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Abstract
Input/Output (I/O) logic is a general framework for1

reasoning about conditional norms and/or causal2

relations. We streamline Bochman’s causal I/O3

logics and their original version via proof-search-4

oriented sequent calculi. As a byproduct, we obtain5

new, simple semantics for all these logics, com-6

plexity bounds, embeddings into normal modal log-7

ics, and efficient deduction methods. Our work en-8

compasses many scattered results and provides uni-9

form solutions to various unresolved problems.10

1 Introduction11

Input/Output (I/O) logic is a general framework proposed12

by [Makinson and van der Torre, 2000] to reason about con-13

ditional norms. I/O logic is not a single logic but rather14

a family of logics, each viewed as a “transformation en-15

gine”, which converts an input (condition under which the16

obligation holds) into an output (what is obligatory under17

these conditions). Many different I/O logics have been de-18

fined, e.g., [Makinson and van der Torre, 2001; van der19

Torre and Parent, 2013; Parent and van der Torre, 2014;20

Stolpe, 2015], and also used as building blocks for causal rea-21

soning [Bochman, 2003; Bochman, 2004; Bochman and Lif-22

schitz, 2015; Bochman, 2021], laying down the logical foun-23

dations for the causal calculus [McCain and Turner, 1997],24

and for legal reasoning [Ciabattoni et al., 2021]. I/O log-25

ics manipulate Input-Output pairs (A,B), which consist of26

boolean formulae representing either conditional obligations27

(for the original I/O logics) or causal relations (A causes B,28

for their causal counterparts). Different I/O logics are defined29

by varying the mechanisms of obtaining new pairs from a set30

of pairs (entailment problem). The semantics of the original31

I/O logics is procedural, while their causal counterparts adopt32

bimodels, which are pairs of arbitrary deductively closed sets33

of formulae. Each I/O logic possesses a proof calculus, con-34

sisting of axioms and rules but not suitable for proof search.35

This paper deals with the four original I/O logics OUT1-36

OUT4 in [Makinson and van der Torre, 2000] and their causal37

*This is the extended abstract of the paper with the same title
[Ciabattoni and Rozplokhas, 2023] presented at KR 2023.

counterpart OUT⊥
1 -OUT⊥

4 in [Bochman, 2004]. We intro- 38

duce proof-search-oriented sequent calculi and use them to 39

bring together scattered results and to provide uniform solu- 40

tions to various unresolved problems. Indeed [van Berkel and 41

Straßer, 2022] characterized many I/O logics through an ar- 42

gumentative approach using sequent-style calculi. Their cal- 43

culi are not proof search-oriented. First sequent calculi of 44

this kind for some I/O logics, including OUT1 and OUT3, 45

have been proposed in [Lellmann, 2021]. Their implemen- 46

tation offers an alternative decidability proof, though subop- 47

timal (entailment is shown to be in ΠP
3 ), and the problem 48

of finding proof-search-oriented calculi for OUT2 and OUT4 49

was left open there. A prover for these two logics was intro- 50

duced in [Benzmüller et al., 2019]. The prover encodes in 51

classical Higher Order Logic their embeddings from [Makin- 52

son and van der Torre, 2000] into the normal modal logics K 53

and KT. Finding an embedding of OUT1 and OUT3 into nor- 54

mal modal logics was left as an open problem, that [van der 55

Torre and Parent, 2013] indicates as difficult, if possible at 56

all. An encoding of various I/O logics into more complicated 57

logics (adaptive modal logics) is in [Straßer et al., 2016]. Us- 58

ing their procedural semantics, [Steen, 2021] defined goal- 59

directed decision procedures for the original I/O logics, with- 60

out mentioning the complexity of the task. [Sun and Robaldo, 61

2017] showed that the entailment problem for OUT1, OUT2, 62

and OUT4 is co-NP-complete, while for OUT3 complexity 63

was found to be between classes co-NP and PNP, though not 64

precisely resolved. 65

In this paper, we follow a new path that streamlines the 66

considered logics (see [Ciabattoni and Rozplokhas, 2023] for 67

all proofs). Inspired by the modal embedding of OUT⊥
2 and 68

OUT⊥
4 in [Bochman, 2003], we design well-behaving se- 69

quent calculi for Bochman’s causal I/O logics. The normal 70

form of derivations in these calculi establishes a simple syn- 71

tactic link between derivability in the original I/O logics and 72

in their causal versions, enabling the use of our calculi for 73

the original I/O logics as well. As a by-product, the follow- 74

ing results are achieved uniformly across all four original I/O 75

logics and their causal versions: 76

• a simple possible worlds semantics 77

• co-NP-completeness and efficient automated procedures 78

for the entailment problem 79

• embeddings into the shallow fragment of the modal log- 80

ics K, KD, and their extension with axiom F. 81



Logic (TOP) (BOT) (WO) (SI) (AND) (OR) (CT)
OUT1 ✓ ✓ ✓ ✓
OUT2 ✓ ✓ ✓ ✓ ✓
OUT3 ✓ ✓ ✓ ✓ ✓
OUT4 ✓ ✓ ✓ ✓ ✓ ✓
OUT⊥

1 ✓ ✓ ✓ ✓ ✓
OUT⊥

2 ✓ ✓ ✓ ✓ ✓ ✓
OUT⊥

3 ✓ ✓ ✓ ✓ ✓ ✓
OUT⊥

4 ✓ ✓ ✓ ✓ ✓ ✓ ✓

Table 1: Defining rules for the considered I/O logics

2 Preliminaries82

In the I/O logic framework, conditional norms (or causal rela-83

tions) are expressed as pairs (B, Y ) of propositional boolean84

formulae. Different I/O logics are obtained by varying the85

mechanisms of obtaining new input-output pairs from a given86

set of these pairs. The mechanisms introduced in the original87

paper [Makinson and van der Torre, 2000] are based on the88

following (axioms and) rules (|= denotes semantic entailment89

in classical propositional logic):90

(TOP) (⊤,⊤) is derivable from no premises91

(BOT) (⊥,⊥) is derivable from no premises92

(WO) (A,X) derives (A, Y ) whenever X |= Y93

(SI) (A,X) derives (B,X) whenever B |= A94

(AND) (A,X1) and (A,X2) derive (A,X1 ∧X2)95

(OR) (A1, X) and (A2, X) derive (A1 ∨A2, X)96

(CT) (A,X) and (A ∧X,Y ) derive (A, Y )97

Different I/O logics are given by different subsets R of98

these rules, see Fig. 1. The basic system, called simple-99

minded output OUT1, consists of the rules {(TOP), (WO),100

(SI), (AND)}. Its extension with (OR) (for reasoning by101

cases) leads to basic output logic OUT2, with (CT) (for102

reusability of outputs as inputs in derivations) to simple-103

minded reusable output logic OUT3, and with both (OR)104

and (CT) to basic reusable output logic OUT4. Their causal105

counterpart [Bochman, 2004], that we denote by OUT⊥
i for106

i = 1, . . . , 4, extends the corresponding logics with (BOT).107

Definition 1. Given a set of pairs G and a set R of rules, a108

derivation in an I/O logic of a pair (B, Y ) from G is a tree109

with (B, Y ) at the root, each non-leaf node derivable from110

its immediate parents by one of the rules in R, and each leaf111

node is an element of G or an axiom from R.112

G ⊢OUT∗ (B, Y ) indicates that (B, Y ) is derivable in the113

I/O logic OUT∗ from the set of pairs in G (entailment prob-114

lem). (B, Y ) is the goal pair, the formulae B and Y are the115

goal input and goal output respectively, and the pairs in G are116

called deriving pairs.117

3 Sequent Calculi for I/O Logics118

We define sequent calculi for all four causal I/O logic in a119

modular fashion. The characterization of their derivations al-120

lows us to establish a syntactic link between causal and origi-121

nal I/O logics, thereby enabling the utilization of these calculi122

for the original I/O logics as well.123

B ⇒ (IN)
G ⊢ (B, Y )

⇒ Y (OUT)
G ⊢ (B, Y )

Figure 1: Concluding rules (same for all causal I/O logic)

The basic objects of the calculi for the causal I/O logic are

I/O sequents (A1, X1), . . . , (An, Xn) ⊢ (B, Y )

dealing with pairs, as well as

Genzen’s LK sequents A1, . . . An ⇒ B1, . . . , Bm

dealing with boolean formulae (meaning that {A1, . . . , An} 124

|= (B1 ∨ · · · ∨ Bm)). The calculi are defined by extending 125

Gentzen’s sequent calculus LK for classical logic [Gentzen, 126

1935] with three rules manipulating I/O sequents: two con- 127

cluding rules (see Fig. 1) that transform the derivation of the 128

goal pair into an LK derivation of either the goal input or the 129

goal output, and one elimination rule — different for each 130

logic — that removes one of the deriving pair while modify- 131

ing the goal pair (Fig. 2). 132

Definition 2. A derivation in our calculi is a finite la- 133

beled tree whose internal nodes are I/O or LK sequents 134

s.t. the label of each node follows from the labels of its 135

children using the calculus rules. We say that an I/O se- 136

quent (A1, X1), . . . , (An, Xn) ⊢ (B, Y ) is derivable if all 137

the leaves of its derivation are LK axioms. 138

Derivations of I/O sequents consists of two parts. Starting 139

from the bottom, we first encounter rules dealing with pairs 140

(pair elimination and concluding rules) followed by LK rules. 141

It is easy to see that using (IN) and (OUT) we can derive 142

(TOP) and (BOT); their soundness in the weakest causal I/O 143

logic OUT⊥
1 is expressed by the following result 144

Lemma 1. (IN) and (OUT) are derivable in OUT⊥
1 . 145

We present below the calculi for each causal I/O logic. 146

Production Inference OUT⊥
1 : The calculus SC⊥

1 for OUT⊥
1 147

is obtained by adding to the core calculus (consisting of LK 148

with the rules (IN) and (OUT )) the pair elimination rule 149

(E1) in Fig. 2. 150

Notation 1. P(X) will denote the set of all partitions of the 151

set X , i.e., P(X) = {(I, J) | I ∪ J = X, I ∩ J = ∅} 152

The following lemma provides a useful character- 153

ization of derivability in SC⊥
1 of an I/O sequent 154

(A1, X1), . . . , (An, Xn) ⊢ (B, Y ) via the derivability of 155

certain sequents in LK. The intuition behind it is that 156

the characterization considers all possible ways to ap- 157

ply the rule (E1), by partitioning the premises of 158

(A1, X1), . . . , (An, Xn) ⊢ (B, Y ) into two disjoint sets (I of 159

remaining deriving pairs and J of eliminated pairs). 160

Lemma 2 (Characterization lemma for SC⊥
1 ). 161

(A1, X1), . . . , (An, Xn) ⊢ (B, Y ) is derivable in SC⊥
1 162

iff for all partitions (I, J) ∈ P({1, . . . , n}), at least one of 163

the following holds: 164

• B ⇒ Ai is derivable in LK for some i ∈ I , 165

• B ⇒ is derivable in LK, 166

• {Xj}j∈J ⇒ Y is derivable in LK. 167



Basic Production Inference OUT⊥
2 The calculus SC⊥

2 for168

OUT⊥
2 is obtained by adding to the core calculus (consisting169

of LK with the rules (IN) and (OUT )) the pair elimination170

rule (E2) in Fig. 2.171

Notice that if a concluding rule (IN) or (OUT) can be ap-172

plied to the conclusion of (E2), it can also be applied to its173

premises. This observation implies that if (A1, X1), . . . ,174

(An, Xn) ⊢ (B, Y ) is derivable in SC⊥
2 there is a deriva-175

tion in which the concluding rules are applied only when all176

deriving pairs are eliminated. We use this I/O normal form of177

derivations in the proof of the following lemma.178

Lemma 3 (Characterization lemma for SC⊥
2 ).179

(A1, X1), . . . , (An, Xn) ⊢ (B, Y ) is derivable in SC⊥
2180

iff for all partitions (I, J) ∈ P({1, . . . , n}), either181

B ⇒ {Ai}i∈I or {Xj}j∈J ⇒ Y is derivable in LK.182

Regular Production Inference OUT⊥
3 : The calculus SC⊥

3183

for OUT⊥
3 consists of LK with (IN) and (OUT ) extended184

with the pair elimination rule and (E3) in Fig. 2.185

Lemma 4 (Characterization lemma for SC⊥
3 ).186

(A1, X1), . . . , (An, Xn) ⊢ (B, Y ) is derivable in SC⊥
3187

iff for all (I, J) ∈ P({1, . . . , n}), one of the following holds:188

• B, {Xj}j∈J ⇒ Ai is derivable in LK for some i ∈ I ,189

• B, {Xj}j∈J ⇒ is derivable in LK,190

• {Xj}j∈J ⇒ Y is derivable in LK.191

Causal Production Inference OUT⊥
4 The calculus SC⊥

4192

consists of LK with the the rules (IN) and (OUT ), extended193

with the pair elimination rule (E4) in Fig. 2.194

Inspired by the normal modal logic embedding of OUT⊥
4195

in [Bochman, 2003], the shape of the rule (E4) requires to196

amend the statement of the characterization lemma (w.r.t.197

Lemma 3).198

Lemma 5 (Characterization lemma for SC⊥
4 ).199

(A1, X1), . . . , (An, Xn) ⊢ (B, Y ) is derivable in SC⊥
4 iff for200

all (I, J) ∈ P({1, . . . , n}), either B, {Xj}j∈J ⇒ {Ai}i∈I201

or {Xj}j∈J ⇒ Y is derivable in LK.202

Causal I/O Logics vs. Original I/O Logics. We establish203

the following syntactic correspondence between derivability204

in original and causal I/O logics.205

Theorem 1. (A1, X1), . . . , (An, Xn) ⊢OUTk
(B, Y )206

iff (A1, X1), . . . , (An, Xn) ⊢OUT⊥
k

(B, Y ) and207

X1, . . . , Xn |= Y in classical logic, for each k = 1, . . . , 4.208

The above theorem enables us to use the calculi developed209

for the causal I/O logics also for OUT1 − OUT4.210

4 Applications211

Our calculi are used to uniformly establish the following re-212

sults for the eight considered logics: possible worlds seman-213

tics, co-NP-completeness and automated deduction methods,214

and new embeddings into normal modal logics.215

Logic Frame condition Notion of validity
OUT1 no conditions 1-2-validity
OUT2 |In| ≤ 1 1-2-validity
OUT3 no conditions 3-4-validity
OUT4 |In| ≤ 1 3-4-validity
OUT⊥

1 |In| ≥ 1 1-2-validity
OUT⊥

2 |In| = 1 1-2-validity
OUT⊥

3 |In| ≥ 1 3-4-validity
OUT⊥

4 |In| = 1 3-4-validity

Table 2: Conditions on I/O models (size of the set In of input worlds)
and corresponding notions of validity for I/O models.

4.1 Possible Worlds Semantics 216

We design the semantics by looking at the countermodels 217

provided by the characterization lemmas. A contraposi- 218

tive reading of these lemmas leads indeed to countermod- 219

els for non-derivable statements in all considered causal I/O 220

logics. These countermodels consist of (a partition and) 221

several boolean interpretations (two for OUT⊥
2 , OUT⊥

4 and 222

their causal versions, and (n + 2) for OUT⊥
1 , OUT⊥

3 and 223

their causal versions) that falsify the LK sequents from the 224

respective lemma statement. A suitable generalization of 225

these countermodels provides alternative semantic character- 226

izations for both the original and the causal I/O logics. 227

Definition 3. An I/O model is a pair (In, out) where out is 228

the output world, and In is a set of input worlds. 229

Definition 4. An I/O pair (A,X) is 1-2-valid in an I/O model 230

(In, out) if (∀in ∈ In. in ⊨ A) implies out ⊨ X . An I/O pair 231

(A,X) is 3-4-valid in an I/O model (In, out) if (∀in ∈ In. in ⊨ 232

A) implies (∀w ∈ {out} ∪ In. w ⊨ X). 233

Proposition 1 (Semantics of I/O models). G ⊢OUTk
(B, Y ) 234

(resp. G ⊢OUT⊥
k
(B, Y )) iff for all I/O models (satisfying the 235

corresponding conditions in Tab. 2) the validity of all pairs in 236

G implies the validity of (B, Y ). 237

Let us see our semantics at work in the normative context. 238

Example 1. Consider the normative code, inspired by the EU 239

General Data Protection Regulation, comprising the condi- 240

tional obligations (⊤,Lawful), (¬Lawful,Erase), and 241

(Lawful,¬Erase), where Lawful represents lawful data 242

processing and Erase data erasure. Assume that ¬Lawful 243

holds. The question asked in [Benzmüller et al., 2019] is 244

whether some unethical obligation (like KillBoss) can be 245

derived in OUT1 and OUT2 due to the potentially contradic- 246

tory obligations. A countermodel (In, out) to this entailment 247

problem should be s.t. (a) all input worlds satisfy ¬Lawful, 248

(b) out does not satisfy KillBoss and (c) for every condi- 249

tional obligation (A,X) in the norm base either out satisfies 250

X or there is an input world that does not satisfy A. We take 251

out and In satisfying {¬KillBoss,Lawful,Erase} and 252

¬Lawful, respectively. Intuitively out is an ‘ideal’ world as 253

it satisfies all conditional obligations triggered in the given 254

situation (and in which KillBoss does not happen), while 255

In describes a case consistent with the given situation which 256

explains why (Lawful,¬Erase) is not triggered. 257



G ⊢ (B ∧ ¬A, Y ) G ⊢ (B, Y ∨ ¬X)
(E2)

(A,X), G ⊢ (B, Y )

B ⇒ A G ⊢ (B, Y ∨ ¬X)
(E1)

(A,X), G ⊢ (B, Y )

G ⊢ (B ∧ ¬A, Y ) G ⊢ (B ∧X,Y ∨ ¬X)
(E4)

(A,X), G ⊢ (B, Y )

B ⇒ A G ⊢ (B ∧X,Y ∨ ¬X)
(E3)

(A,X), G ⊢ (B, Y )

Figure 2: Sequent rules for pair elimination (one for each considered causal I/O logic)

4.2 Complexity and Automated Deduction258

An immediate corollary of our results is co-NP-completeness259

for all of the considered logics. Moreover, we can explic-260

itly reduce the entailment problem in all of them to the261

(un-)satisfiability of one classical propositional formula of262

polynomial size, a thoroughly studied problem with a rich263

variety of efficient tools available. The result is as follows264

Lemma 6. (A1, X1), . . . , (An, Xn) ⊢OUT⊥
k
(B, Y ) iff the265

classical propositional formula below is unsatisfiable266

¬Pk
n((B, Y )) ∧

∧
(A,X)∈G

Pk
n((A,X)), where267

• Pk
n((A,X)) = (

Nk∧
l=1

Al) → X0 for k = 1, 2268

• Pk
n((A,X)) = (

Nk∧
l=1

Al) → (
Nk∧
l=0

X l) for k = 3, 4269

The result is extended to the original I/O logics via Th. 1.270

4.3 Embeddings into Normal Modal Logics271

As a corollary of the soundness and completeness of I/O log-272

ics w.r.t. I/O models we provide uniform embeddings into273

normal modal logics.274

More precisely we show that G ⊢ (B, Y ) in I/O logics iff a275

certain sequent consisting of shallow formulae only (meaning276

that the formulae do not contain nested modalities) is valid277

in suitable normal modal logics. To do that we establish a278

correspondence between pairs and shallow formulae.279

The I/O models already use the terminology of Kripke se-280

mantics that define normal modal logic. To establish a pre-281

cise link between the two semantics we need only to de-282

fine the accessibility relation on worlds. We will treat the283

set of input worlds In as the set of worlds accessible from284

the output world out. Under this view on input worlds,285

1-2-validity (resp. 3-4-validity) of the pair (A,X) is equiv-286

alent to the truth of the modal formula □A → X (resp.287

□A → X ∧□X) in the world out.288

Also, the conditions on the number of input worlds that are289

used in Prop. 1 to distinguish different I/O logics can be ex-290

pressed in normal modal logics by standard Hilbert axioms.291

Specifically, axiom D : □A → ♢A forces Kripke models292

to have at least one accessible world, while F : ♢A → □A293

forces them to have at most one accessible world. As shown294

below, the embedding works for the basic modal logic K ex-295

tended with D (which results in the well-known standard de-296

ontic logic [von Wright, 1951] KD), with F, or both axioms.297

Below we abbreviate validity e.g. in the logics K (respec-298

tively K+ F) with |=K/K+F.299

Theorem 2. (B, Y ) is derivable from pairs G in 300

• OUT1 and OUT2 iff G□
1/2 |=K/K+F □B → Y 301

• OUT3 and OUT4 iff G□
3/4 |=K/K+F □B → Y ∧□Y 302

• OUT⊥
1 and OUT⊥

2 iff G□
1/2 |=KD/KD+F □B → Y 303

• OUT⊥
3 and OUT⊥

4 iff G□
3/4 |=KD/KD+F □B→Y ∧□Y 304

where G□
1/2 = {□Ai → Xi | (Ai, Xi) ∈ G}, 305

and G□
3/4 = {□Ai → Xi ∧□Xi | (Ai, Xi) ∈ G}. 306

5 Conclusions 307

We have introduced sequent calculi for I/O logics. Our cal- 308

culi provide a natural syntactic connection between deriv- 309

ability in the four original I/O logic [Makinson and van der 310

Torre, 2000] and in their causal version [Bochman, 2004]. 311

Moreover, the calculi yield natural possible worlds semantics, 312

complexity bounds, embeddings into normal modal logics, as 313

well as efficient deduction methods. It is worth noticing that 314

our methods for the entailment problem offer derivability cer- 315

tificates (i.e., derivations) or counter-models as solutions. The 316

efficient discovery of the latter can be accomplished using 317

SAT solvers, along the line of [Lahav and Zohar, 2014]. 318

Our work encompasses many scattered results and presents 319

uniform solutions to various unresolved problems; among 320

them, it contains first proof-search oriented calculi for OUT⊥
2 321

and OUT⊥
4 ; it provides a missing direct formal connection be- 322

tween the semantics of the original and the causal I/O logics; 323

it introduces a uniform embedding into normal modal logics, 324

that also applies to OUT1 and OUT3, despite the absence in 325

these logics of the (OR) rule; moreover, it settles the com- 326

plexity of the logics OUT3 and OUT⊥
3 . The latter logic has 327

been used in [Bochman, 2018] as the base for actual causality 328

and in [Bochman, 2004], together with OUT⊥
4 , to character- 329

ize strong equivalence of causal theories w.r.t. two different 330

non-monotonic semantics. Furthermore OUT4 has been used 331

in [Ciabattoni et al., 2021] as a base for formalizing Kelsen’s 332

theory of norms [Kelsen, 1991]. The automated deduction 333

tools we have provided might be used also in these contexts. 334

In this paper, we have focused on monotonic I/O logics. 335

However, due to their limitations in addressing different as- 336

pects of causal reasoning [Bochman, 2021] and of normative 337

reasoning, several non-monotonic extensions have been intro- 338

duced. For example [Makinson and van der Torre, 2001; Par- 339

ent and van der Torre, 2014] have proposed non-monotonic 340

extensions that have also been applied to represent and reason 341

about legal knowledge bases, as demonstrated in the work by 342

Robaldo et al. [Robaldo et al., 2020]. Our new perspective 343

on the monotonic I/O logics contributes to increase their un- 344

derstanding and can provide a solid foundation for exploring 345

non-monotonic extensions. 346
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