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Abstract. We consider scenarios where a group of agents wish to simplify a given
abstract argumentation framework—specifying a set of arguments and the attacks
between them—>by eliminating cycles in the attack-relation on the basis of their
preferences over arguments. They do so by first aggregating their individual prefer-
ences into a collective preference order and then removing any attacks involved in
a cycle that go against that order. Our analysis integrates insights from formal ar-
gumentation and social choice theory. We obtain sweeping impossibility results for
essentially all standard methods of preference aggregation, showing that no Con-
dorcet method and no positional scoring rule can uphold the fundamental principle
expressing that views held by every single member of the group must be respected.
But we also find that so-called representative-agent rules do offer this guarantee.
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1. Introduction

In a debate, in order to settle the issues at stake, the disputants should first determine
which arguments ought to be considered and how those arguments relate to one another.
This information can be represented by means of an abstract argumentation framework,
where arguments are modelled as nodes in a directed graph, with edges corresponding
to attacks between arguments [1]. Whether one argument attacks another is often un-
controversial and can be agreed upon by all individuals that consider the arguments. But
whether one argument defeats another will sometimes depend on judgements about the
relative strength of the arguments. We can model these judgements as preferences of the
involved individuals [2,3,4,5].

In this paper we are interested in the process of aggregating the preferences of sev-
eral agents before using the collective preference order thus obtained to determine which
of the attacks result in defeat. We are specifically interested in using this process to elim-
inate cycles from the original argumentation framework, given that cycles in the attack-
relation often make an unambiguous evaluation of which arguments to accept impossi-
ble [6]. We investigate the question of whether there are methods of aggregation that
would adequately respect the views of the individual agents involved.
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We do so by adopting the methodology of social choice theory [7,8]. We assume
that each individual agent provides us with a strict ranking of all the arguments involved
in some cycle. Then we use a preference aggregation rule—which one might think of
as a voting rule—to obtain a single such ranking, reflecting the collective preferences of
the group as a whole. Natural candidates for aggregation rules include the well-known
Condorcet methods, such as the Copeland and the Kemeny rule, and the equally well-
known positional scoring rules, such as the Borda and the Plurality rule [9].

We can use such a ranking of arguments—be it an individual ranking or the col-
lective ranking—to eliminate all attacks from lesser to more preferred arguments within
a cycle. The resulting cycle-free graph will have an unambiguous semantics: accept all
arguments that are either unattacked or that are defended by accepted arguments. To
analyse whether a given preference aggregation rule results in an adequate process of
collective cycle elimination, we make use of the axiomatic method of social choice the-
ory [7,8]. Specifically, we formulate two very basic axioms, Acceptance Unanimity and
Rejection Unanimity. They encode fundamental normative requirements one should ex-
pect to see satisfied by any reasonable method of preference aggregation (and thus by
any reasonable method of collective cycle elimination). Acceptance Unanimity states
that any argument accepted by all individual agents should also be accepted when we use
the collective preference order to remove attacks that do not result in defeat. Rejection
Unanimity encodes the corresponding property for arguments rejected by all individuals.

Surprisingly, we find that essentially all of the well-known preference aggregation
rules widely used in practice and commonly studied in the literature violate both of our
axioms. Concretely, we obtain impossibility results for all Condorcet methods and all po-
sitional scoring rules. On the bright side, we obtain possibility results in case the number
of arguments involved in cycles is very small (at most three). More practically relevant,
we find that all of the so-called representative-agent rules [10] satisfy our requirements.

Related work.  The state of the art on the integration of formal argumentation and social
choice theory, up to about 2016, is reviewed in depth by Bodanza et al. [11]. The problem
that so far has received most attention is that of how to adequately aggregate multiple
argumentation frameworks, each supplied by a different agent. Axiomatic studies of the
normative properties of the aggregation rules one might use to this end include those of
Tohmé et al. [12], Dunne et al. [13], Delobelle et al. [14], and Chen and Endriss [15].
Another direction concerns the aggregation of multiple extensions or labellings (i.e., sets
of accepted arguments) for the same argumentation framework into a single collective
extension. Examples for axiomatic studies of this kind include the works of Caminada
and Pigozzi [16], Rahwan and Tohmé [17], Awad et al. [18], and Chen and Endriss [19].
Some of these also include impossibility results, and this line of work is the one most
closely related to ours. In some sense, we focus on a restricted form of the problem of
aggregating alternative extensions. Namely, the way in which we generate alternative
extensions for each agent based on their own preference relation heavily constrains the
range of extension-profiles we might encounter. The fact that we still obtain sweeping
impossibility results, and that we do so on the basis of very weak axioms, is all the more
surprising. Airiau et al. [20] analyse the variety of profiles one might encounter in a
setting very similar to ours. Finally, we note that a particularly convincing motivation for
the need to aggregate the views of multiple agents in the context of argumentation comes
from online deliberation platforms. This point was first made by Leite and Martins [21],
and Bernreiter et al. [22] further expand on this idea.
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Paper overview. We develop our formal model of collective cycle elimination in Sec-
tion 2, starting from relevant preliminaries in formal argumentation and social choice
theory, leading up to the formulation of our two axioms. We then present both our impos-
sibility and our possibility results in Section 3, before concluding with a brief discussion
of possible alternative approaches to modelling collective cycle elimination.

2. Modelling Collective Cycle Elimination in Abstract Argumentation Frameworks

In this section, after recalling some relevant basics of formal argumentation theory, we
introduce our model of collective cycle elimination for abstract argumentation frame-
works. This includes a review of well-known preference aggregation rules and the for-
mulation of basic normative requirements, known as axioms in social choice theory, that
any reasonable mechanism for collective cycle elimination ought to satisfy.

2.1. Formal Argumentation Theory

We are going to build on the familiar model of abstract argumentation going back to
the seminal work of Dung [1], abstracting away from the internal structure of arguments
and instead focusing on the relationships that hold between them. An argumentation
Sframework is a pair (A, —), where A is a finite set of arguments and — € A x A is
an attack-relation specifying for any two arguments whether the first attacks the second.
We say that argument a ‘attacks’ argument b in case (a, b) € —, and we write a — b for
better readability. Argumentation frameworks can be visualised as directed graphs.

Example 1. The argumentation framework (A, —) with arguments A = {a, b, ¢, d} and
attack-relation — = {(a,b), (b, a), (a, ¢), (b, ¢), (¢c,d)} is shown in Figure 1.

"~
(52—

Figure 1. Example of an argumentation framework.

The argumentation framework of Figure 1 includes a cycle: arguments a and b attack
each other. In general, for a given argumentation framework (A, —), a cycle is a set
{a1,...,ar} S Asuchthata; — a;11 forall j < k as well as a, — a;. We denote the
union of all cycles in {4, —) as Cyc(.A, —). Observing a cycle is not a problem in and
of itself. Indeed, it is perfectly possible to develop rational arguments that are in conflict
with one another. But if our goal is to define some notion of ‘winning’ argument(s) for
a given argumentation framework, this type of conflict generates difficulties. For how do
we decide which of a and b should ‘win’ if we have abstracted away from the internal
structure of the arguments?

A number of different proposals have been made in the literature for how to ex-
tract the ‘winning’ arguments from a given argumentation framework [1,6]. One such
proposal is to select the arguments that belong to its grounded extension.

Definition 1 (Grounded extension). The grounded extension of an argumentation frame-
work (A, —) is the least set A C A that satisfies the following three properties:
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1. If a,b € A, then neither a — b norb — a.
2. Ifa € A and b — a, then there exists an argument c € A such that ¢ — b.
3. Iffor every b such that b — a there exists a ¢ € A such that ¢ — b, then a € A.

The first condition expresses that no two arguments in A attack one another. If we think
of ¢ € A with ¢ — b as ‘defending’ a € A with b — a, then we can interpret the other
two conditions as saying that A coincides with the set of arguments defended by A.

When an argument is part of the grounded extension, we say that it is accepted or
winning. It turns out that the grounded extension of the framework of Figure 1 is the
empty set.”

The grounded extension and other extensions, such as the preferred extensions or the
stable extensions, are often referred to as semantics for argumentation frameworks [1,6].
Many of the challenges of defining an adequate semantics for argumentation frameworks
can be traced back to the presence of cycles. Indeed, when there are no cycles, defining a
natural notion of acceptance is straightforward: accept all unattacked arguments as well
as all arguments defended by other accepted arguments. Most proposals for a semantics
to be found in the literature, including the grounded extension, reduce to this simple
definition for the special case of cycle-free argumentation frameworks. Already in his
original paper on the topic, Dung showed that the different semantics he proposed all
coincide in this case [1, Theorem 30].

2.2. Individual and Collective Cycle Elimination

When faced with a conflicting set of arguments, i.e., an argumentation framework with
cycles, an individual might wish to eliminate some of the attacks based on her preferences
over some of the arguments involved. There are several proposals in the literature for
how to model such a process [2,3,4]. For instance, Bench-Capon [3] suggests that each
argument speaks to a (moral or social) value, and individuals have preferences over such
values. We note that Modgil [4] specifically considers preferences in the context of 2-
cycles, i.e., cases where two arguments attack one another. One advantage of this setting
is that it avoids the possible counter-intuitive consequence of potentially having to accept
arguments that were in conflict before attacks were removed [5].

Here we employ a particularly simple strategy for eliminating cycles. For any given
framework (A4, —), we assume that every individual is equipped with a preference rela-
tion >, a strict partial order on A, that (at the very least) strictly ranks all arguments in
Cyc(A, —), i.e., all those involved in a cycle. We then remove all attacks involved in a
cycle that go against this ranking. Formally, given an argumentation framework (A, —)
and a strict linear order > on Cyc(.A, —), we define a defeat-relation = on A as follows:

a="> ifand only if a — b and a and b are not part of the same cycle or
a—banda > b

As we only use the part of > that ranks arguments in Cyc(A, —), from here on we shall
assume that any given > is simply a strict linear order on Cyc(A, —). We use top(>)
to refer to the top element of >. We sometimes write — instead of =, to emphasise

2To see this, note that both @ and b are undefended from each other’s attacks; c is defended by a from b’s
attack, and by b from a’s attack, but @ and b are not in the grounded extension; and although d is defended
from the attack from c by a and b, again, these are not in the grounded extension.



M.A. Miiller et al. / Breaking the Cycle 161

that > was used to eliminate cycles. Observe that {4, =) is itself an argumentation
framework—and, by construction, it has no cycles. At this point, an example is in order.

Example 2. Consider once more the argumentation framework (A, — of Figure 1. For
the preference relation > on Cyc(A,—) = {a, b} with a > b, we obtain {A,=) with
= = {(a,b),(a,c), (b,c),(c,d)}, ie., the attack from b to a is removed. While, as we
previously saw, the grounded extension of (A, — is empty, that of (A, =) is {a, d}.

We want to choose the preference relation > used to eliminate cycles in a principled man-
ner. Suppose the participants to the argument have settled on an argumentation frame-
work (A, —). We can think of this as the debaters having settled on what arguments
have been put forth and how they relate to each other. Then, we ask them to each submit
a ranking over the arguments that occur in cycles before we aggregate these individual
preferences into a single collective preference relation.

Solet N = {1,...,n} be a set of agents. For the argumentation framework (A, —)
under consideration, suppose each agent ¢ € N reports a strict linear order >; on
Cyc(A,—), giving rise of a profile > = (>1,...,>,). We shall use m to refer to the

cardinality of Cyc(A, —), so each of the preference relations involved is a strict ranking
of the same m objects. A preference aggregation rule is a function F' mapping any given
profile of individual preferences to a single strict linear order > on Cyc(A, —).> We are
now ready to put all the pieces together and formulate our core definition.

Definition 2 (Collective cycle elimination). Given an argumentation framework (A, —),
a profile > = (>1,...,>,) of individual preferences on Cyc(A, —), and a preference
aggregation rule F for m = |Cyc(A, —)| arguments, the result of collective cycle elim-
ination is the cycle-free argumentation framework (A, =) we obtain by first using F’
to aggregate the profile into a single preference relation > = F(>1,...,>,) and then
computing = as the defeat-relation for (A, —) and >.

In view of our notational conventions, note that we can write — g (5. instead of = if we
need to explicitly refer to both the profile and the preference aggregation rule used.

2.3. Preference Aggregation Rules

We so far left open the question of how exactly preferences are to be aggregated. A rich
variety of aggregation rules are discussed in the literature of social choice theory [7,8].
But almost all of the rules used in practice belong to one of two families, the Condorcet
methods and the positional scoring rules [9]. Let us now define these families for our
specific context of aggregating n strict rankings of m arguments into one such ranking.

For a given profile > = (>1,...,>,), a Condorcet winner is an argument ¢ €
Cyc(A, —) that beats any other argument in direct majority contests:

[{ie N|c>;a}|>|{t € N|a>;c} forall arguments a € Cyc(A, —)\{c}.

Then a Condorcet method F is any preference aggregation rule that ensures that, when-
ever the profile > to be aggregated has a Condorcet winner, that Condorcet winner ends

3The technical term commonly used in social choice theory for what we call ‘preference aggregation rule’
here is social welfare function, with Cyc(.A, —) being the set of alternatives [7].
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up as the top element of the collective preference relation F'(>). Well-known examples
for rules that are Condorcet methods include the Copeland rule and the Kemeny rule.

In contrast, positional scoring rules are defined using scoring vectors. A scoring
vector of length m is a vector 8 = (s1,...,8m,) € R™ of real numbers with s; >
Sg = --- = sy and s; > s,,. Any such scoring vector induces a positional scoring rule
(PSR) as follows. For every agent ¢ ranking a given argument ¢ in position ¢, we award
s¢ points to a, and we finally rank the alternatives in terms of the total points awarded.
Ties are broken lexicographically, either by means of some fixed order on agents or by
means of some fixed order on arguments. The well-known Borda rule is the PSR with

s = (m—1,m—2,...,0). Other important examples include the Plurality rule with
s = (1,0,...,0), which amounts to each agent giving one point to their most preferred
argument only, and the Veto rule with s = (0,...,0, —1), under which ever agent takes

away one point from her least preferred argument.
A useful fact regarding PSRs is that the aggregation rule being induced does not
change under affine transformations of the scoring vector. In particular, for any given

scoring vector 8 = ($1,...,Sm,), we can first subtract s, from each score and then
divide all of them by s; — s,,. Thus, w.l.o.g., we can think of any PSR for m arguments
as being induced by a scoring vector § = (s1, ..., S,) wWith sy = 1 and s,,, = 0.

We are also going to consider a third family of preference aggregation rules, the so-
called representative-voter rules [10], which are far less common in practice but still of
theoretical interest. In our context, we shall refer to them as representative-agent rules. A
representative-agent rule is any preference aggregation rule F' that guarantees F'(>) € >
for all profiles >. That is, these are rules that always return a ranking reported by one
of the agents. Examples include the modal ranking rule [23], which returns one of the
rankings reported most frequently, and the average-voter rule [10], which returns one of
the rankings minimising the average Kendall-tau distance to the rankings in the profile.
Importantly though, the representative-agent rules also include some very unappealing
rules, notably the dictatorships, which always return the ranking of the same agent.

2.4. Normative Requirements for Collective Cycle Elimination

So which aggregation rule should we use? The standard approach in social choice theory
to answer such questions is the axiomatic method [7,8]. The idea is to identify relevant
normative requirements, so-called axioms, and to systematically investigate which rules
satisfy which (combinations of) axioms. Here we shall propose two very weak such
axioms that one would hope any reasonable mechanism for collective cycle elimination,
and thus any preference aggregation rule defining such a mechanism, would satisfy.

Example 3. Consider the scenario sketched below, with an argumentation framework
for three arguments and two agents with opposite preferences regarding these arguments.

bQ A/)C b>1a>1c

c>2a>2b

Here, the two agents differ in how they eliminate cycles, but they both accept b and c,
and they both reject a. It is desirable that the same arguments are collectively accepted.

We capture this intuition using the following two axioms.
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Axiom 1 (Acceptance Unanimity). A preference aggregation rule F' for m arguments
and n agents respects the axiom of Acceptance Unanimity if, for every argumentation
Sframework (A, —) with |Cyc(A,—)| = m and every profile > = (>1,...,>,), it is
the case that any argument that belongs to the grounded extension of (A, —.,) for every
agent i € N also belongs to the grounded extension of (A, — p(s)).

Axiom 2 (Rejection Unanimity). A preference aggregation rule F' for m arguments and
n agents respects the axiom of Rejection Unanimity if, for every argumentation frame-
work {A, —) with | Cyc(A, —)| = m and every profile > = (>1,...,>y), it is the case
that any argument not belonging to the grounded extension of (A, —..,) for any agent
i € N also does not belong to the grounded extension of (A, — p(>))-

Thus, Acceptance Unanimity expresses the fundamental idea that, if argument a were to
be accepted by every single agent once they have eliminated cycles according to their
individual preferences, a should also be accepted if we aggregate the individual pref-
erences before eliminating cycles. Rejection Unanimity similarly stipulates that unani-
mously rejected arguments should also be collectively rejected.

Unanimity is one of the most common and most basic axioms considered in social
choice theory; it is closely related to the notion of Pareto Efficiency [7]. Unanimity with
respect to something not being the case, as for our axiom of Rejection Unanimity, has
also been called groundedness in the literature [15]. In the context of argumentation
theory, Dunne et al. [13] have studied a related notion under the name of (attack) closure.

3. Impossibility and Possibility Results

Intuitively speaking, our Unanimity axioms are both very desirable and very undemand-
ing, so one would hope and expect them to be satisfied by almost any reasonable ag-
gregation rule. The technical results we present in this section show that, unfortunately,
this intuition is not correct: it turns out to be impossible to satisfy our axioms for most
rules of practical interest. We prove sweeping impossibility results for Condorcet meth-
ods and PSRs in case there are at least 4 arguments that are involved in cycles. But we
also obtain possibility results for argumentation frameworks with fewer cycle arguments.
Finally, we present a general possibility result showing that all representative-agent rules
can guarantee both Unanimity axioms for all argumentation frameworks.

3.1. Groundwork

The following technical lemma spells out sufficient conditions for an aggregation rule ¥’
to fail both Acceptance Unanimity and Rejection Unanimity. Observe that for any pro-
file > with F(>) ¢ >, it must be the case that for every agent i € N there exists a
distinguishing pair of arguments (x;, y;) such that x; >, y; but F'(>) ranks y; over x;.

Lemma 1. A preference aggregation rule F' for m > 4 arguments and n > 3 agents
fails both Acceptance Unanimity and Rejection Unanimity if there exists a profile > =
(>1,-..,>n) for which at least one of the following two conditions holds:

(i) F(>) ¢ > and for all distinct agents i,j € N there exist distinguishing pairs
(x4, y:) and (x,y;) such that either {z;,y;} N {z;,y;} = & ory; = y;.
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(i1) top(F(>)) # top(>;) for all agents i € N.

Proof. First, observe that (i) implies (¢). Indeed, for any profile > satisfying (%), by
choosing distinguishing pairs (z;, y;) with z; = fop(>;) and y; = top(F(>)), we find
(7) to be satisfied as well. So we are left with proving that (¢) is a sufficient condition.
So consider an arbitrary profile > for m > 4 arguments that satisfies condi-
tion (), as well as an aggregation rule F' for such profiles. We are going to con-
struct an argumentation framework (A, —) such that F' fails both axioms when ap-
plied to (A,—) and >. Let A = {z;,y; | i € N} u {b,c} U {a1,...,ax} and let
= (@i, 90), (i, ), (3, 0) [ i € N} U {(b, )} v {(ag, aes1) | € < K} U {(ak, a1)}
where k is chosen such that there are exactly m arguments in cycles (see Figure 2). Intu-
itively, we let each distinguishing pair be involved in a mutual attack and connect them
suitably to arguments b and c. Arguments a, .. ., a; only make sure enough arguments
occur in cycles. Note that this construction is in general possible for n > 3 only if m > 4.

N/ U
o

b—» cC

Figure 2. Illustration of the argumentation framework used for Lemma 1.

Since each x; is only (mutually) attacked by y;, and each agent ¢ ranks her own
x; above y;, the former is unattacked in (A, —..,). Thus, ¢ belongs to the grounded
extension for every agent, and b does not belong to that of any of them. But for the
aggregate it is the other way round: it ranks every y; above the corresponding x;, and thus
b will be in the grounded extension and ¢ will not. So c is a witness for the violation of
Acceptance Unanimity, and b is a witness for the violation of Rejection Unanimity. [

3.2. Impossibility Result for Condorcet Methods

Using Lemma 1, we can easily prove an impossibility result for Condorcet methods.

Proposition 1. Every Condorcet method for m > 4 arguments andn = 3 agents violates
both Acceptance Unanimity and Rejection Unanimity (unless n = m = 4).

Proof. Let F' be an arbitrary Condorcet method for n > 3 agents and m > 4 arguments,
for which n = m = 4 is not the case. Consider the following profile >

Qg >; A1 >; 3 >; Qg > - >; Ay, for everyie N withi =0 mod 3
a3 >; a1 >; Ao >; Qg >; - >; Gy, foreveryi e N withti =1 mod 3
Qg >; a1 >; a2 >; a3 >; - >; G, foreveryi e N with:e =2 mod 3

Then a; is the Condorcet winner,* so a; = top(F(>)), while for each agent i, we have

that a; # top(>;). Thus, by Lemma 1, condition (i), F" violates both axioms. O

Interestingly, not only does this proof technique fail to apply in case n = m = 4, but in
Section 3.5 we shall see that for these parameters we in fact obtain a possibility result.

4Importantly, this holds for any n > 3 and m > 4, as long as n. = m = 4 is not the case.
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3.3. Impossibility Result for Positional Scoring Rules

Next, we establish a similar impossibility result for PSRs.

Proposition 2. Every PSR for m > 4 arguments violates both Acceptance Unanimity
and Rejection Unanimity for some number n of agents.

Proof. We first cover the case of m = 4. So consider an arbitrary PSR for m = 4
arguments. W.1.0.g., this rule is induced by a scoring vector (1, s3, s3,0) with 1 > s9 >
s3 = 0. We distinguish three cases:

(1) 0< 59 < %, but without the combination sy = % and s3 =0
(2) s2=1%ands; =0
3) L<s<l

For case (1), consider the following profile:

2agents: | a>b>c>d
3agents: | b>a>d>c
lagent: | c>a>b>d

Let S, be the total score of a, and so forth. The aggregate ranking is b > a > ¢ > d,
given that S, = 3+ 2s9 + 53 > S, =2+ 4s9 > S, = 1+ 2s3 > S5 = 3s3. Now
condition (7) of Lemma 1 applies, with distinguishing pairs (a,b) and (d, ¢), so both
axioms indeed are violated.

For case (2), we instead take the following profile:

lagent: | ¢>b>a>d
lagent: | a>b>d>c
lagent: | d>b>c>a

We get S, = 3 > S, = S. = Sq = 1, and condition (i) of Lemma 1 applies.
For case (3), consider the following family of profiles:

kagents: | ¢c>b>a>d
(k+1)agents: | a>b>d>c
(k+2)agents: | d>b>c>a

We get the following scores:

Se = k+1+kss S. kE+(k+2)s3
Sy = (3k + 3)s2 Sqg = k+2+(k+1)s3

So Sy > S, and Sg = S.. Next, we show that there exists a k& for which furthermore
Sy > Sy, i.e., for which the aggregate will rank b at the top (unlike any of the agents).
As s9 = s3, wehave Sy < k+2+ (k+ 1)so. Butk+ 2+ (k4 1)s2 < (3k + 3)s, holds

exactly when 22 < s5. As % < sg, we can find a sufficiently large k& that satisfies

2k+2

% < 9 and thus ensures S, > Sy. So condition (7i) of Lemma 1 applies also here.
It remains to be shown that the impossibility thus established for m = 4 extends

to all m > 4. But this is immediate: If we consider argumentation frameworks with

m > 4 cycle arguments of which m — 4 arguments are isolated arguments that each

attack themselves, we can carry through the exact same construction as above. [
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It is worth noting that there are many values of n for which all PSRs violate the axioms.
The construction used in the proof for case (1) works for any number of agents that is
divisible by 6. That for case (2) only requires divisibility by 3. Finally, since case (3) is a
limit argument, the PSRs will violate the axioms for any sufficiently large n.

3.4. Possibility Results for Argumentation Frameworks with Few Cycle Arguments

Propositions 1 and 2 are powerful impossibility results that rule out most aggregation
rules in the general case. But it turns out that we can establish possibility results for
specific parameters, when the number of arguments involved in cycles is very small.
Specifically, for m = 2 cycle arguments, all reasonable aggregation rules will work.

Proposition 3. Every Condorcet method and every PSR for m = 2 arguments satisfies
both Acceptance Unanimity and Rejection Unanimity.

Proof. For m = 2, there are only 2 arguments to compare, so all Condorcet methods and
all PSRs reduce to the simple majority rule, under which the aggregate ranking is the
ranking chosen most often [9]. This also implies that the aggregate ranking is chosen by
at least one agent. Thus, if all agents accept (or reject) some argument, then the aggregate
will also accept (or reject) that argument. O

For argumentation frameworks with at most m = 3 arguments involved in cycles, we
are able to identify at least one aggregation rule that satisfies our axioms, namely the
Plurality rule (with ties broken according to the preferences of some fixed agent).

Proposition 4. The Plurality rule with agent-based tie-breaking for m = 3 arguments
satisfies both Acceptance Unanimity and Rejection Unanimity.

Proof (sketch). The central step in the proof is to show that, for m = 3, the Plurality rule
with agent-based tie-breaking will always return a ranking that accepts the same cycle
arguments as at least one agent. Note that, for this rule F', there is always an agent ¢
such that top(>;) = top(F(>)) and, for (a,b) € F(>), there is always an agent j such
that ¢ >; b (either by agent-based tie-breaking or because a = top(>;)). A careful case
distinction now shows that, depending on the structure of the argumentation framework,
the aggregate ranking will agree either with ¢ or 7 on the cycle arguments. For instance, if
a = top(F(>)) and arguments b and ¢ occur together in a cycle while a is self-attacking,
then only the ranking between b and ¢ matters and agent j agrees with the aggregate on
the cycle arguments. In contrast, if all three arguments occur in a cycle together, then
would be our agent of choice. O

3.5. Possibility Result for Representative-Agent Rules

We end on a positive note and show that there is a large family of aggregation rules that
satisfies both our axioms for any number of agents and any number of arguments.

Proposition 5. Every representative-agent rule satisfies both Acceptance Unanimity and
Rejection Unanimity.

Proof. By definition, any representative-agent rule copies the ranking of one of the
agents, so any property satisfied by all agents must also be satisfied by the aggregate. [J
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Whether this positive result is a suitable way around our impossibilities is up for de-
bate. While the case for certain representative-agent rules has been made in the litera-
ture [10,23], they clearly are not as widely accepted as the Condorcet methods or the
PSRs. Further, this family also includes obviously unattractive rules such as the dictator-
ships. But since the aggregation rule knows nothing about the underlying argumentation
framework, it might be a good choice to follow the submitted rankings. For instance,
arguments might share premises or rely on similar reasoning patterns, which might make
certain rankings more reasonable than others. Representative-agent rules guarantee that
we do not end up disregarding these hidden constraints.

It is worth pointing out that Proposition 3 is essentially a corollary to Proposition 5.
Finally, recall that the impossibility result for Condorcet methods (Proposition 1) does
not apply when n = m = 4. Indeed, for n = m = 4, there exists a Condorcet method
that satisfies both axioms. What is special about the case of n = m = 4 is that an
argument can be a Condorcet winner only if it is ranked first by at least one agent. So the
rule that selects the ranking where the Condorcet winner, if it exists, is the top argument
and that otherwise selects the ranking of agent 1 is both a Condorcet method and a
representative-agent rule—so Proposition 5 applies.

4. Conclusion

We introduced a formal model to analyse methods for eliminating cycles from an ab-
stract argumentation framework on the basis of the preferences held by the members of a
group. We introduced two basic normative requirements encoding the following princi-
ple: unanimously held views by all members of the group should be reflected in the out-
come returned by any such method. Our findings show that it is essentially impossible to
uphold this principle by means of standard methods of preference aggregation, although
the family of representative-agent rules offers a promising way out.

While it is not uncommon to uncover impossibilities in the context of social choice,
we note that, at the technical level, our impossibilities are not immediately related to any
of the best-known results in the field [7,8]. These typically exploit a conflict between the
axiom of independence (or another axiom that implies it, such as strategyproofness) and
the axiom of nondictatorship. This is a pattern we also often find in work at the interface
of formal argumentation with social choice theory [12,15,17].

For future work, it will be important to explore alternative design choices for collec-
tive cycle elimination. For instance, asking everyone to report separate rankings for each
cycle would be another natural choice (but care would need to be taken to ensure consis-
tency in case of overlapping cycles). And while we opted for eliminating all attacks in
a cycle going against our preferences, another natural option would be to only eliminate
one attack per cycle. In general, we could also consider using preferences in other ways
than eliminating attacks [5]. Further, it seems that our findings do not depend fully on
the context of cycle elimination, as Lauren et al. [24] show that there are similar results
even outside of abstract argumentation, namely in assumption-based argumentation.
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