to understand the notion of the coherence of a normative system on this basis?
4. How to define obligations with exceptions, i.e., obligations detached from regulative norms

that can be overridden by permissive norms?

To restrict the scope of this article, we shall focus on classical propositional logic and put aside the
intuitionistic case. We shall also put aside the hierarchical structure of normative systems, prioritized
norms, defeasible norms, dynamic permissions, formalization of rights and so-called outfamilies as
developed in constrained I/O logic by Makinson and Van der Torre [15]. All these topics are left for
further research.

We will now explain how we intend to address our research questions. First of all, our analysis
of permission is based on a generalized notion of coherence [7], combining insights from various
studies in deontic logic. From the work on permission, we will adopt and generalize the notion of
the cross-coherence of a normative system based on both permissive and regulative norms. From
the work on constrained input/output logic, we will adopt the distinction between output constraint
and input/output constraint, where the former is used to handle dilemmas, and the latter is used to
handle contrary-to-duty reasoning. An example of a dilemma is: ‘It is permitted and forbidden to
travel to Paris’. An example of contrary-to-duty reasoning is: ‘You should not travel to Paris, but
if you do, you are allowed to f ly’. In this article, we shall follow the terminology we used in [24],
where we provided: an overview of the various kinds of reasoning involved in normative reasoning
on matters such as dilemmas and contrary-to-duty scenarios, an overview of benchmark examples,
and an overview of reasoning principles in normative reasoning.

Second, for our study we will look at so-called simple-minded output, basic output and reusable
output of the traditional systems [14], I/O logics without weakening, and I/O logics with a built-
in consistency check or constraint. So far, in the deontic logic literature, there are semantics for
only two I/O logics with a built-in consistency constraint: semantics for so-called simple-minded
output and semantics for reusable output (see Tables 1 and 3 later in this article). In particular,
there is no semantics yet for basic output with a built-in consistency constraint. This means that
reasoning by cases is not supported. Reasoning by cases is a natural feature of human reasoning.
The statement to be proved is split into a finite number of cases, and each case is checked to see
whether the proposition in question holds. We therefore define such an operator and provide a sound
and complete axiomatization using a generalized OR rule, deriving ‘if a or b, then x or y is obligatory’
from ‘if a then x is obligatory’ and ‘if b then y is obligatory’.

In this article, ‘constrained’ permission refers to a notion of permission with a built-in consistency
check. To be more precise, for the semantics of constrained permission, we adapt the definitions
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730 Permissive and regulative norms in deontic logic

of Makinson and Van der Torre [16], replacing their unconstrained I/O logic with the constrained
version [26] and adapting their characterizations accordingly.

Using an idea proposed by Boella and Van der Torre [2], Hansen [6], Stolpe [31] and others that
strong permission can be interpreted as an explicit exception, we define obligations with exceptions
in a straightforward way: something is obligatory if it can be detached from regulative norms and if
there is no strong permission to the contrary.

Finally, to explain why a normative system is or is not coherent, we can choose the input/output
logic, the notion of permission, the notion of consistency, whether to have quantification over
contexts, and whether to use the output constraint or the I/O constraint. To explain why something
is obligatory, we can not only provide the relevant norms together with a derivation of the obligation
from the regulative norms, but we can also choose the I/O logic or the notion of consistency. It is
even more challenging to explain why something is not obligatory. In standard deontic logic based on
modal logic, such deontic explanations are provided by counter-models, but no such counter-model
can be provided in norm-based deontic logics like I/O logic. We therefore illustrate how the different
kinds of permissions can be used for such deontic explanations.

The article is structured as follows. Sections 2 and 3 lay the groundwork for subsequent sections.
Section 2 gives an overview of all the existing I/O operations (for obligation). Our analysis of
permission will presuppose them all. Section 3 introduces a new member to the I/O family. That
is, it introduces an I/O operation left undefined in recent work [23, 26, 27], which we shall call
‘core basic’. The I/O operation has three main features: reasoning by cases is supported, the output
is not closed under logical consequence and a built-in consistency check filters out excess output.
Section 4 is the core of the article. We carry out a systematic analysis of weak and strong permissions
with respect to the whole family of I/O logics presented in the previous sections. Characterization
results are given. Sections 5, 6 and 7 go one step further. Section 5 looks at the implications for
our understanding of the notion of coherence, which has long been recognized as a fundamental
formal property of a normative system.3 Section 6 discusses the relationship between obligation
and permission. Section 7 identifies topics for future research. Section 8 discusses related work.
Section 9 concludes the article. Extra material is gathered in three appendices, including a proof of
the non-repetition property (NRP) needed for the characterization results for strong permission.

2 I/O logics for obligation: an overview

We shall start by giving an overview of the whole family of I/O logics for obligation, which our
analysis of permission will presuppose.

I/O logic is a general logical framework devised by Makinson and Van der Torre in order to reason
about conditional norms [14, 15]. In I/O logic, the meaning of the deontic concepts is given in terms
of a set of procedures yielding outputs from inputs. Thus, the semantics may be called ‘operational’
rather than truth-functional. To some extent, the system can be viewed solely in terms of its input,
output and transfer characteristics and without any knowledge of its internal workings, which remain
‘opaque’ (a black box). Logic here is reduced to an ancillary role.

Let us call the normative system GR the set of regulative conditional norms of the form (a, x),
which means that ‘if a is the case, then it ought to be the case that x’, where a is called the body and
x the head of the norm. We call O an output operation, which for now the reader should understand

3The notion of the coherence of a normative system is the analogue of the notion of consistency in propositional logic.
The former plays the same role in the realm of norms as the latter in the realm of facts.
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Permissive and regulative norms in deontic logic 731

as a black box which, given a context A and normative system GR, outputs what ought to be the
case as O(GR, A). Makinson and Van der Torre compare this to a secretarial assistant who has the
task of ‘preparing inputs before they go into the machine, unpacking outputs as they emerge and,
less obviously, coordinating the two’ [14, p. 384]. This echoes the view in AI of logic as an added
component to black boxes that are generated by machine learning algorithms [28].

In this section, we consider sixteen input/output logics, eight without a notion of coherence and
eight with a built-in notion of coherence. The coherence condition is represented by a consistency
constraint. In the proof systems, the coherence condition leads to the presence of a consistency
proviso restraining the application of some rules (aggregation and deontic detachment) as explained
below.

2.1 Proof systems

The proof systems consist of sets of rules manipulating pairs of formulas. A derivation of (a, x) from
a set of norms is viewed as a tree whose root is (a, x), whose leaves are elements of GR, and each
pair attached to a node is obtained from previous nodes using these rules. Different sets of rules give
different systems. An overview of all the rules discussed in this article is provided in Appendix C.
A more concise overview is provided in Figure 1. All the systems discussed in this article satisfy
the requirements of strengthening the input (SI) and replacement of logical equivalents (EQ). This
ref lects the fact that we do not consider defeasible norms, prioritized norms, specificity or syntactic
differences between norms. Moreover, the systems are distinguished with respect to the following
four dimensions:4

Aggregation The proof systems satisfy either restricted aggregation or unrestricted aggregation,
represented as R-AND and AND, respectively.5

Cases The proof systems do or do not satisfy reasoning by cases, a.k.a. the OR rule. Traditionally,
those that do are called simple-minded and those that don’t are called basic. In this article, we
introduce a generalized form of reasoning by cases, ex-OR.

Deontic detachment The proof systems satisfy the requirement of: no deontic detachment, its
restricted version represented as restricted aggregative cumulative transitivity (R-ACT), or its
unrestricted aggregative version represented as ACT. Deontic detachment has traditionally been
assimilated with reusability and a supporting I/O system called reusable output.

Closure The proof systems either satisfy or do not satisfy closure under consequence, represented
by the weakening of the output rule (WO).

4In earlier work, a fifth dimension of throughput is also taken into consideration: I/O logics may or may not allow the input
to be automatically carried out as output. Where it is allowed, the I/O operation is called ‘throughput’. Throughput operations
are less suited to normative reasoning because they validate the controversial rule of identity (ID)—from no premise, infer
(y, y). They are thus less suitable for our analysis of permissions, and so we put them aside. Throughput operators are used
for many other kinds of rule-based reasoning, e.g. in default logic. Technically, most concepts in this article can also be
used for throughput operators simply by adding identity to all results. The traditional I/O logics of Makinson and Van der
Torre consider three dimensions: cases, reusability and identity. The new dimensions are aggregation and closure. Closure is
about the possibility of removing the property of closure from the obligation or permission operator under entailment, and
aggregation is about the possibility of adding a consistency constraint to the semantics in order to filter out excess output.

5Even weaker systems that do not satisfy any aggregations have been studied by Farjami [4], but without the ability to
aggregate obligations, the role of logic seems very small. Ambrossio et al. [1] argued that aggregation is a minimal property
of deontic logic. Lellmann et al. [12] and van Bertel et al. [34] presented formalizations of reasoning in Sanskrit philosophy.
These logics do not contain aggregation, but they are deliberately weak.
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732 Permissive and regulative norms in deontic logic

FIGURE 1. Input/output logic inference rules

TABLE 1. Proof systems. x is a minimal set, + are derived rules. When marked with †, the OR rule
is used instead of ex-OR.

System SI EQ R-AND AND ex-OR/OR† R-ACT ACT WO

D1 x x x
D2 x x x x
D3 x x + x
D4 x x + x x
D5 x + x x
D6 x + x x x
D7 x + + x x
D8 x + + x x x
D∗

1 x x + x
D∗

2 x x + x x†

D∗
3 x x + + + x

D∗
4 x x + + x† + x

D∗
5 x + + x x

D∗
6 x + + x x x

D∗
7 x + + + + x x

D∗
8 x + + + x + x x

In this article, we use classical propositional logic as the base logic L upon which the I/O system
is defined. In addition to the terminology already introduced, for a set of norms GR, then h(GR) is
the set of all the heads of elements of GR, and b(GR) is the set of all the bodies of elements of GR.
GR(A) is defined as {x : (a, x) ∈ GR for some a ∈ A}. Cn represents the consequence operation from
classical propositional logic. In order to facilitate some of the technical results that follow, we make
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Permissive and regulative norms in deontic logic 733

TABLE 2. The ordering/inclusions of the proof systems.

Dν
1 ⊆ Dν

2 ⊆ Dν
4 for ν ∈ { , ∗}

Dν
1 ⊆ Dν

3 ⊆ Dν
4

Dν
5 ⊆ Dν

6 ⊆ Dν
8 for ν ∈ { , ∗}

Dν
5 ⊆ Dν

7 ⊆ Dν
8

Dν
i ⊆ Dν

i+4 for i = 1, ..., 4, ν ∈ { , ∗}
Di ⊆ D∗

i for i = 1, ..., 8

the additional assumption that each (a, x) in GR has a consistent fulfilment in the sense that the body
and head are jointly consistent.

DEFINITION 1 (Proof systems [14, 22, 26])
Let GR be a set of conditional norms, such that ∀(a, x) ∈ GR (a, x) has a consistent fulfilment in the
sense that a ∧ x is consistent. We say that (a, x) ∈ Dν

i (GR) iff (a, x) is derivable from GR using the
rules of Dν

i . We say that (A, x) ∈ Dν
i (GR) iff (a, x) ∈ Dν

i (GR) where a is a conjunction of formulas
in A. Equivalently, we say that x ∈ Dν

i (GR, A).

All considered proof systems are provided in Table 1. We use a unified notation for all systems:
Ox

i /Dν
i , where i ∈ {1, . . . , 8} and ν ∈ { , ∗}. The star superscript indicates systems without a built-in

consistency constraint. All systems contain the basic rules SI and EQ, and some form of aggregation.
Systems with an even subscript support a form of reasoning by cases, systems with the superscripts
3, 4, 7 and 8 satisfy some form of transitivity, and systems with subscripts 5–8 satisfy WO. The rules
of each proof system are provided in Table 1 and the corresponding input/output logic is provided in
Table 3. The original I/O logic, which was denoted as out1 − out4 in [14], has thus become O∗

5 − O∗
8.

Table 2 shows the orderings/inclusions pertaining to the proof systems.

2.2 Semantics

Detachment (or modus ponens) is the core mechanism of the semantics. Existing semantics for the
proof systems in Table 1 are listed in Table 3.

The semantics of simple-minded output O∗
5, traditionally called out1, is O∗

5(GR, A) =
Cn(GR(Cn(A))). This semantics calculates the whole output in three steps. First, it takes the
consequence set of input A, then it takes the image under GR, and finally it takes the consequence set
again. More complex semantics are based on this idea. For example, the semantics of basic output
O∗

6, traditionally called out2, is O∗
6(GR, A) = ∩{Cn(GR(Cn(V))) | A ⊆ V , V complete}, where

a complete set is either a maxi-consistent set, or the whole language L. Each of the complete V
represents one of the cases. We refer to Appendix A for the full definitions of these I/O operations.
The input/output logics with a built-in consistency constraint, i.e. O1 to O8, are more involved than
the traditional I/O logics O∗

1 to O∗
8. The consistency constraint corresponds to a coherence condition.

We introduce O2 in the next section. It is new to the literature.
As the table illustrates, we do not yet have semantics for all proof systems. In particular, the

semantics of O5–O7 have never been defined. The reason why these logics have not been studied is
that they face so-called Van Fraassen’s paradox (see [9, p. 79]). In systems O5–O8, we can derive
Oq from Op and O¬p. In other words, despite the built-in consistency constraint, we still have so-
called deontic explosion: when a conflict of obligations arises, everything becomes obligatory. This
problem has motivated the design of O1–O4.

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/article/34/4/728/7185562 by R
uhr-U

niversitaet Bochum
, Bibl. Fak. Biologie user on 30 O

ctober 2024



734 Permissive and regulative norms in deontic logic

TABLE 3. Semantics introduced in the literature. ‘+’ is introduced in this article. ‘−’ indicates that
the I/O operation has not been studied yet. An I/O operation is called ‘loose’ if it validates WO and
‘core’ if it does not validate WO. It is called ‘extended’ if it has no built-in consistency constraint.

I/O operation Name References

O1 Core simple-minded output [11, 26]
O2 Core basic output +
O3 Core reusable simple-minded output [11, 26]
O4 Core reusable basic output −
O5 Loose simple-minded output −
O6 Loose basic output −
O7 Loose reusable simple-minded output −
O8 Loose reusable basic output −
O∗

1 Core extended simple-minded output [20]
O∗

2 Core extended basic output [20]
O∗

3 Core extended reusable simple-minded output [20]
O∗

4 Core extended reusable basic output [21]
O∗

5 Loose extended simple-minded output [14]
O∗

6 Loose extended basic output [14]
O∗

7 Loose extended reusable simple-minded output [14]
O∗

8 Loose extended reusable basic output [14]

The semantics can be used in various ways. For example, when we want to explain why a formula
is not obligatory under O∗

5 or O∗
6, we can compute the above sets of formulas and show that that

formula is not part of any of them.
The proof-theoretical characterization in the form of rules operating on pairs of formulas (as

described in Table 1) is made possible by the following equivalences: x ∈ Dν
i (GR, {a}) iff (a, x) ∈

Dν
i (GR), and x ∈ Ox

i (GR, {a}) iff (a, x) ∈ Ox
i (GR). These equivalences have the status of a notational

convention.
Note finally that Ox

i is a closure operation:6

Reflexivity: GR ⊆ Oν
i (GR)

Monotonicity: Oν
i (GR) ⊆ Oν

i (GR ∪ H)

Idempotence: Oν
i (GR) = Oν

i (O
ν
i (GR))

3 A characterization result for basic output with a consistency check

In this section, we study the basic I/O operation O2. We define it, give a syntactical characterization,
and show completeness. This result is new to the literature.

Reasoning by cases is a rule that is often desirable to have and is intuitive. It can be particularly
relevant for deontic explanation. Consistency constraints in I/O logic are required for contrary-to-
duty reasoning, yet no I/O system combining consistency constraints and reasoning by cases has
been proposed yet. For this reason, we introduce a new I/O logic that combines a form of reasoning
by cases with consistency constraints.

6For further discussion, see the Deontic Logic Handbook chapter on I/O logic [21].
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Permissive and regulative norms in deontic logic 735

This is relevant for permission because permission is defined in terms of obligation. Our primary
goal in this article is to present a systematic analysis of weak and strong permissions with respect to
the whole family of input/output logics (for obligation). This analysis would not be complete if all
members were not covered.

Our new semantics is based on so-called single-step semantics, which we call core simple-minded
output and refer to as O1. It is defined as follows:

DEFINITION 2 (Core simple-minded output [26])
x ∈ O1(G, A) iff there exists some finite M ⊆ G and a set B ⊆ Cn(A) such that M 	= ∅, B = b(M),
x �� ∧h(M) and {x} ∪ B is consistent.7 O1(G) = {(A, x) : x ∈ O1(G, A)}.

In the proof system of O2, the axiom ex-OR is added to allow reasoning by cases. It corresponds
to the following semantics.

DEFINITION 3 (Core basic output)
x ∈ O2(GR, A) iff x ∈ O1(G�

R, A) where G�
R is the closure of GR under ex-OR.

The following example shows what kinds of obligations can be inferred in O2.

EXAMPLE 1
Let s stand for snow, r for rain, g for good weather, d for driving and c for driving carefully. Then,
using ex-OR, one derives (¬g, ¬d ∨ c) from (s, ¬d) and (r, c), assuming that s ∨ r �� ¬g, i.e. we
can derive that in bad weather we ought to drive carefully or not drive at all from the premises that
we ought not to drive when it snows and that we ought to drive carefully when it rains.

The following phasing result will play a key role in the establishment of the characterization
theorem.

LEMMA 1 (Phasing)
D2(GR) = D1(G�

R), with G�
R as in Definition 3.

PROOF. We show that any derivation in D2 can be rewritten in such a way that ex-OR is applied
first. This is because an application of R-AND (resp. SI) followed by ex-OR can be transformed into
an application of ex-OR followed by R-AND (resp. SI). We treat EQ as a ‘silent rule’ that may be
applied anytime without an explicit justification.

• R-AND/ex-OR ⇒ ex-OR /R-AND

7b(M) is the set of all the bodies of the rules in M , and h(M) is the set of all the heads of the rules in M .
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736 Permissive and regulative norms in deontic logic

becomes

because the consistency of b ∧ y ∧ z entails (a ∨ b) ∧ (x ∨ (y ∧ z))).

• SI/ex-OR ⇒ ex-OR /SI

becomes

�

THEOREM 1 (Soundness)

D2(GR, A) ⊆ O2(GR, A).

PROOF. Let x ∈ D2(GR, A). Hence x ∈ D2(GR, a), where a is a conjunction of elements of A. So
x ∈ D1(G�

R, a) [Lemma 1]. As a result, x ∈ O1(G�
R, a) [soundness for O1] and x ∈ O1(G�

R, A)

[monotonicity for O1]. Hence x ∈ O2(GR, A) [Definition 3]. �
It is worth noting that the argument for soundness, Theorem 1, does not follow the usual pattern of

showing that the rules of the proof system are semantically valid. That can be verified independently.

PROPOSITION 1
O2 validates the rules of D2.

PROOF. R-AND. Assume x ∈ O2(GR, a) and y ∈ O2(GR, a) and that a ∧ x ∧ y is consistent. In
that case, x ∈ O1(G�

R, a) and y ∈ O1(G�
R, a). Since O1 validates R-AND, x ∧ y ∈ O1(G�

R, a). By
definition, x ∧ y ∈ O2(GR, a).

SI. Assume x ∈ O2(GR, a) and b � a. So x ∈ O1(G�
R, a). Since O1 validates SI, then

x ∈ O2(GR, b).
ex-OR. Let x ∈ O2(GR, a) and y ∈ O2(GR, b). Then x ∈ O1(G�

R, a) and y ∈ O1(G�
R, b) [def of O2].

So x ∈ D1(G�
R, a) and y ∈ D1(G�

R, b) [completeness of D1]. So x ∈ D2(GR, a) and y ∈ D2(GR, b)

[Lemma 1]. So x ∨ y ∈ D2(GR, a ∨ b) [ex-OR]. So x ∨ y ∈ D1(G�
R, a ∨ b) [Lemma 1]. So x ∨ y ∈

O1(G�
R, a ∨ b). So x ∨ y ∈ O2(GR, a ∨ b). �

THEOREM 2 (Completeness)
O2(GR) ⊆ D2(GR).

PROOF. Assume (A, x) ∈ O2(GR). By definition, (A, x) ∈ O1(G�
R). By completeness for core simple-

minded I/O logic, (A, x) ∈ D1(G�
R). By Theorem 1, (A, x) ∈ D2(GR) as required. �
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Permissive and regulative norms in deontic logic 737

4 Permission

In this section, we present a systematic analysis of weak and strong permissions with respect to
multiple I/O logics. In particular, we extend the work of Makinson and Van der Torre [16] and
Olszewski et al. [18]. In the aforementioned articles, three kinds of permissions were distinguished:
negative (weak) permissions, positive static (strong) permissions and positive dynamic permissions.
However, in our article, we focus only on the first two kinds. Dynamic permission situates itself
behaviourally in between weak and strong permission and is of much interest; however, axiomatizing
dynamic permission is a challenging endeavour and the methods proposed in [16] no longer work
for logics with a built-in consistency constraint [18].

Weak permission is defined as what is not prohibited, and strong permission is what follows from
regulative norms combined with an explicit permissive norm. We first provide an analysis of weak
permission, and then an analysis of strong permission.

4.1 Weak permission

The articles mentioned above analysed permission operations for six different underlying I/O logics
in total, O∗

5–O∗
8 as well as O1 and O3. They presented a mechanism for transitioning from the

rules of the axiomatic characterization of the obligation operation to the rules of the axiomatic
characterizsation of weak permission (called inverse rules) and strong permission (called subverse
rules). Furthermore, they showed soundness and completeness for strong permission rules.

Completeness was not proven for weak permission. This is because weak permission is not a
normative notion per se, in the sense that it does not come from the presence of norms, but rather
from their absence. Hence, when we base weak permission on obligation, we in fact have to deal with
underivability, a property of rule-based systems that is much more difficult than its preference-based
counterpart, which is the counter-model.

The notion of weak permission dates back to the very start of modern deontic logic, when von
Wright used permission as a primitive and defined the other notions from that primitive. He stated
that whatever is not permitted is forbidden, and that whatever is such that its negation is not permitted
is obligatory [35]. It is now more common to take the obligation operation as the primitive and define
permission in terms of it. Still, the basic idea is the same.

DEFINITION 4
Let Oν

i be an output operation, and let GR be a set of regulative norms and A the context. Then x is
said to be weakly permitted given context A and normative code GR iff x is not prohibited given the
same context and code:

x ∈ WPν
i (GR, A) iff ¬x /∈ Oν

i GR, A)

A definition like this has certain implications. Since the obligation operation can be characterized
by a set of rules, this dictates the way that permission behaves when defined in terms of obligation.
For instance, since weak permission is defined negatively, i.e. something is permitted if it is not
prohibited, this entails that if the underlying logic is such that it allows the derivation of many
obligations, there will be fewer things permitted. Similarly, if the I/O logic does not allow many
obligations to be derived, the number of permissions will be higher.

To see the effect of the semantic definition of weak permission in terms of the obligation
operation, we look at the general forms of the obligation rules and show how they change into
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738 Permissive and regulative norms in deontic logic

permission rules. The rules of Dν
i have the following form:

(HR): (αj, ϕj) ∈ Oν
i (GR) (j ≤ n) & θk ∈ Cn(γk) (k ≤ m)

&
n∧

l=0

(αl ∧ ϕl) 	� ⊥ ⇒ (β, ψ) ∈ Oν
i (GR)

Their inverses have the form:

(HR)−1: (αj, ϕj) ∈ Oν
i (GR) (j < n) & (β, ¬ψ) ∈ WPν

i (GR)

& θk ∈ Cn(γk) (k ≤ m) &
n∧

l=0

(αl ∧ ϕl) 	� ⊥

⇒ (αn, ¬ϕn) ∈ WPν
i (GR)

PROPOSITION 2
If an output operation Oν

i satisfies the (HR) rule, then the corresponding weak permission WPν
i

satisfies the inverse rule (HR)−1.

PROOF. Let GR be a set of norms and assume the following:

1. Oν
i satisfies (HR)

2. (αi, ϕi) ∈ Oν
i (GR) for i < n

3. (β, ¬ψ) ∈ WPν
i (GR)

4. θj ∈ Cn(γj)

5.
∧n′

k=0(αk ∧ ϕk) 	� ⊥
By 3. and the definition of weak permission, we have that:

6. (β, ψ) /∈ Oν
i (GR)

By 2., 4. and 5., we know that all premises of the (HR) rule hold, with the exception of one
premise, namely that of (αn, ϕn) ∈ Oν

i (GR), which is unknown. By 3., we know that the conclusion
of (HR) does not hold. By 1., we know that Oν

i satisfies (HR). Hence, the only premise with an
unknown status cannot hold, thus (αn, ϕn) /∈ Oν

i (GR). By the definition of weak permission, we get
(αn, ϕn) ∈ WPν

i (GR). �

4.2 Strong permission

Apart from negative permission, the other widely acknowledged kind of permission is strong
permission, also referred to as positive or explicit permission. Strong permissions are permissions
that have been explicitly granted, or that follow from explicitly granted permissions and obligations.
We define them in the following way:

DEFINITION 5
Let Oν

i be an output operation, GR a set of regulative norms, GP a set of permissive norms and A the
context. Then x is said to be strongly permitted given context A and normative codes GR and GP iff x
is outputted from the regulative code together with a single permissive norm from the same context:

x ∈ SPν
i GR, GP, A) iff x ∈ Oν

i (GR ∪ Q, A)

where Q ⊆ GP is a singleton or an empty set.
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Permissive and regulative norms in deontic logic 739

The above definition gives a general pattern, which may be instantiated using any I/O operation
Oν

i as you think fit. One reason for requiring that Q should be a singleton is that GP may contain
two pairs whose heads contradict one another. For instance, it may be permitted to open and close
the window at the same time. This is usually called a bilateral permission. If Oν

i is closed under
entailment, everything is permitted, which may be considered counter-intuitive. This is because of
the principle ‘ex falso sequitur quodlibet’.

Following von Wright [37], it is common to define strong permission in the above way, not
allowing permissive norms to aggregate. The classical example is the drinking-and-driving case.
It is plausible to say that the permissions ‘Alice is allowed to drink’ and ‘Alice is allowed to drive’
both hold at the same time without having ‘Alice is allowed to drink and drive’ hold.

The transformation of the Horn rule that corresponds to strong permission is called the subverse
rule, and is defined in the following way:

(HR)↓: (αj, ϕj) ∈ Oν
i (GR) (j < n) & (αn, ϕn) ∈ SPν

i (GP, GR)

& θk ∈ Cn(γk) (k ≤ m) &
n∧

l=0

(αl ∧ ϕl) 	� ⊥

⇒ (β, ψ) ∈ SPν
i (GP, GR)

We illustrate the notion of a subverse rule with an example. A pair with the superscript o is an
obligation. A pair with the superscript p is a permission.

EXAMPLE 2 (Voting)
Suppose that the obligation operation satisfies restricted aggregation (R-AND). Let lux stand for
being a Luxembourgish citizen, pl for being a Polish citizen, and vlux and vpl for voting as a
Luxembourgish or Polish citizen in the EU elections. Seeing that in Luxembourg there is an
obligation to vote, and in Poland there is not, and every EU citizen is only allowed to vote in the EU
elections once, we have that (lux ∧ pl, vlux)

o and (lux ∧ pl, vpl)
p, but not (lux ∧ pl, vlux ∧ vpl)

p, since
lux ∧ pl ∧ vlux ∧ vpl is inconsistent. In a case where the obligation operation satisfies the unrestricted
version of aggregation (AND), we are able to derive (lux ∧ pl, vlux ∧ vpl)

p. This is counter-intuitive.

PROPOSITION 3
If an output operation Oν

i satisfies the (HR) rule, then the corresponding strong permission SPν
i

satisfies the subverse rule (HR)↓

PROOF. Let GR be a set of norms and assume the following:

1. Oν
i satisfies (HR)

2. (αi, ϕi) ∈ Oν
i (GR) for i < n

3. (αn, ϕn) ∈ SPν
i (GR)

4. θj ∈ Cn(γj)

5.
∧n′

k=0(αk ∧ ϕk) 	� ⊥
By 3. and the definition of strong permission, we have that:

6. (αn, ϕn) ∈ Oν
i (GR ∪ Q) where Q ⊆ GP singleton or empty.

By 1., we know that Oν
i satisfies (HR). Since the Oν

i we consider here are monotonic, we have
from 2. that also:

7. (αi, ϕi) ∈ Oν
i (GR ∪ Q) for i < n.
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740 Permissive and regulative norms in deontic logic

Let H = GR ∪ Q. By 4., 5., 6., and 7., we know that all the premises of the (HR) rule hold for
normative system H . By 1., Oν

i satisfies (HR), hence the conclusion of (HR) also holds, and we get
(β, ψ) ∈ Oν

i (H). Since H = GR ∪ Q with Q ⊆ GP, whether singleton or empty, we get by our
definition of strong permission that (β, ψ) ∈ SPν

i (GR). �
Now that we know which rules strong permission satisfies with respect to the base logic, we want

to discuss which rules can be desirable or problematic when reasoning about permission.
First, let us consider the case where the content of a permission is inseparable. A study of

inseparability was conducted in [6]. We illustrate inseparability with the following example:

EXAMPLE 3
This is a version of Feldman’s medical example from [5, p. 87]. Let i stand for a patient having an
illness, with m1 and m2 being two medicines used for the treatment of this illness, such that m1 is
only safe to use in combination with m2. Then (i, m1 ∧ m2)

p holds, but not (i, m1)
p.

Where the contents of permissions are inseparable, weakening of the output is not recommended.
Second, we argue that consistency constraints are beneficial, as Example 2 showed. They also

prevent the pragmatic oddity [29]. Pragmatic oddity arises when it is possible to derive from an
obligation to keep one’s promise and an obligation to apologize if one does not keep it that one
should keep one’s promise and apologize for not keeping it. For an in-depth analysis of pragmatic
oddity in input/output logic, see [23]. Here we consider a permission variant of it:

EXAMPLE 4 (Broken promise)
Let p stand for keeping a promise and e for explaining why the promise was not kept. Then, from
assumptions that one should keep one’s promise (�, p)o and that if one does not keep it one is
allowed to explain the reason why (¬p, e)p, it is possible to derive that one is permitted to keep one’s
promise and explain why one did not keep it (¬p, p ∧ e)p. Such a derivation goes through standard
aggregation (systems O5-O8, O∗

1-O∗
2 and O∗

5-O∗
8). But it is blocked by the consistency proviso of the

restricted version (systems O1-O4).

4.3 Characterization result (strong permission)

Proposition 3 corresponds to the soundness of the system and is straightforward. Completeness,
however, is quite particular. Makinson and Van der Torre have shown that completeness amounts to
having the non-repetition property for any derivation in the given system [16]. This is the property:

Non-repetition property (NRP). A derivable pair (a, x) can always be derived in such a manner
that every leaf node (in the derivation) is used only once.

The NRP requirement has been used in other contexts, for example to capture the idea that every
premise is a resource that can be used only once. In the proof theory literature, it is known as
contraction closure [13].

To see why the NRP requirement is sufficient for completeness of the subverse rules, recall the
semantic definition of strong permission. We say that (a, x) ∈ SPν

i (GP, GR) iff (a, x) ∈ Oν
i (GR ∪ Q)

for Q ⊆ GP, whether it is a singleton or empty. The main idea of strong permission is that we
are only allowed to use one permissive norm at a time. This is also ref lected in the subverse rules
(Dν

i )
↓, where one premise at most is allowed to be a permissive premise, and if that is the case, then

the conclusion is a permissive norm, which may be used as a premise for further rule applications.
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Permissive and regulative norms in deontic logic 741

However, if a permissive leaf is used twice, the derivation necessarily has two sub-derivations, each
of which results in permissive conclusions that end up meeting in some rule. However, two permis-
sive norms may never be used together. Recall the drinking-and-driving example. The two permissive
norms permit drinking and driving separately, but they are not allowed to ‘join’ into permitting
drinking and driving. Hence, if we are looking at SPν

i , then the NRP of Dν
i is a sufficient condition

for completeness, since every formula from Oν
i (GR ∪ Q, A) will be derivable in Dν

i from GR ∪ Q
using leaf Q once at the most. The rest follows from the completeness of Oν

i with regard to Dν
i .

PROPOSITION 4
D∗

1, D∗
3, D∗

5, D∗
6 D∗

7, D1 and D3 satisfy the NRP requirement.

To facilitate readability, the full proof is given in the Appendix. Here, we illustrate the core of
the technique. It is based on phasing, which is rewriting proofs, or part of proofs, with rules being
applied in a specific order.

For D∗
3, applications of R-ACT followed by SI (on the left-hand side below) must be rewritten

into applications of SI followed by R-ACT (on the right-hand side below). However, the consistency
constraint blocks the permutation, because the fact that a ∧ x ∧ y is consistent does not imply that
a ∧ b ∧ x ∧ y is consistent:

R-ACT
(a, x) (a, x)(a ˄ x, y)

(a, x ˄ y) (a ˄ b, x) (a ˄ b ˄ x, y)

(a ˄ b, x ˄ y)

(a ˄ x, y)

(a ˄ b, x ˄ y)
SI

if a, x, y if a, b, x, y

R-ACT

To overcome this problem, we consider only subparts of derivations above the R-ACT rule, and
we show that they can be phased in the way we need them to be.

We find it rather unlikely that NRP holds for them. This does not mean that SP2 and SP∗
2 are not

axiomatizable.
For D2, consider the following derivation:

Note that the consistency constraint applied to R-AND is the following: (a ∨ b) ∧ (a ∨ c) ∧ (x ∨
y) ∧ (x ∨ z) 	� ⊥. The only derivation that would allow us to derive the same conclusion from each
premise used only once, given the rules of D2, is the following:

The dashed line means the derivation is blocked. There is no guarantee that R-AND can be applied in
this second derivation as it requires that b ∧ c ∧ y ∧ z 	� ⊥, which is not entailed by the much weaker
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742 Permissive and regulative norms in deontic logic

requirement of the first derivation. So, if (a, x) happens to be a permissive norm, the subverse rules
of (D2)

↓ do not allow us to derive (a ∨ (b ∧ c), x ∨ (y ∧ z)) from regulative premises {(b, y), (c, z)}
and permissive premise (a, x) (due to the requirement that one premise in the derivation at most
can be a permissive norm). However, we are well in the situation that (a ∨ (b ∧ c), x ∨ (y ∧ z)) ∈
O2({(a, x), (b, y), (c, z)}), hence (a ∨ (b ∧ c), x ∨ (y ∧ z)) ∈ SP2({(b, y), (c, z)}, {(a, x)}).

What creates the issue is the combination of the consistency constraint and the weakening that
happens through the ex-OR rule. If ex-OR is applied first, the consistency constraint is on the
weakened elements, and it is no longer possible to invert ex-OR and R-AND in order to get an
alternative derivation.

For D∗
2, this is the same. Consider:

There is no derivation that uses each leaf only once. This shows that the establishment of NRP is
not as trivial as it may first seem.

As a corollary result, one gets:

COROLLARY 1 (Completeness).
The subverse rulesets are enough to fully characterize the corresponding strong permission when
the underlying I/O operation is one of the following: O∗

1, O∗
3, O∗

5, O∗
6 O∗

7, O1 and O3, i.e. (D∗
1)

↓
(respectively (D∗

3)
↓, (D∗

5)
↓, (D∗

6)
↓ (D∗

7)
↓, (D1)

↓ and (D3)
↓) are sufficient to fully characterize SP∗

1
(respectively SP∗

3, SP∗
5, SP∗

6 SP∗
7, SP1 and SP3).

5 Coherence

It is often assumed that norms do not have truth values. This is known as Jorgensen’s dilemma
[10]. It is thus also often concluded that we cannot talk about the consistency or inconsistency of a
normative system. However, it is generally useful to have a formal notion that ref lects the property
of a normative system that is intuitively well-behaved, compatible or conflict-free, similar to the
way that consistency for propositions ref lects a property that the description is conflict-free. This
property for normative systems we shall call coherence.

As a starting point, most rule-based systems may be called coherent if, under some context, they
do not prescribe contradictory actions. Hence, a rule-based system that is coherent is unproblematic
in the sense that it can be applied without further interpretation or discussion. A rule-based system
that is incoherent needs to be handled more carefully; it may require interpretation or additional
deliberation.8

In deontic logic, this is not the only possible definition. We could also say that a violation is a
kind of incoherence, and that contrary-to-duty reasoning is an attempt to make a normative system

8In this article, incoherence is understood as a situation where dilemmas exist or may occur. Clearly, other definitions of
incoherence could be given as well. For example, assuming moral dilemmas are ubiquitous in the real world, some people
may be hesitant to call such a rule-based system incoherent. As this seems to refer more to a linguistic interpretation of
‘coherence’ than to logical analysis, we do not discuss this point further in this article.
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Permissive and regulative norms in deontic logic 743

coherent again. For this reason, formalizing coherence is particularly challenging for normative
systems.

In general, the coherence of a normative system can take many forms. In this section, we discuss
various ways of conceptualizing coherence. We do not go into the reasons why a normative system
is coherent or incoherent9 or whether we ought to strive toward coherence.10

5.1 The many faces of coherence

Even if the coherence of a normative system cannot be defined as the consistency of a set of norms
in a particular context, it can be defined in terms of the consistency of the detachments of the norms
in that context. For example, even if the norm ‘There should be world peace’ cannot be given a truth
value, the proposition ‘There is world peace’ is either true or false. In other words, once we define
a way to apply the norms, then we can define the different notions of coherence in terms of the
consistency of expressions such as ‘There is world peace’. In this article, we use an abstract operator
O, as studied in the I/O logic framework, to apply norms in a specific context in this way.

5.1.1 Obligation coherence. This section refers to obligation coherence (we do not yet consider
permissions). We distinguish between two notions related to the coherence of normative systems
that appear in the literature on I/O logic, namely output consistency and input/output consistency.
These have been discussed by Makinson and Van der Torre on the topic of constrained I/O
logic [15].

First, we can require coherence in the normative system. Output consistency requires the absence
of rules with an inconsistent head, i.e. (a, ⊥) /∈ GR for any a. The I/O consistency of a normative
system requires that for every norm in the normative system, the head is consistent with the body,
i.e. ∀(a, x) ∈ GR, a ∧ x are consistent. We say that such a norm has a consistent fulfilment. In this
article, we assume that all norms have a consistent fulfilment.11

Secondly, we can require stronger versions of output consistency and input/output consistency that
require consistency not only in the elements of the normative system but also in everything detached
from them. For a context A, output consistency is defined as O(GR, A) being consistent, whereas I/O
consistency is defined as O(GR, A)∪ {A} being consistent. Output consistency can be used to handle
conflicts in normative systems, while I/O consistency can be used to handle contrary-to-duty (CTD)
reasoning in the sense that the consistency constraint on the context A and on the output limits the
norms to be considered to those that are applicable to the violation context and not the general norms
that are applicable when there is no violation. Note that I/O consistency implies output consistency.
Furthermore, if A ⊆ O(GR, A), i.e. O is a throughput operator (satisfying the identity rule ID — see
Section 2), then the two notions collapse to a single notion. The coherence of a normative system
can be defined in terms of output consistency or input/output consistency.

9Incoherence in normative systems can either come from design errors or can be intentional in the sense that the designer
wants to point the user to a dilemma that needs further ref lection. For example, norms being heuristic rules of thumb, parts
of the system to be regulated can be unknown or, as in legal texts, the system may also regulate unknown future scenarios [3].

10In other words, we do not assume that there is a norm stating that it is forbidden to make a normative system incoherent.
There are authors who disagree with this claim. For example, Ruth Barcan Marcus argues that the presence of (moral)
dilemmas is not an indication of inconsistency in a system of norms [17]. However, she has a very specific notion of
inconsistency in mind and, as we shall elaborate below, coherence can take many forms. A normative system may be coherent
according to one definition, and incoherent according to another.

11This is done for practical reasons: we do not have to consider borderline cases in the proofs. The generalization to the
general case where norms do not have to have a consistent fulfilment is straightforward as such borderline cases need to be
defined explicitly.
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744 Permissive and regulative norms in deontic logic

One can think of imposing either one of the two notions of consistency to the pair (GR, A) at
different levels. First, one can require absolute consistency, where O(GR, A) needs to be consistent.
Next, one can refine this notion either by context and some quantification thereof or by a generator
set. In the former case, one can require consistency only for some contexts, or for all contexts. In the
latter case, we can ask for consistency for only those contexts that are bodies of explicit norms in
GR, which means that they correspond to situations foreseen by the source of the normative code.

Definition 6 formalizes these various kinds of obligation coherence. With only regulative norms
GR and context A, coherence depends on four elements. The first element is an operation O
associating a set of obligations with GR and A.12 The second element is the choice between output
consistency and I/O consistency. The third element is quantification over relevant contexts. The
fourth element is the notion of consistency for the base language.13

DEFINITION 6 (Obligation coherence)
Let L be a logical language, GR a set of pairs of L having a consistent fulfilment, A a subset of L
and O a function that associates subsets of L with such GR and A. Moreover, let cons be a Boolean
function telling us whether a subset of L is consistent or not. The pair (GR, A) is:

O� coherent iff cons(O(GR, A))

O∃ coherent iff ∃B ⊆ L : cons(O(GR, A ∪ B))

O∀ coherent iff ∀B ⊆ L : cons(A ∪ B) ⇒ cons(O(GR, A ∪ B))

OR coherent iff ∀(a, x) ∈ GR : cons(O(GR, A ∪ {a}))
IO� coherent iff cons(A ∪ O(GR, A))

IO∃ coherent iff ∃B ⊆ L : cons(A ∪ B ∪ O(GR, A ∪ B))

IO∀ coherent iff ∀B ⊆ L : cons(A ∪ B) ⇒ cons(A ∪ B ∪ O(GR, A ∪ B))

IOR coherent iff ∀(a, x) ∈ GR : cons(A ∪ {a} ∪ O(GR, A ∪ {a}))
We use the Boolean function coh to denote whether a pair (GR, A) is coherent. We use X as a

variable ranging over {I , IO} and we use Y as a variable ranging over {�, ∃, ∀, R}. If (GR, A) is XY-
coherent, we denote this as cohY

X (GR, A). For instance, if (GR, A) is IO∃-coherent, we denote this as
coh∃

IO(GR, A).

Note that if coh∀
X (GR, A), then also coh�

X (GR, A) and cohR
X (GR, A). Furthermore, if cohY

IO(GR, A),
then also cohY

O(GR, A). Moreover, if O is a throughput operator, then cohY
O(GR, A) iff cohY

IO(GR, A).
To illustrate how the different notions of coherence from Definition 6 behave on the same

normative system, consider the following example of a potential dilemma.

EXAMPLE 5 (Potential conflict between obligations)
Let GR = {(a, x), (b, ¬x)} and let O be such that14 O(GR, {x}) = ∅, O(GR, {x, a}) = {x},
O(GR, {x, b}) = {¬x} and O(GR, {x, a, b}) = {x ∧ ¬x}, cons({a, b, x}) and its subsets, and
not cons({x ∧ ¬x}) and its supersets. Then it is the case that coh�

O(GR, {x}), coh∃
O(GR, {x}) and

12The same normative system GR can be coherent in one logic and incoherent in another one. For example, consider the
normative system GR = {(a, x), (a, ¬x)} in context A = {a}. Then, in a logic that allows for aggregation in the consequent of
the norms, GR is incoherent in nearly all the considered definitions. However, in a logic that does not allow for any kind of
aggregation or strengthening of the consequent, then GR appears to be coherent. Hence, in the same way that logics need to
be handpicked for the application domain, the right coherence needs to be adapted to both the logic and the application.

13For example, when the base language is propositional logic, we can distinguish direct inconsistency (we have two
sentences φ and ¬φ in the set) from indirect inconsistency (we can derive a contradiction from the set in propositional logic).

14This holds for any I/O operation defined in this paper.
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Permissive and regulative norms in deontic logic 745

cohR
O(GR, {x}), but ¬coh∀

O(GR, {x}), since cons({a, b, x}) but ¬cons(O(GR, {a, b, x})). Furthermore,
we have coh�

IO(GR, {x}) and coh∃
IO(GR, {x}), but ¬cohR

IO(GR, {x}), since ¬cons({x, b}∪O(GR, {x, b})).
For the same reason, ¬coh∀

IO(GR, {x}).

PROPOSITION 5
Once a normative system is incoherent, we cannot make it coherent by adding new regulative norms:

cohY
X (GR ∪ G, A) → cohY

X (GR, A) with respect to Ox
i

Equivalently,

¬cohY
X (GR, A) → ¬cohY

X (GR ∪ G, A)

PROOF. Assume cohY
X (GR ∪ G, A) for some GR, G normative sets and context A, as well as some

notion of obligation coherence, and let Ov
i be any of the input/output logics presented in this section.

Since Ov
i is monotonic, it is the case that Ov

i (GR ∪ G) ⊇ Ov
i (GR). Hence, if cons(Ov

i (GR ∪ G)), then
also cons(Ov

i (GR)) (since we use propositional logic for L, we use the standard notion of consis-
tency). Plugging this into the definition of coherence gives us the result. We will just show it for one
of the possibilities here. Assume coh∀

O(GR∪G, A). Then ∀B : cons(A∪B) ⇒ cons(O(GR∪G, A∪B)).
Hence, ∀B : cons(A ∪ B) ⇒ cons(O(GR, A ∪ B)), and so coh∀

O(GR, A). �

5.1.2 Permission coherence. So far, we have discussed the notion of coherence in the context of
only a single set of regulative norms. But what happens if we have two sets of norms, one regulative
and one permissive, and want to ensure coherence between those sets? Makinson and Van der Torre
proposed a different notion of coherence that takes into account both of the above-mentioned sets of
norms and defines the coherence between them, which they call cross-coherence [16]. The idea is
that a set of regulative norms GR is cross-coherent with a set of permissive norms GP if it can never
be the case that, under some context, something is obligatory while its opposite is strongly permitted.
If we assume that everything that is obligatory is also permitted, then it follows that the incoherence
of the obligation set implies cross-incoherence between the regulative and permissive sets. In other
words, the coherence of the obligation set is a condition for the coherence of the permissive set,
albeit not the only one. Hence, this notion should possibly be considered in conjunction with some
notion of coherence on the obligation set in order to provide the most information.

The above notion is based on von Wright’s understanding of the compatibility between an
obligation set and a permission set, where “a mixed set of norms is consistent, its members
compatible if, and only if, each one of the members of its P-part is, individually, compatible with its
0-part.” [37, p. 144]15

With both regulative and permissive norms GR, GP and context A, coherence depends on five
elements and can be thought of as extending obligation coherence from Definition 6 to include
permissive norms. As before, it depends on O, the choice between output consistency and
input/output consistency, the quantification over relevant contexts, and cons. In addition, it depends

15Hansen challenges von Wright’s idea of coherence by talking about strong von-Wright-consistency [6]. According to
Hansen, evaluating permissions only individually is an erroneous approach. Instead, he proposes that regulative norms should
be evaluated against all maximal subsets of permissive norms that are jointly consistent with the context.
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746 Permissive and regulative norms in deontic logic

on a P function associating a set of permissions with GR, GP and A. Since permissions can be
conflicting (e.g. it is permitted to open the window while at the same time it is permitted to close the
window), we only demand that each individual permission is consistent with the set of obligations.

DEFINITION 7 (Coherence)
Let L, GR, A, O and cons be as before. Moreover, let GP be a set of pairs of L having a consistent
fulfilment (like GR), and let P be a function that associates subsets of L with such GR, GP and A
(analogous to O). The triple (GR, GP, A) is:

O� coherent iff ∀p ∈ P(GR, GP, A): cons({p} ∪ O(GR, A))

O∃ coherent iff ∃B : ∀p ∈ P(GR, GP, A ∪ B): cons({p} ∪ O(GR, A ∪ B))

O∀ coherent iff ∀B : cons(A ∪ B) ⇒ (∀p ∈ P(GR, GP, A ∪ B): cons({p} ∪ O(GR, A ∪ B)))

OR coherent iff ∀(a, x) ∈ GR ∪ GP : ∀p ∈ P(GR, GP, A ∪ {a}): cons({p} ∪ O(GR, A ∪ {a}))
IO� coherent iff ∀p ∈ P(GR, GP, A): cons({p} ∪ A ∪ O(GR, A))

IO∃ coherent iff ∃B : ∀p ∈ P(GR, GP, A ∪ B): cons({p} ∪ A ∪ B ∪ O(GR, A ∪ B))

IO∀ coherent iff ∀B : cons(A ∪ B) ⇒ (∀p ∈ P(GR, GP, A ∪ B): cons({p} ∪ A ∪ B ∪ O(GR, A ∪ B)))

IOR coherent iff ∀(a, x) ∈ GR ∪GP : ∀p ∈ P(GR, GP, A∪{a}): cons({p}∪A∪{a}∪O(GR, A∪{a}))
We use the notation coh(GR, GP, A) to denote the coherence of GR and GP in context A. We

write ¬coh(GR, GP, A) to refer to incoherence, and we may abbreviate coh(GR, ∅, A) as coh(GR, A),
coh(GR, ∅, ∅) as coh(GR), and so on.

The following example illustrates coherence with both permissive and regulative norms.

EXAMPLE 6 (Potential conflict between obligations and permissions)
Let GR = {(a, x)}, GP = {(b, ¬x)} and let O and P be such that O(GR, {x}) = O(GR, {x, b}) =
∅, O(GR, {x, a}) = O(GR, {x, a, b}) = {x}, P(GR, GP, A) = {¬x} if b ∈ A (and ∅ other-
wise), cons({a, b, x}) and its subsets, and ¬cons({x, ¬x}) and its supersets. Then it is the case
that coh�

O(GR, GP, {x}), coh∃
O(GR, GP, {x}) and cohR

O(GR, GP, {x}), but ¬coh∀
O(GR, GP, {x}), since

cons({a, b.x}) but ¬cons({¬x} ∪ O(GR, {a, b, x})). Furthermore, we have coh�
IO(GR, GP, {x}) and

coh∃
IO(GR, GP, {x}), but ¬cohR

IO(GR, GP, {x}), since ¬cons({¬x, b} ∪ O(GR, {x, b})). For the same
reason, ¬coh∀

IO(GR, GP, {x}).
Once a normative system is incoherent, you cannot make it coherent by learning new facts:

PROPOSITION 6
Let GR be a set of regulatory norms, let GP be a set of permissive ones and let A be a context:

cohY
X (GR, GP, A ∪ B) → cohY

X (GR, GP, A) with respect to Ov
i and SPv

i

Equivalently:

¬cohY
X (GR, GP, A) → ¬cohY

X (GR, GP, A ∪ B)

PROOF. This follows from the fact that Ov
i and SPv

i are monotonic (in all arguments, in particular the
last argument representing the context). A similar line of reasoning to that presented in Proposition
5 can be applied. �
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Permissive and regulative norms in deontic logic 747

6 Properties

We are not only interested in the existence of different deontic operators and the way they are defined,
we are also interested in their interaction. This section will analyse how obligation, weak permission
and strong permission are related to one another.

Let us formally define the notion of cross-coherence used in [16]. The definition is an adaptation
to fit a wider variety of I/O logics. Although we consider many different notions of coherence,
as presented in section 2, we also want to compare these with the work previously carried out by
Makinson and Van der Torre. Intuitively, a set of regulative norms GR is cross-coherent with a set
of permissive norms if no obligation outputted in a given (consistent) context ‘negates’ a (strong)
permission outputted in the same context.

DEFINITION 8 (Cross-coherence)
A set of regulative norms GR is cross-coherent with a set of permissive norms GP with respect to
I/O operation Oν

i iff there is no c, u, v with c being classically consistent, u ∧ v being inconsistent,
(c, u) ∈ Oν

i (GR) and (c, v) ∈ SPν
i (GP, GR).

REMARK 1
Cross-coherence corresponds to the following notion in our terminology: GR is cross-coherent with
GP iff ∀A with A 	� ⊥, it holds that coh�

O(GR, GP, A), i.e. ∀A with A 	� ⊥, it holds that ∀p ∈
SPν

i (GR, GP, A) : cons({p} ∪ Oν
i (GR, A)).

For the unconstrained I/O logics O∗
5 −O∗

8, Makinson and Van der Torre [16] proved the following:

O∗
i (GR) ⊆ SP∗

i (GP, GR) ⊆c WP∗
i (GR) iff GR and GP are cross-coherent

where ⊆c is an almost-inclusion (A ⊆c B iff whenever (a, x) ∈ A with a being consistent, then
(a, x) ∈ B).

Notice that here, a certain notion of coherence is taken as an assumption. The cross-coherence
of GR and GP implies this nice set of inclusions, which tells us much about the behaviour of the
different operators.

How do these inclusions fare for the other input/output logics? Below are generalized results that
hold for all the input/output logics considered.

PROPOSITION 7
Assume cohY

X (GR, GP, A) for Oν
i and SPν

i where, as before, X ∈ {I , IO}, Y ∈ {�, ∃, ∀, R} and i ∈
{1, ..., 4}. Then:

Oν
i (GR, A) ⊆ SPν

i (GR, GP, A) ⊆ WPν
i (GR, A)

PROOF. We have that Oν
i (GR, A) ⊆ SPν

i (GP, GR, A) since for all the output operations we consider,
Oν

i , are monotone in the first argument, and strong permission is defined as SPν
i (GP, GR, A) =

Oν
i (GR ∪ Q, A) for some Q ⊆ GP, whether singleton or empty. So Oν

i (GR) ⊆ SPν
i (GP, GR) follows

from the definitions (independently of any coherence-condition).
For the second inclusion, assume cohY

X (GR, GP, A) and x ∈ SPν
i (GR, GP, A). Reasoning by

contradiction, assume x /∈ WPν
i (GR, A), i.e. ¬x ∈ Oν

i (GR, A). Since the Oν
i we consider are all
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748 Permissive and regulative norms in deontic logic

monotone, we then get that ¬cons({p} ∪ C ∪ Oν
i (GR, A ∪ D)), where C ∈ {∅, A, A ∪ B, a : A ∪ B 	�

⊥, (a, x) ∈ GR} and D ∈ {∅, B, a : A ∪ B 	� ⊥, (a, x) ∈ GR}. This covers all the definitions of
coherence from Definition 7. Hence, ¬cohY

X (GR, GP, A), which contradicts the initial assumption,
so x ∈ WPν

i (GR, A). �
From Remark 1 and Proposition 7, the following corollary follows.

COROLLARY 2
If GR and GP are cross-coherent, then

Oν
i (G) ⊆ SPν

i (G, P) ⊆ WPν
i (G)

REMARK 2
The results for Makinson and Van der Torre, as mentioned above in Proposition 7, hold for the
original I/O logics and an ‘iff’ condition of cross-coherence. For O1–O3, the ‘only if’ direction does
not hold. To see this, consider the following counterexample: GR = {(a, x)}, GP = {(a, ¬x ∧ y)}.
Then GR is not cross-coherent with GP, but SPi(GP, GR) ⊆c WPi(GR). This is because of the lack
of WO for permission and the presence of the consistency constraint.

PROPOSITION 8
Suppose that Oν

i and Oy
j are such that for any GR, we have Oν

i (GR) ⊆ Oy
j (GR). Then the following

holds:

1. SPν
i (GR, GP) ⊆ SPy

j (GR, GP)

2. WPy
j (GR) ⊆ WPν

i (GR)

PROOF

1. Immediate from the definition of SP.
2. Take (a, x) ∈ WPy

j (GR). This means that (a, ¬x) /∈ Oy
j (GR). Since Oν

i (GR) ⊆ Oy
j (GR), it is

also the case that (a, ¬x) /∈ Oν
i (GR). Hence (a, x) ∈ WPν

i (GR). �
The results from this section are summarized in Table 4.

TABLE 4. The relations between the obligation and permission operations studied where v ∈ { , ∗},
i = 1, ...8, GR is a set of regulatory norms and GP is a set of permissive norms.

Oν
i (GR) ⊆ SPν

i (GR, GP) ⊆ WPν
i (GR) if cohY

X (GR, GP, A)

SPν
i (GR, GP) ⊆ SPy

j (GR, GP) if Oν
i ⊆ Oy

j

WPy
j (GR) ⊆ WPν

i (GR) if Oν
i ⊆ Oy

j

7 Prospects

Two issues of a more programmatic nature are discussed: obligation under exception, and deontic
explanations. It is not our intention to give a complete analysis of these issues, but rather to identify
promising directions for future work.
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Permissive and regulative norms in deontic logic 749

7.1 Obligation with exceptions

At this point, we would like to return to the notion of obligation: can we define an obligation in
terms of the triple (GR, GP, A) instead of only the pair (GR, A), as we have done until now? That
is, in addition to the generator set GR and the context A, can we add a set of permissive norms GP
into the notion of obligation? Since explicit permissions often represent exceptions to more general
prohibitions, we can do this through the idea of permission as exception, and define an obligation
with exceptions.

DEFINITION 9 (Obligation with exceptions)
Let GR be a set of regulative norms, let GP be a set of permissive norms, A a context, Oν

i an obligation
operation and SPν

i the corresponding strong permission operation. Then something is obligatory with
exceptions iff it is obligatory in the traditional sense, and if its opposite is not strongly permitted:

x ∈ Oν
i (GR, GP, A) iff i) x ∈ Oν

i (GR, A) and ii) ¬x /∈ SPν
i (GR, GP, A)

EXAMPLE 7 (Parking regulations)
Let GR = {(�, ¬p)}, GP = {(w, p)}, where p stands for parking, w stands for weekend and m stands
for Monday. GR and GP express that it is prohibited to park except on the weekend. Assume that
¬p ∈ Oν

i (GR, �), ¬p ∈ Oν
i (GR, m), p ∈ SPν

i (GR, GP, w) and p /∈ SPν
i (GR, GP, m). Then we have the

following:

• It is not obligatory-with-exceptions to refrain from parking on the weekend: ¬p /∈
Oν

i (GR, GP, w), since p ∈ SPν
i (GR, GP, w)

• It is obligatory-with-exceptions to refrain from parking on a Monday: ¬p ∈ Oν
i (GR, GP, m),

since p /∈ SPν
i (GR, GP, m)

As the example illustrates, looking at obligation in this manner adds a layer of non-monotonicity
to the a priori monotonic I/O logics: in general, parking is prohibited, but on the weekend the
prohibition can no longer be derived.

REMARK 3
One could consider using weak permission instead of strong permission in the definition of
obligation-with-exceptions. However, doing so has the drawback that obligation with exception is
the same as a regular obligation: saying that ¬x /∈ WPν

i (GR, A) is exactly the same as saying that
x ∈ Oν

i (GR, A) by definition of weak permission.

For obligations with exceptions, we have that permissive norms can make an incoherent system
coherent by overriding regulative norms, but they cannot make a coherent system incoherent.
Formally:

PROPOSITION 9
Let GR be a set of regulatory norms, GP a set of permissive norms and A a context. Then, once a
normative system is coherent with respect to obligations with exceptions and strong permissions, we
cannot make it incoherent by adding permissive norms:

cohY
X (GR, GP, A) → cohY

X (GR, GP ∪ Q, A) with respect to Oν
i (GR, GP, A) and SPν

i (GR, GP, A)

PROOF. Since strong permission SPν
i (GR, GP, A) is monotonic, we have that SPν

i (GR, GP, A) ⊆
SPν

i (GR, GP ∪ Q, A). Hence, we have the following inclusion: Oν
i (GR, GP, A) ⊇ Oν

i (GR, GP ∪ Q, A),
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750 Permissive and regulative norms in deontic logic

since Oν
i (GR, GP, A) = {x : x ∈ Oν

i (GR, A) and ¬x /∈ SPν
i (GR, GP, A)} and Oν

i (GR, GP ∪ Q, A) =
{x : x ∈ Oν

i (GR, A) and ¬x /∈ SPν
i (GR, GP ∪ Q, A)}.

Assume coh�
O(GR, GP, A). This means that ∀p ∈ SPν

i (GR, GP, A), we have cons({p} ∪
Oν

i (GR, GP, A)). Since we have Oν
i (GR, GP, A) ⊇ Oν

i (GR, GP ∪ Q, A), we get that if
cons(Oν

i (GR, GP, A)), then also cons(Oν
i (GR, GP ∪ Q, A)). This can be extended to saying that

if cons({p} ∪ Oν
i (GR, GP, A)), then also cons({p} ∪ Oν

i (GR, GP ∪ Q, A)). The same can be checked
for other notions of coherence.

An axiomatic investigation of the obligation-with-exceptions falls outside the scope of this work,
and must be left as a topic for future research. �

7.2 Explanation

7.2.1 Coherence explanation. Suppose we need to explain why a normative system with permis-
sive and regulative norms is or isn’t coherent in a particular context. The theory developed in the
previous subsection offers us a lot of f lexibility, depending on the application and audience of the
explanation. More precisely, there are five choices to be made in providing the explanation. First, a
logic O, a logic P, and a notion of consistency cons must be chosen. Then, we need to choose one of
the eight notions of coherence by selecting either the output or the I/O constraint, and by selecting
one of the four quantifications over contexts.

EXAMPLE 8 (Deontic explanation)
Consider normative system GR = {(a, x), (b, x)}, GP = {(c, y), (y, ¬x)} with A = {a ∨ b, c, ¬x}.
To explain why this normative system is incoherent, we can choose a notion of consistency where
{x, ¬x} is inconsistent, a logic O that detaches x, and either one of the following explanations:

Explanation 1 A logic P that detaches ¬x, so that we can combine permissive norms with any
kind of consistency constraint and quantification over contexts. The reasons are
(a, x), (b, x) ∈ GR, (c, y), (y, ¬x) ∈ GP and a ∨ b, c ∈ A.

Explanation 2 The I/O constraint, with any kind of logic P and quantification over contexts. The
reasons are (a, x), (b, x) ∈ GR and a ∨ b, ¬x ∈ A.

Which deontic explanation is better depends on the application and audience.

7.2.2 Role of permission in deontic explanations. To explain why something is permitted, we can
choose an input/output logic, just like we can to explain an obligation. In addition, we can choose the
notion of permission. Moreover, if we choose strong permission, we can also choose a derivation.16

As studied in the previous subsection, and as summarized in Table 4, if the normative system is
cross-coherent, then we have the following:

• The strongest explanation for showing that something is permitted is to show that it is
obligatory. The intermediate explanation for showing that something is permitted is to show
that it is strongly permitted. And the weakest kind of explanation is to show that it is weakly
permitted.

16Though we do not discuss dynamic permissions in this article, we observe that they may also play an important role in
deontic explanations because for traditional I/O logics, they satisfy the same rules as weak permission.
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Permissive and regulative norms in deontic logic 751

• The effect of the choice of I/O logic on the permissions is given in the other two rows: if a
stronger input/output logic is chosen, then we can derive more strong permissions but fewer
weak permissions.

Though the study of deontic explanations is still at an initial phase, we can already see that
permissive norms can play a central role in deontic explanations. If we want to show that something is
not obligatory, we can either use the semantics to compute everything that is obligatory (as discussed
in Section 3.3) or we can use weak permissions—but then we cannot use a derivation. So the best
way is to use permissive norms.17

A thorough investigation of the role of permission in deontic explanations is yet to be carried out.

8 Some related work

In our work, the notion of coherence has been used as an assumption, but other approaches illustrate
that it can be used in different ways. For instance, coherence can also be used as a constraint.
A notable example of such usage is provided in constrained input/output logic [15], where the
procedure for generating outputs takes an additional consistency parameter with which the output
has to be consistent (the output consistency and input/output consistency that we studied are two
special cases of such a consistency constraint.) The procedure continues by taking all the maximal
subsets of the normative system that are consistent with the consistency parameter, and finishes
by taking the meet or join of the outputs of these subsets. These outputs of the subsets are called
outfamilies, corresponding to extensions in formalisms like logic programming and default logic
[30].18 A question related to this approach is how to define permissions under constraints. It seems
that the set of permissions will change dramatically depending on whether one takes the meet or the
join of the family of outputs. This needs to be analysed.

Makinson and Van der Torre studied not only weak and strong permission, but also a notion in
between which they called positive dynamic permission. We have not studied dynamic permission
in this article, but such an analysis would be interesting, especially since dynamic permission seems
to combine both underivability and derivability, which are distinguishing notions of weak and strong
permission. Furthermore, [16] provides characterization results for some of the original I/O logics
for dynamic permission, but it is not clear how these results can extend to other logics.

Hansen argues that permissions should also be allowed some restricted form of aggregations
[6]. He argues that permissions should be taken into account collectively as long as they remain
consistent. For instance, in the drinking-and-driving example, they should not be allowed to
aggregate, however permissions for drinking and taking a taxi should be allowed to aggregate. This
is an interesting notion which merits further investigation.

Tossato et al. [32, 33] represent normative systems in a graph-based manner. They provide a
graphical framework to discuss obligations, permissions and constitutive norms on an abstract level.
Their framework could potentially be used for deontic explanation and should be further investigated
in that context.

17Moreover, given the central role of permissive norms in the deontic explanations of permissions, and for concrete
applications in which no permissive norms are given, one might try to guess permissive norms for deontic explanations.

18These outfamilies or extensions can be used for an alternative notion of coherence: (GR, GP, A) is coherent if and only
if the number of extensions of (GR, A) is the same as the number of extensions of (GR ∪ GP, A). The extension approach is
especially interesting because it does not limit itself to giving a binary coherent/incoherent answer. Instead, by providing a
differing number of extensions, it allows us to reason with degrees of coherence; the bigger the differing number of extensions,
the more the system is incoherent.
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752 Permissive and regulative norms in deontic logic

9 Conclusion

In this work, we studied the notion of permission for the whole family of available I/O logics.
We provided a comprehensive overview of sixteen axiomatic systems for input/output logics. As
opposed to the standard way of representing input/output logic semantically, we chose to focus
on an axiomatic representation as it is more reader-friendly and intuitive. We also introduced a
new input/output logic O2 with a built-in consistency constraint which supports a restricted form
of aggregation and a generalized form of reasoning by cases. We also provided soundness and
completeness results. On this basis, we carried out a systematic analysis of weak and strong
permissions for the logics presented before. We provided sets of rules for negative and positive
permission, soundness and completeness results for strong permission for seven of the studied
input/output logics and discussed the remaining logics that are not complete. We also argued that
allowing weakening of the output might not be desirable when dealing with permissions with
inseparable content, and that consistency constraints are desirable when dealing with contrary-to-
duty reasoning. Furthermore, we studied the relations between the operators studied in this article:
obligation, weak permission and strong permission. Lastly, we introduced obligation with exceptions,
which adds a layer of non-monotonicity to the otherwise monotonic input/output logics. We did this
by stating that something is obligatory with exceptions if that follows from the monotonic obligation
operation and if its negation is not (strongly) permitted.
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A Semantics

All the logics defined in this appendix are sound and complete with respect to the corresponding
rules from Table 1. For O2, the semantic definition is novel, and soundness and completeness are
provided in Section 3.

A.1 Operations O∗
1–O∗

3 [25]

DEFINITION 10
We define:

• x ∈ O∗
1(GR, A) iff there is a finite M ⊆ GR such that (i) M(Cn(A)) 	= ∅ and (ii) x ��∧

M(Cn(A)).
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• O∗
2(GR, A) = ∩{O∗

1(GR, V) : A ⊆ V V complete} where V ⊆ L is complete if V = L or V is
maximal consistent.

• x ∈ O∗
3(GR, A) if there is a finite M ⊆ GR such that (i) M(Cn(A)) 	= ∅ and (ii) ∀B such that

A ⊆ B = Cn(B) ⊇ M(B), x �� ∧
M(B).

A.2 Operations O∗
5–O∗

8 [14]

DEFINITION 11
We define:

• O∗
5(GR, A) = Cn(GR(Cn(A)))

• O∗
6(GR, A) = ∩(Cn(GR(V)) : A ⊆ V , V complete)

• O∗
7(GR, A) = ∩(Cn(GR(B)) : A ⊆ B = Cn(B) ⊇ GR(B))

• O∗
8(GR, A) = ∩(Cn(GR(V)) : A ⊆ V ⊇ GR(V), V complete)

where V ⊆ L is complete iff V = L or V is maximal consistent.

A.3 Operations O1–O3 [27]

DEFINITION 12
We define:

• x ∈ O1(GR, A) if there exists some finite M ⊆ GR and a set B ⊆ Cn(A), such that M 	= ∅,
B = b(M), x �� ∧h(M) and {x} ∪ B is consistent. O1(GR) = {(A, x) : x ∈ O1(GR, A)}.

• x ∈ O3(GR, A) if there exists some finite M ⊆ GR and a set B ⊆ Cn(A), such that M(B) 	= ∅,
x �� ∧h(M) and

– ∀B′(B ⊆ B′ = Cn(B′) ⊇ M(B′) ⇒ b(M) ⊆ B′)
– {x} ∪ B is consistent.

B Proof of NRP

We now turn to the proof of Proposition 4. For D∗
5, D∗

6 and D∗
7, proofs were provided by Makinson

and Van der Torre [16] (note that in that work, the I/O operations were called out1, out2 and out3
respectively).

PROPOSITION 10
D∗

1 satisfies NRP for rules EQ, SI, AND.

PROOF. We prove this by showing that for every (b, y) ∈ D∗
1(GR), we can construct a derivation in

D∗
1(GR) in a certain way such that every leaf is only used once. The construction is essentially the

same as in the completeness proof of D∗
1 in [25] (note that in that work, O∗

1 was called O1).
Take (b, y) ∈ D∗

1(GR). By soundness, (b, y) ∈ O∗
1(GR), and by the definition of O∗

1, this means
that there exists a finite witness W ⊆ GR such that W(Cn(b)) is non-empty and y �� ∧

W(Cn(b)).
That is, y �� x1 ∧ ... ∧ xn such that (ai, xi) ∈ W with ai ∈ Cn(b).
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Let L = {(a1, x1), ..., (an, xn)} be the enumeration of these norms. These shall be the leaves of our
derivation. Then, we can construct the derivation of (b, y), using each element of L only once, in the
following way:

�
PROPOSITION 11
D∗

3 satisfies NRP for rules EQ, SI, ACT.

PROOF. The proof here is omitted as it is similar to the proof of D∗
7 from [16] (it is called deriv3 in

that work). In [16] in the Lemmas 3.3.1–3.3.3, replacing WO with EQ and removing TAUT (which,
is not a problem, as TAUT does not play any particular role in these results) will give us the proof
we need. �

PROPOSITION 12
D1 satisfies NRP for rules EQ, SI, R-AND.

PROOF. This proof is very similar to the proof of NRP for D∗
1 in Proposition 10. Here again, we

prove the proposition by constructing a derivation.
Take (b, y) ∈ D1(GR). By soundness, (b, y) ∈ O1(GR). By the definition of O1, there exists a non-

empty witness W ⊆ GR and B ⊆ Cn(b) with B = bodies(W), y �� ∧
heads(W) and {y} ∪ B 	� ⊥.

Let W = {(a1, x1), ..., (an, xn)} be an enumeration of the elements in the witness. Then
∧n

i=1 ai ∧
xi �� ∧

B ∧ y 	� ⊥, and thus the consistency check for the application of the restricted aggregation
rule R-AND is satisfied.

We can then construct the following derivation:

�

PROPOSITION 13
D3 satisfies NRP for rules EQ, SI, R-ACT.

LEMMA 2
Let D be a derivation in D3, i.e. using the rules EQ, SI, R-ACT. Then at any line (a, x) of the
derivation:

• x � x′ for any (a′, x′) that is used in D to obtain (a, x);
• a ∧ x � a′ and a ∧ x � x′ for any (a′, x′) that is used in D to obtain (a, x).

The proof is a straightforward proof by induction on the length of the derivation, and is
omitted here.
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LEMMA 3
Let D be a derivation of (b, y) from leaf set L in D3 (i.e. using the rules EQ, SI, R-ACT), and let
(b′, y′) be the conclusion of an R-ACT application in D. Then there exists a derivation D′ of (b, y)
from leaf set L, which is like D except that the two sub-derivations that lead to (b′, y′) follow the
order SI, R-ACT, EQ.

Consider derivation D, which has the following form:

In this instance, (b′, y′) is (a, x′ ∧ x′′). Let d1 be the left sub-derivation, and d2 the right sub-
derivation, with (a, x′) and (a ∧ x′, x′′) as their respective roots and L(d1), L(d2) as leaf sets. We will
show that there are derivations d′

1 and d′
2 that lead to the same conclusions as d1 and d2 ((a, x′) and

(a ∧ x′, x′′) respectively), but follow the order SI, R-ACT, EQ. The EQ rule is invertible both with
SI and R-ACT, and can be applied at any point in the derivation. Without loss of generality, assume
that EQ is applied at the bottom of derivations d1 and d2. That leaves rules SI and R-ACT above in
the upper parts of d1 and d2. By Lemma 2, it holds that a ∧ x′ ∧ x′′ � ak and a ∧ x′ ∧ x′′ � xk for
every norm in d1 and d2. This provides that in d1 and d2, R-ACT followed by SI can be inverted to
SI followed by R-ACT. As such, the following derivation:

can be transformed into:

d ∧ y1 ∧ y2 	� ⊥ follows from:

• a ∧ x′ ∧ x′′ � d (Lemma 2)
• a ∧ x′ ∧ x′′ � y1 (Lemma 2)
• a ∧ x′ ∧ x′′ � y2 (Lemma 2)
• a ∧ x′ ∧ x′′ 	� ⊥ (R-ACT assumption)

which means that the derivations d1 and d2 can be phased to SI, R-ACT, EQ.
We can now prove Proposition 13.
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PROOF. Looking at derivations having two (a, x) leaves, we are in the following scenario, with
(a1, x1 ∧ x2) being the conclusion of the meeting point of two sub-derivations, both containing (a, x)
as leaves:

By Lemma 3, we know that those two sub-derivations can be replaced by derivations where the
order of the rules is SI, R-ACT, EQ.

The rest of the proof is similar to the proof in Observation 3(c) provided by Makinson and Van der
Torre [16]. The R-ACT rule goes from (a, x), (a∧ x, y) with a∧ x∧ y 	� ⊥ to (a, x∧ y). We call (a, x)
the minor premise and (a ∧ x, y) the major premise. The succession of R-ACT can be written so that
no major premise of an application of R-ACT is the conclusion of another application of R-ACT.
This has been shown for ACT [16] (from (a, x) and (a ∧ x, y) to (a, x ∧ y)), and it still holds for its
restricted version.

Since (a1 ∧ x1, x2) is a major premise of R-ACT, it is not the conclusion of another R-ACT
application, which means that it follows only from applications of SI, and hence has only leaf (a, x).
On the other hand, (a1, x1) follows from applications of SI and R-ACT. Lemma 2 gives us that
x2 �� x and x1 � x. So x1 �� x1 ∧ x, and one can remove the subtree with conclusion (a1 ∧ x1, x2),
giving us the derivation, which has only a single (a, x) leaf:

�
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C Rules

This section provides an overview of the different inference rules used. The superscript o means that
the norm is an obligation, and the supersript p means it is a permission.

1. Strengthening of the input

• Rule

• Subverse rule

• Inverse rule

2. Weakening of the output

• Rule

• Subverse rule

• Inverse rule

3. Equivalence of the output

• Rule

• Subverse rule
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• Inverse rule

4. Reasoning by cases

• Rule

• Subverse rule

• Inverse rule

5. Extended reasoning by cases

• Rule

• Subverse rule

• Inverse rule

6. Aggregation

• Rule
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• Subverse rule

• Inverse rule

7. Restricted aggregation

• Rule

• Subverse rule

• Inverse rule

8. Cumulative transitivity

• Rule

• Subverse rules

• Inverse rules
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9. Aggregative cumulative transitivity

• Rule

• Subverse rules

• Inverse rules

10. Restricted aggregative cumulative transitivity

• Rule

• Subverse rules
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• Inverse rules
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