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Abstract
Deontic explanations answer why-questions concerning agents’ obligations and permissions. Normative
systems are notoriously conflict sensitive, making contrastive explanations pressing: “Why am I obliged
to do 𝜙, despite my (seemingly) conflicting obligation to do 𝜓?” In this paper, we develop a model of
contrastive explanatory dialogues for the well-established defeasible reasoning formalism Input/Output
logic. Our model distinguishes between successful, semi-successful, and unsuccessful deontic dialogues.
We prove that the credulous and skeptical (under shared reasons) entailment relation of Input/Output
logic, can be characterized in formal argumentation using preferred and grounded semantics. This result
allows us to leverage known results for dialogue models of the latter two semantics. Since this work is
the first of its kind, we discuss 5 key challenges for deontic explanations through dialogue.
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1. Introduction

Norms are indispensable in many aspects of society, ranging from law, ethics, to business
protocols and AI. They motivate, guide, and regulate agents, whether they are human or
artificial. Often, agents affected by norms do not only need to know that they are bound by
obligations or that they may appeal to rights: they need to understand why. Such understanding
may enhance compliance and collaboration and is especially pressing when conflicts between
norms arise. For instance, I may want to know why I may take over on the left, despite being
obliged to drive on the right. Here, a good explanation not only explains that I am permitted, but
also why the obligation to the contrary does not currently apply: the permission is an exception
to the obligation. Answers to this type of why-question are called deontic explanations.

Deontic logic is the well-established field exploring formal methods to model normative
reasoning. However, the focus has been nearly exclusively on formal systems that determine
which obligations and permissions can be inferred from a normative system, rather than to
explain why. This gap is remarkable, especially given the increasingly vital role that normative
systems play in alignment and compliance requirements for AI. This paper investigates how
knowledge representation methods can be used to generate explanatory deontic dialogues.

The demand for explanatory models in AI is increasing [1] and formal argumentation provides
a promising method in this respect. First of all, formal argumentation has proven to be a unifying
framework for nonmonotonic reasoning [2]. In particular, two central paradigms of defeasible
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reasoning, constrained Input/Output (I/O) logic [3] and default logic [4], can be argumentatively
characterized [5, 6]. Second, a wide variety of methods has been proposed in Argumentation for
Explainable AI (ArgXAI, [7]). Finally, dialogue models and argumentation games [8, 9, 10], offer
dynamic characterizations of formal argumentation, that have the potential to yield interactive
(or even tailor-made) explanatory episodes through dialogues.

Once a given nonmonotonic logic is represented in logical argumentation, such as I/O- or
default logic, dialogical methods can be leveraged for explanatory purposes. However, a first
obstacle, in this respect, is that most characterization results are shown with respect to stable
semantics (including [5, 6]; also see [2]), whereas other semantics such as preferred, admissible,
and grounded are more suitable for dialogical generalization. In brief, the problem with stable
extensions is that they reference the entire set of arguments (each argument is either ‘in’ or ‘out’),
while we expect explanatory dialogues to focus on reasons relevant to the explanatory purpose.
Furthermore, defining dialogue models and argumentation games for skeptical reasoning is
challenging (in the context of multi-extension semantics such as preferred; cf. [10]).
Contributions. We provide dialogue models for one of the central defeasible normative

reasoning formalisms in the literature: Input/Output logic [3, 11]. Unfortunately, the original
formalism does not naturally lend itself to explanatory reasoning. Recently, a highly modular
rule-based proof system – the Deontic Argumentation Calculus (DAC) – was developed with
the aim of making I/O suitable for explanatory purposes and it was shown that DAC-induced
argumentation frameworks are sound and complete for a large class of constrained I/O logics [5]
and default logic [6]. Despite these promising results, the correspondences were only obtained
for stable semantics, making them seemingly unsuitable for dialogical deontic explanations.

In this article, we extend these results by a model of dialogue episodes for deontic explanations:

(1) As a preparatory step, we first prove that for DAC-induced argumentation frameworks
the stable and the preferred semantics coincide. This allows us to use well-developed
preferred dialogue models in the context of I/O reasoning.

(2) Furthermore, we lift recent results [12] that show that the ‘free consequences’ of skeptical
entailment under stable semantics is identical to entailment under the grounded semantics.
In other words, we may also use grounded dialogue models for I/O reasoning.

(3) Using (1) and (2), we enhance dialogue models and define contrastive deontic explanations
that explain certain obligations in contrast to seeming obligations to the contrary.

Outline. Section 2 introduces the DAC formalism. In Section 3, we define DAC-induced
argumentation frameworks and prove that stable equals preferred and the free consequences
correspond to grounded entailment. We harness these results to specify contrastive dialogue
models in Section 4. This paper lays the foundations for a more extensive study of dialogue
models of deontic explanation and, for this reason, we discuss five key challenges in Section 5.

2. Preliminaries: A Deontic Argumentation Calculus (DAC)

We recall the basics of the Deontic Argumentation Calculus (DAC). Although the results in this
paper hold for a range of languages, base logics, and DAC systems, for readability we assume a
propositional language ℒ and classical logic L, and illustrate our approach for one DAC system
from [5]. To enhance explainability, ℒ is labeled and augmented with a language of norms:
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Labeled propositional languages: ℒ𝑖 = {𝜙𝑖 | 𝜙 ∈ ℒ} where 𝑖 ∈ {𝑓, 𝑜, 𝑐}.

Norm languages: ℒ𝑛 = {(𝜙,𝜓) | 𝜙,𝜓 ∈ ℒ} and ℒ𝑛 = {¬Δ | ∅ ⊂ Δ ⊆ ℒ𝑛,Δ is finite}.

Normative systems: 𝒦 = ⟨ℱ ,𝒩 , 𝒞⟩ is a normative system, where ℱ ⊆ ℒ𝑓 is a factual context,
𝒩 ⊆ ℒ𝑛 a normative code, and 𝒞 ⊆ ℒ𝑐 a set of constraints (and ℱ and 𝒞 are L-consistent).

Labels explicate the roles that propositional formulas adopt in the reasoning process: 𝜙𝑓 denotes
that 𝜙 is a fact, 𝜙𝑜 that 𝜙 is obligatory, and 𝜙𝑐 that obligations must be consistent with 𝜙. We
take (𝜙,𝜓) ∈ ℒ𝑛 to expresses the norm “given 𝜙, it is obligatory that 𝜓” and ¬Δ ∈ ℒ𝑛 is
read as “the norms in Δ are jointly inapplicable.” For ¬{(𝜙,𝜓)}, we simply write ¬(𝜙,𝜓). The
latter type of expression plays an essential role in defeasible reasoning with norms. The entire
enhanced I/O language is defined as the union ℒ𝑖𝑜 = ℒ𝑓 ∪ ℒ𝑜 ∪ ℒ𝑐 ∪ ℒ𝑛 ∪ ℒ𝑛. We write
Γ𝑖,Δ𝑖, . . . for finite sets of 𝑖-labeled formulas, where 𝑖 ∈ {𝑓, 𝑜, 𝑐}. We write Γ,Δ, . . . for any
finite subset of ℒ𝑖𝑜 and Δ↓ for a set Δ ⊆ ℒ𝑖 stripped from its label 𝑖 ∈ {𝑓, 𝑜, 𝑐}.

Defeasible normative reasoning occurs with respect to a normative system 𝒦. The basic idea
of I/O reasoning [3] and DAC is that facts (input) trigger norms from which obligations (output)
are detached where the constraints filter the output to ensure consistency. Our aim is to construct
arguments from 𝒦. Our approach belongs to logical argumentation (a subfield of structured
argumentation [2]). We write arguments as sequents: 𝑎 = Γ ⇒ 𝜙, where prem(𝑎) = Γ is
a (possibly empty) set of premises, and conc(𝑎) = 𝜙 is the conclusion of the argument. An
explanatory argument is an argument stating reasons for a conclusion. We take facts, constraints,
and norms as reasons and differentiate two types of argument:

𝜙𝑓 , (𝜙,𝜓) ⇒ 𝜓𝑜 and 𝜙𝑓 ,¬𝜓𝑐 ⇒ ¬(𝜙,𝜓)

The first type (left) contains arguments providing reasons for obligations, where the fact 𝜙𝑓 and
norm (𝜙,𝜓) provide reasons for the obligation 𝜓𝑜. The second type (right) contains arguments
that attack reasons, expressing which norms are inapplicable in the given context, where given
𝜙𝑓 , the norm (𝜙,𝜓) is inapplicable since its detachable obligation is inconsistent with the
constraint ¬𝜓𝑐. The latter type attacks all arguments using (𝜙,𝜓) as a reason.

A DAC is a sequent-style, that is, rule-based proof system for deriving these two types of
argument [5]. We assume that LC is the sound and complete sequent calculus for L.

Deontic Argumentation Calculus (DAC): Let DAC be a system consisting of the rules Ax,
FDet, DDet, Con, Ina, InaC, Taut, and Cut (Figure 1). A DAC-derivation of Γ ⇒ Δ is a
tree-like structure whose leaves are initial sequents, whose root is Γ ⇒ Δ, and whose rule-
applications are instances of the rules of DAC. We say Γ ⇒ Δ is DAC-derivable (written
⊢DAC Γ ⇒ Δ) whenever there exists a DAC-derivation for it, Γ ⊆ ℒ𝑖𝑜, and Δ ⊆ ℒ𝑖𝑜

contains at most one formula. We say Γ ⇒ Δ is 𝒦-based whenever Γ ⊆ ℱ ∪𝒩 ∪ 𝒞.

There are three initial sequent rules: Ax introduces labeled versions of any classically
derivable Γ ⇒ Δ to a DAC-derivation (and so LC rules are not part of DAC). Taut guarantees
that all propositional tautologies are among the output. FDet expresses factual detachment and
gives an initial explanatory argument stating that the fact 𝜙𝑓 and the norm (𝜙,𝜓) are reasons
for concluding the obligation 𝜓𝑜. DDet corresponds to deontic detachment and makes it possible
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⊢LC Γ ⇒ Δ
Ax

Γ𝑖 ⇒ Δ𝑖
, 𝑖 ∈ {𝑓, 𝑜, 𝑐} and Γ,Δ ⊆ ℒ Taut⇒ (⊤,⊤)

FDet
𝜙𝑓, (𝜙,𝜓) ⇒ 𝜓𝑜

𝜙𝑓 ,Γ ⇒ Δ
DDet𝑎

𝜙𝑜,Γ ⇒ Δ

Γ ⇒ 𝜙𝑜

Con
Γ, (¬𝜙)𝑐 ⇒

Γ, (𝜙,𝜓) ⇒
Ina

Γ ⇒ ¬(𝜙,𝜓)

Γ ⇒ InaC
Γ ∖ ℒ𝑛 ⇒ ¬(Γ ∩ ℒ𝑛)

Γ ⇒ 𝜙 𝜙,Γ′ ⇒ Δ
Cut𝑏

Γ,Γ′ ⇒ Δ

Figure 1: A Deontic Argumentation Calculus (DAC). The upper row represents initial sequent rules.
Side-condition (𝑎) on DDet stipulates Γ ∩ ℒ𝑛 ̸= ∅; and (𝑏) on Cut requires that 𝜙 ∈ ℒ𝑖𝑜.

that a norm may be triggered by obligations detached from other norms (see Ex. 1). The rules
Con, Ina, and InaC deal with the defeasibility of normative reasoning and yield attacking
arguments. The Con rule expresses the consistency constraint that if Γ constitutes reasons for
𝜙𝑜, then Γ is inconsistent with the constraint ¬𝜙𝑐 (where an empty right-hand side denotes
inconsistent reasons). We also refer to Γ ⇒ as an inconsistent argument. When an argument
expresses inconsistent reasons, at least one of its involved norms is inapplicable (Ina) and all
involved norms are jointly inapplicable (InaC). We refer to [5] for other DAC systems.

Example 1. We look at Chisholm’s scenario [11], an archetype of contrary-to-duty reasoning.
Billie is obligated to go and help her neighbors (⊤, ℎ) (⊤ denotes that ℎ is detached by default). If
Billie goes to help, she must tell the neighbors she goes (ℎ, 𝑡), otherwise she ought not to tell them
she goes (¬ℎ,¬𝑡). Suppose that Billie does not go and help ¬ℎ𝑓 and, so, violates the default duty in
(⊤, ℎ). To know what Billie must do in light of her violation ¬ℎ𝑓 , the constraint is imposed that the
obligations must be consistent with the fact that Billie does not help ¬ℎ𝑐 [5, 11]. Let ℱ = {¬ℎ𝑓},
𝒩 = {(⊤, ℎ), (ℎ, 𝑡), (¬ℎ,¬𝑡)}, and 𝒞 = {¬ℎ𝑐} be the normative system 𝒦. The desired outcome
is that Billie ought not to tell the neighbors she goes ¬𝑡𝑜 given that she does not go.

Argument 𝑑 (below left), stating that Billie ought to tell, is derived with deontic detachment.
Argument 𝑒 (below right), expresses the inapplicability of ¬(⊤, ℎ) given the set constraint. Similar
reasoning gives the inconsistent argument 𝑥 = ¬ℎ𝑓 , (⊤, ℎ), (ℎ, 𝑡), (¬ℎ,¬𝑡) ⇒ , which with Con,
Cut, and InaC derives the unattackable 𝑥′ = ¬ℎ𝑓 ⇒ ¬{(⊤, ℎ), (ℎ, 𝑡), (¬ℎ,¬𝑡)}.

FDet
⊤𝑓 , (⊤, ℎ) ⇒ ℎ𝑜

FDet
ℎ𝑓 , (ℎ, 𝑡) ⇒ 𝑡𝑜

DDet
ℎ𝑜, (ℎ, 𝑡) ⇒ 𝑡𝑜

Cut
𝑏 = ⊤𝑓 , (⊤, ℎ), (ℎ, 𝑡) ⇒ 𝑡𝑜

FDet
⊤𝑓 , (⊤, ℎ) ⇒ ℎ𝑜

Con
⊤𝑓 , (¬ℎ)𝑐, (⊤, ℎ) ⇒

Ina
𝑒 = ⊤𝑓 , (¬ℎ)𝑐 ⇒ ¬(⊤, ℎ)

For the sake of completion, we recall the I/O system out3 here and some known results [5].

Proposition 1 ([5]). Let 𝒦↓ = ⟨ℱ ,𝒩 , 𝒞⟩ be 𝒦 stripped from its labels. Let Δ ⊆ ℒ, 𝐶𝑛(Δ) =
{𝜙 | Δ ⊢L 𝜙}, and out(𝒩 ,Δ) = 𝐶𝑛({𝜙 | (𝜓,𝜙) ∈ 𝒩 and 𝜓 ∈ 𝐶𝑛(Δ)}). Let out3(𝒩 ,ℱ) =⋃︀

𝑖≥0𝑂𝑖, where 𝑂0 = out(𝒩 ,ℱ) and 𝑂𝑖+1 = 𝐶𝑛(𝑂𝑖 ∪ out(𝒩 , 𝑂𝑖 ∪ ℱ)). In words, out3 is a
closure of 𝒩 under successive (deontic) detachment with respect to ℱ . Then 𝒩 ⊆ ℒ𝑛 is 𝒞-consistent
in 𝒦, if ⊥ /∈ 𝐶𝑛(out3(𝒩 ,ℱ) ∪ 𝒞). Let Θ ⊆ 𝒩 ⊆ ℒ𝑛, Δ ⊆ ℱ ⊆ ℒ and Ω ⊆ 𝒞 ⊆ ℒ, we have:

1. 𝜙 ∈ out3(Θ,Δ) iff ⊢DAC Θ,Δ𝑓 ⇒ 𝜙𝑜;
2. Θ is 𝒞-inconsistent iff there are Δ ⊆ ℱ and Ω ⊆ 𝒞 for which ⊢DAC Θ,Δ𝑓 ,Ω𝑐 ⇒ ;
3. ⊥ ∈ 𝐶𝑛(out3(Θ,Δ)∪Ω) iff for all (𝜙,𝜓) ∈ Θ, ⊢DAC Θ ∖ {(𝜙,𝜓)},Δ𝑓 ,Ω𝑐 ⇒ ¬(𝜙,𝜓).
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3. Formal Argumentation with DAC-arguments

We use formal argumentation [13] to capture the defeasibility of normative reasoning and to
explicate norm conflicts [5]. An Argumentation Framework [13] contains a set of arguments
and an attack relation between arguments, where semantics stipulate conditions under which
sets of arguments are jointly acceptable. We instantiate such frameworks with DAC-arguments.

DAC-induced Argumentation Frameworks Let 𝒦 = ⟨ℱ ,𝒩 , 𝒞⟩ be a normative system. A
DAC-induced argumentation framework 𝒜ℱ(𝒦) = ⟨Arg,Att⟩ is defined as follows:

• Δ ⇒ Γ ∈ Arg iff Δ ⇒ Γ is DAC-derivable and 𝒦-based.
• 𝑎 defeats 𝑏, i.e., (𝑎, 𝑏) ∈ Att ⊆ Arg×Arg iff conc(𝑎) = ¬Δ ∈ ℒ𝑛, and Δ ⊆ prem(𝑏).

We write Arg(Σ) = {⊢DAC 𝑎 | prem(𝑎) ⊆ Σ}.

Argumentative Semantics and Entailment Let ⟨Arg,Att⟩ be an 𝒜ℱ and let 𝒮 ⊆ Arg: 𝒮
defeats an argument 𝑎 ∈ Arg if there is a 𝑏 ∈ 𝒮 that defeats 𝑎; and 𝒮 defends 𝑎 if 𝒮 defeats
every argument that defeats 𝑎. Let Defended(𝒮) be the set of arguments defended by 𝒮 .

We recall the following semantic definitions [13]: 𝒮 is conflict-free if it does not defeat
any of its own elements; 𝒮 is admissible if it is conflict-free and defends all 𝑏 ∈ 𝒮 ; 𝒮
is preferred if it is maximally admissible; 𝒮 is stable if it is conflict-free and defeats all
𝑏 ∈ Arg ∖ 𝒮 ; 𝒮 is grounded if 𝒮 =

⋃︀
𝑖≥0 𝒢𝑖 where 𝒢0 = ∅ and 𝒢𝑖+1 = Defended(𝒢𝑖).

Let sem ∈ {admissible,preferred,stable,grounded}, we define two entailment relations:

• 𝒜ℱ |∼∩rea
sem 𝜙 iff there is an 𝑎 contained in every sem-extension that concludes 𝜙;

• 𝒜ℱ |∼∪
sem 𝜙 iff there is a sem-extension ℰ for which there is an 𝑎 ∈ ℰ concluding 𝜙.

|∼∩rea
sem captures the shared arguments (shared reasons) by all sem-extensions. The resulting

conclusions are called the free consequences of 𝒦, which are obligations from unproblematic
norms compatible with any sem-extension. Credulous entailment |∼∪

sem captures the existence
of reasons in favor of a conclusion for some sem-extension, expressing a defensible stance.

Example 2. The partial 𝒜ℱ in Figure 2 captures the scenario from Ex. 1. There is only one
stable extension {𝑎, 𝑏, 𝑔, 𝑥′} (the arrows from 𝑏, 𝑒, 𝑓, and 𝑔 to 𝑥 are implicit), which is also the
grounded extension (cf. Prop. 3-2 below). We may, thus, conclude 𝒜ℱ |∼(¬𝑡)𝑜 (where |∼ ∈ {|∼⋆

sem |
⋆ ∈ {∩rea,∪} and sem ∈ {stable, grounded}}). As desired, since Billie does not go to help her
neighbors, she ought not to tell them she is coming. Billie may now ask “Why am I obliged to not
tell my neighbors, despite my seeming duty to tell them I am coming to help?” To this we turn next.

We recall [5, Theorem 2] that for the system adopted in this paper, DAC-induced 𝒜ℱs are
sound and complete for the system out3 of constrained Input/Output logic [3].

Proposition 2. Let 𝒦 = ⟨ℱ ,𝒩 , 𝒞⟩ and let maxfam(𝒦) = {𝒩 ′ ⊆ 𝒩 | ⊥ ̸∈ 𝐶𝑛(out3(𝒩 ′,ℱ↓)∪
𝒞↓) and for each 𝒩 ′ ⊂ 𝒩 ′′, ⊥ ∈ 𝐶𝑛(out3(𝒩 ′′,ℱ↓) ∪ 𝒞↓)} be the set of maximal consistent sets
of norms over 𝒦. Let 𝒜ℱ be induced by DAC and 𝒦 with the set of stable extensions stable(𝒜ℱ):

1. If 𝒩 ′ ∈ maxfam(𝒦), then Arg(ℱ ∪𝒩 ′ ∪ 𝒞) ∈ stable(𝒜ℱ);
2. If 𝒜 ∈ stable(𝒜ℱ), then there is a 𝒩 ′ ∈ maxfam(𝒦) for which 𝒜 = Arg(ℱ ∪𝒩 ′ ∪ 𝒞).
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𝑎 =

[︂
(¬ℎ)𝑓 , (¬ℎ,¬𝑡)

⇒ (¬𝑡)𝑜
]︂

𝑏 =

[︂
(¬ℎ)𝑐

⇒ ¬(⊤, ℎ)

]︂
𝑑 =

[︂
(⊤, ℎ), (ℎ, 𝑡)

⇒ 𝑡𝑜

]︂
𝑐 =

[︂
(⊤, ℎ)
⇒ ℎ𝑜

]︂

𝑒 =

[︂
(¬ℎ)𝑓 , (⊤, ℎ), (ℎ, 𝑡)

⇒ ¬(¬ℎ,¬𝑡)

]︂
𝑓 =

[︂
(¬ℎ)𝑓 , (⊤, ℎ), (¬ℎ,¬𝑡)

⇒ ¬(ℎ, 𝑡)

]︂

𝑔 =

[︂
(¬ℎ)𝑓 , (ℎ, 𝑡), (¬ℎ,¬𝑡)

⇒ ¬(⊤, ℎ)

]︂
𝑥′𝑥

Figure 2: DAC-induced 𝒜ℱ of Ex. 1. Arrows denote defeats relative to the constraint 𝒞 = {(¬ℎ)𝑐}.

Our aim is to employ dialogue models for contrastive deontic explanations and for this we need
some additional results. Since the grounded extension is unique [13], |∼∩rea

grounded and |∼∪
grounded

coincide and we simply write |∼grounded. The proofs below do not reference specific DAC-rules
(outside the base system [5, 12]), and thus generalize to all DAC systems in [5] (augmented
with InaC). Proposition 3 tells us that for reasoning about the free consequences under the
stable semantics, it suffices to reason with the grounded semantics. Proposition 4 shows that the
preferred and stable semantics coincide for DAC. Consequently, these propositions allow us to
apply well-developed dialogue techniques to DAC for skeptical (in terms of free consequences)
and credulous reasoning under the grounded, respectively the preferred semantics.

Proposition 3. Let 𝒜ℱ be a DAC-induced 𝒜ℱ for 𝒦 = ⟨ℱ ,𝒩 , 𝒞⟩ and let stb(𝒜ℱ) and
grd(𝒜ℱ) be the set of stable extensions, respectively the grounded extension of 𝒜ℱ :

1. 𝑎 ∈
⋂︀
stb(𝒜ℱ) iff every defeater 𝑏 ∈ Arg of 𝑎 is 𝒞-inconsistent (i.e., it is defeated by an

argument 𝑐 ∈ Arg(ℱ ∪ 𝒞)).
2. grd(𝒜ℱ) =

⋂︀
stb(𝒜ℱ) = 𝒢2 = Defended(Arg(ℱ ∪ 𝒞)) (and so |∼grounded = |∼∩rea

stable).1

Proof. Ad 1. Let 𝑎 = Δ𝑓
1 ,Θ1,Γ

𝑐
1 ⇒ Σ ∈ Arg(𝒦). Left-to-Right. Consider a defeater

𝑏 = Δ𝑓
2 ,Θ2,Γ

𝑐
2 ⇒ ¬(𝜙,𝜓) of 𝑎. By Proposition 1, Θ2 ∪ {(𝜙,𝜓)} is 𝒞-inconsistent in 𝒦. Since

𝑎 ∈
⋂︀
stb(𝒜ℱ) and (𝜙,𝜓) ∈ prem(𝑎), and by Proposition 3, Θ2 is not contained in a consistent

set of norms in 𝒦 and it is therefore inconsistent. By Proposition 1, there are Δ𝑓
3 ∪ Γ𝑐

3 ⊆ ℱ ∪ 𝒞
such that Δ𝑓

3 ,Γ
𝑐
3 ⇒ ¬Θ2 defeats 𝑏. Right-to-Left. It is easy to see that

⋂︀
stb(𝒜ℱ) contains

every argument it defends. Suppose now that 𝑏 = Γ ⇒ Δ is 𝒞-inconsistent. By Proposition 1,
there is a 𝑐 = Ω ⇒ ¬(Γ∩ℒ𝑛) that defeats 𝑏 and for which Ω∩ℒ𝑛 = ∅. Since 𝑐 has no defeaters,
𝑐 ∈

⋂︀
stb(𝒜ℱ). So,

⋂︀
stb(𝒜ℱ) defends 𝑎 and therefore 𝑎 ∈

⋂︀
stb(𝒜ℱ).

Ad 2. Left-to-Right. Straightforward. We show Right-to-Left. Let 𝑎 ∈
⋂︀
stb(𝒜ℱ). By

Item 1, 𝑎 is defended by Arg(ℱ ∪ 𝒞). Clearly, Arg(ℱ ∪ 𝒞) ⊆ 𝒢1 ⊆ grd(𝒜ℱ) since arguments
in this set do not have defeaters. So, 𝑎 ∈ 𝒢2 ⊆ grd(𝒜ℱ).

1Recall that
⋃︀

𝑖≥0 𝒢𝑖 where 𝒢0 = ∅ and 𝒢𝑖+1 = Defended(𝒢𝑖). The proposition states the computationally
interesting result that the fixed-point construction of the grounded extension terminates on the second iteration.
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Proposition 4. Let 𝒜ℱ be a DAC-induced 𝒜ℱ for 𝒦 = ⟨ℱ ,𝒩 , 𝒞⟩ and let 𝒜 ⊆ Arg: 𝒜 is a
stable extension iff 𝒜 is a preferred extension (and so |∼*

preferred = |∼*
stable, for * ∈ {∪,∩rea}).

Proof. Left-to-Right. Lemma 15 in [13]. Right-to-Left. Suppose not, then there is an 𝑎 ∈
Arg(𝒦) ∖ 𝒜 but no 𝑏 ∈ 𝒜 for which (𝑏, 𝑎) ∈ Att. Since 𝒜 is preferred it is conflict-free. By
Proposition 2, 𝒩 ′ = {(𝜙,𝜓) | (𝜙,𝜓) ∈ Δ ∩ ℒ𝑛 and Δ ⇒ Γ ∈ 𝒜} is 𝒞-consistent and so 𝒩 ′ ⊆
𝒩 ′′ for some 𝒩 ′′ ∈ maxfam(𝒦) and there is a stable extension 𝒜′ = Arg(ℱ ∪𝒩 ′′∪𝒞). Clearly,
Arg(ℱ ∪𝒩 ′∪𝒞) ⊆ Arg(ℱ ∪𝒩 ′′∪𝒞) and so, 𝒜 is not maximally admissible. Contradiction.

4. Dialogues and Contrastive Explanations

We now provide dialogue models for contrastive deontic explanations. A contrastive explanatory
dialogue starts with a command “𝜙𝑜!” issued by the explainer, immediately followed by the
explainee asking a question of the form: “Why 𝜙𝑜, despite 𝜓𝑜?”

Due to the conflict sensitivity of norm systems [3, 11], we consider contrastive why-questions
as the starting point of explanatory episodes [14]. We refer in what follows to 𝜙𝑜 as the claim
and to 𝜓𝑜 as the counter-claim. 2 We do not assume that 𝜙𝑜 and 𝜓𝑜 are derivable from the given
normative system 𝒦, nor do we assume that there is a dialectical relation between 𝜙𝑜 and 𝜓𝑜,
referred to as the contrastive link. Both must become explicit (if existent) through the dialogue
itself. We say there exists a contrastive link when two arguments 𝑎 and 𝑏 exist concluding 𝜙𝑜,
respectively 𝜓𝑜, which are incompatible, meaning that there is no stable extension containing
both. In such a case, an incompatibility argument can be provided using the premises in 𝑎 and 𝑏:

Proposition 5. Let 𝒦 = ⟨ℱ ,𝒩 , 𝒞⟩ and 𝒜ℱ(𝒦) = ⟨Arg,Att⟩. For any two arguments 𝑎 = Δ ⇒
𝜙𝑜, 𝑏 = Γ ⇒ 𝜓𝑜 ∈ Arg: there is no stable extension 𝒮 with 𝑎, 𝑏 ∈ 𝒮 iff there is a DAC-derivable
argument Δ,Γ,Ω ⇒ with Ω ⊆ 𝒞 (we call 𝑎 and 𝑏 𝒞-incompatible).

Proof. Left-to-Right. Let 𝒩 ′ = (Γ∪Δ)∩ℒ𝑛, and ℱ ′ = {𝜙 | 𝜙𝑓 ∈ Γ∪Δ}. By Prop. 3, there is
no ℳ ∈ maxfam(𝒦) with 𝒩 ′ ⊆ ℳ. So, there is a Ω ⊆ 𝒞 for which ⊥ ∈ 𝐶𝑛(out3(𝒩 ′,ℱ ′)∪Ω).
By Prop. 1 and a Cut application, ⊢DAC 𝒩 ′,ℱ ′,Ω ⇒ . Right-to-Left. Straightforward.

An explanatory dialogue addressing “Why 𝜙𝑜, despite 𝜓𝑜?” is successful whenever it contains

c1 an argument 𝑎 for 𝜙𝑜 and a demonstration that all (indirect) objections to 𝑎 can be met;
c2 an argument 𝑏 for 𝜓𝑜 such that 𝑎 and 𝑏 are 𝒞-incompatible (recall Prop. 5);
c3 an argument 𝑐 defeating 𝑏 and a demonstration that all (indirect) objections to 𝑐 can be met;
c4 a demonstration that the demonstrations in c1 and c3 are 𝒞-compatible.

Informally, c1 provides the ‘illative explanation’ of “𝜙𝑜!” by stating 𝑎 containing the facts and
norms in view of which 𝜙𝑜 holds. It also provides the ‘dialectic explanation’ of 𝜙𝑜 by refuting all

2In the philosophical literature deontic explanations are relatively unexplored. Our account takes the question-
oriented pragmatic approach to contrastive explanation (cf. [14]), which naturally extends to dialogue models. It
accords with [15] who calls upon defeasible moral principles (here interpreted as norms) to substantiate explanations
and with [16] who takes defeasible norms to serve as justifications, namely, norms ground as to why the called-upon
facts are explanatory. See also [17] for the role of justification in the context of normative explanations.
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R: 𝜑𝑜!

H: why(𝜑𝑜)despite(𝜓𝑜)?

R: argue(𝑎 = Δ ⇒ 𝜑𝑜) R: despite(𝜓𝑜)?

H: argue(𝑏 = Γ ⇒ 𝜓𝑜) H: argue Δ, Γ, Ω ⇒ 

Ω ⊆ 𝒞

ℰclaim (c1) ℰcounter (c3)

ℰcontrast (c2)

ℰcomp (c4)

Sub-dialogue for 

the acceptance of 𝑎
Sub-dialogue for 

the acceptance of 𝑐

H: argue Π, Σ, Θ ⇒ 

Π ⊆prem ℰR  ,
Θ ⊆ 𝒞

R: argue 𝑐 = Σ ⇒ ¬Γ′

    Γ′ ⊆ (Γ ∩ ℒ𝑛) 

 

Figure 3: A DAC-based contrastive explanatory dialogue (CED) for explainer (R) and explainee (H).

possible objections the explainee may have against concluding𝜙𝑜. c2 makes explicit the contrast
between the argument for 𝜙𝑜 with an argument for 𝜓𝑜, and c3 provides illative and dialectical
explanations for why 𝜓𝑜 can be successfully objected to (our terminology mirrors Johnson’s
well-known two-tier model of argument [18]). Last, c4 ensures that the two sub-explanations
in c1 and c3 form a 𝒞-compatible view. The intuitive idea of contrastive explanatory dialogues,
following c1-c4, is provided in Figure 3. Below, we make this formally precise.

Although explanatory dialogues are collaborative, we assume a burden of proof for the
explainer with respect to c1 and c3, and for explainee with respect to c2 and c4. For the sake of
simplified reference, we call the explainee ‘human’ (H) and the explainer ‘robot’ (R).

Explanatory Dialogues Let 𝒜ℱ(𝒦) be a DAC-induced argumentation framework. Let R be
the explainer and H the explainee. A contrastive explanatory dialogue (CED) is a sequence
ℰ = ⟨𝑚1, . . . ,𝑚𝑛⟩ of tuples 𝑚𝑖 = ⟨pl, lo, ta⟩ called moves such that 𝑖 is 𝑚𝑖’s position in
the dialogue, pl(𝑚𝑖) ∈ {R, H} is the player making move 𝑚𝑖, lo(𝑚𝑖) ∈ Locutions is the
locution in 𝑚𝑖, and ta(𝑚𝑖) ∈ {𝑚1, . . . ,𝑚𝑖−1} ∪ {∅} is the target of 𝑚𝑖. Locutions =
{(𝑥)!, why(𝑥)despite(𝑦)?, despite(𝑥)?, argue(𝑧)} is the set of expressions that inter-
locutors may use, where 𝑥 and 𝑦 range over ℒ𝑜 and 𝑧 ranges over Arg(𝒦). ℰ is a sem-CED
(for sem ∈ {preferred, grounded}) whenever ℰ satisfies the protocol stipulated by P1-P5.

P1 Dialogue Commencement Rules for 𝑚𝑖 ∈ ℰ with 𝑖 ∈ {1, 2, 3, 4}:

𝑚1 = ⟨R, 𝜙𝑜!, ∅⟩ 𝑚3 = ⟨R, argue(𝑎),𝑚2⟩ with conc(𝑎) = 𝜙𝑜

𝑚2 = ⟨H, why(𝜙𝑜)despite(𝜓𝑜)?,𝑚1⟩ 𝑚4 = ⟨R, despite(𝜓𝑜)?,𝑚2⟩
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P2 General Rules for each 𝑚𝑖,𝑚𝑘 ∈ ℰ :

i) if 𝑖 > 4, then lo(𝑚𝑖) = argue(𝑥), and ta(𝑚𝑖) = 𝑚𝑘 with 𝑘 < 𝑖.
ii) if ta(𝑚𝑖) = 𝑚𝑘, lo(𝑚𝑖) = argue(𝑥) and lo(𝑚𝑘) = argue(𝑦), then conc(𝑥) =

¬Δ ∈ ℒ𝑛 for some Δ ⊆ prem(𝑦);
iii) if ta(𝑚𝑖) = ta(𝑚𝑘) and 𝑖 ̸= 𝑘, then lo(𝑚𝑖) ̸= lo(𝑚𝑘);
iv) if ta(𝑚𝑖) = 𝑚𝑘, then pl(𝑚𝑖) ̸= pl(𝑚𝑘).

P1 stipulates that (1) R starts the dialogue with a command to which, (2) H responds with a
contrastive why-question. Then, (3) R must provide reasons for the command and, after that, (4)
shifts the burden of proof to H requesting support for the contrastive claim. P2 stipulates rules
that hold for both R and H: (i) after the start of the dialogue any player may continue making
moves that target previous moves by stating arguments, where (ii) arguments moved against
other arguments express undermining defeats, (iii) players may not move an argument twice
against the same move, and (iv) they may not attack their own claims.

P3 Explainer Rules for each 𝑚𝑖,𝑚𝑘 ∈ ℰ , if ta(𝑚𝑖) = 𝑚2, then 𝑖 = 3 or 𝑖 = 4.

P4 Explainee Rules for each 𝑚𝑖,𝑚𝑗 ,𝑚𝑘 ∈ ℰ :

i) if ta(𝑚𝑖)=ta(𝑚𝑗)=ta(𝑚𝑘)=𝑚4 (and, so, pl(𝑚𝑖) = H), then |{𝑖, 𝑗, 𝑘}| ≤ 2.
ii) if ta(𝑚𝑖)=ta(𝑚𝑗)=𝑚4, 𝑖̸=𝑗, {lo(𝑚𝑖), lo(𝑚𝑗)} = {argue(𝑏), argue(𝑐)}, lo(𝑚3) =

argue(𝑎), then conc(𝑏) = 𝜓𝑜 and 𝑐 = prem(𝑎), prem(𝑏),Ω ⇒ with Ω ⊆ 𝒞.
iii) if ta(𝑚𝑖) = 𝑚𝑘 , ta(𝑚𝑘) = 𝑚𝑗 , ta(𝑚𝑗) = 𝑚4, lo(𝑚𝑗) = argue(𝑏), with conc(𝑏) ̸=

∅, and lo(𝑚𝑘) = argue(𝑑), then
– either lo(𝑚𝑖) = argue(Σ, prem(𝑑), 𝒞 ⇒ ), and Σ ⊆ prem(ℰR) with ℰR =

{𝑎 |𝑚 ∈ ℰ , pl(𝑚) = R, lo(𝑚) = argue(𝑎)};
– or lo(𝑚𝑖) = argue(𝑒) for some 𝑒 with conc(𝑒) = ¬Δ ∈ ℒ𝑛 and Δ ⊆ prem(𝑑).

P3 states that R must provide exactly two moves against the contrastive why-question (one
of which provides reasons, and the other questioning the contrastive claim). P4 stipulates that
the explainee H may (i) make at most two moves against R’s questioning of the contrastive link,
(ii) one of which is an argument providing reasons for the counter-claim, one which shows the
𝒞-incompatibility of the arguments for the claim and the counter-claim 𝜓𝑜. Then, (iii) H may
also move against the explainer’s argument 𝑑 opposing the reasons for the counter-claim. In
case 𝑑 is incompatible with the other arguments offered by R, R engages in incoherent reasoning.
H may, thus, oppose by demonstrating the 𝒞-incompatibility of 𝑑 and other R arguments.

A CED has a tree-structure since each move has exactly one predecessor (except for the
root). A branch of ℰ containing 𝑚𝑖 is the maximal linear sequence branch(𝑚𝑖) = ⟨𝑚𝑗1 , . . . ,
𝑚𝑖=𝑗𝑘 , . . . ,𝑚𝑗𝑛⟩ such that for each 𝑚𝑗𝑙 and 𝑚𝑗𝑙+1

, ta(𝑚𝑗𝑙+1
) = 𝑗𝑙. We say 𝑚𝑗𝑛 is a leaf.

Each CED consists of four subdialogues (see Fig. 3), which constitute four sub-explanations: a
subdialogue ℰclaim (cf. c1) that engages with the argument 𝑎 given in favour of the claim 𝜙𝑜

(generated from𝑚3 down); a subdialogue ℰcounter (cf. c3) that engages with the argument 𝑏 given
in favour of the counter-claim 𝜓𝑜 (generated from the move attacking the argument providing
reasons for 𝜓𝑜); and the subdialogues ℰcontrast (cf. c2) and ℰcomp (cf. c4) each containing at most
one node with an argument that shows the 𝒞-incompatibility of 𝑎 and 𝑏, respectively, joint
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𝒞-incompatibility of R’s explanations ℰclaim and ℰcounter. These four subdialogues determine
when a given dialogues is (un/semi)successful.

Before defining success, we add P5 to the protocol to accommodate reasoning with preferred
and grounded acceptance of arguments. For sem ∈ {preferred, grounded}, (i) R may move at
most one counter-argument to each H argument. For preferred dialogues, (ii) H is not allowed to
move the same argument twice on a branch in ℰclaim or ℰcounter. For grounded dialogues, (iii) R
is not allowed to move the same argument twice on a branch. We note that (i)-(iii) follow the
protocols for admissible (and, so, preferred) and grounded argumentation games [10].

P5 Preferred and Grounded Rules for each𝑚𝑖,𝑚𝑗 ∈ ℰ , and sem ∈ {preferred, grounded}:

i) ta(𝑚𝑖) = ta(𝑚𝑘) = 𝑚𝑗 with 𝑗 > 3 and pl(𝑚𝑖) = R, then 𝑚𝑖 = 𝑚𝑘;
ii) if sem = preferred, pl(𝑚𝑖) = H, and ta(𝑚𝑖) = 𝑚𝑗 , then there is no 𝑚𝑘 ∈

branch(𝑚𝑗) for which pl(𝑚𝑘) = H, lo(𝑚𝑖) = lo(𝑚𝑘) and 𝑖 ̸= 𝑘;
iii) if sem = grounded, pl(𝑚𝑖) = R, and ta(𝑚𝑖) = 𝑚𝑗 , then there is no 𝑚𝑘 ∈

branch(𝑚𝑗) for which pl(𝑚𝑘) = R, lo(𝑚𝑖) = lo(𝑚𝑘) and 𝑖 ̸= 𝑘.

Successful dialogues Let 𝒜ℱ(𝒦) be DAC-induced. A CED ℰ satisfying P1-P5 is:

∙ successful if ℰcontrast ̸= ∅, ℰcomp = ∅, and ℰclaim and ℰcounter both contain R-leaves only;

∙ semi-successful if ℰcontrast = ∅ = ℰcomp, and ℰclaim contains R-leaves only;

∙ unsuccessful if neither of the above holds.

Then, ℰ is sem-successful when it is saturated (i.e., all movable arguments from 𝒜ℱ(𝒦)
are moved in ℰ ; cf. [9]) and ℰ is successful (similar for semi- and unsuccessful).

In brief, a successful CED features (c1) an illative explanation that is supplemented by
a dialectical explanation (ℰclaim contains only R-leaves), where (c2) the explainee is able to
demonstrate the incompatibility of the contrastive claim (ℰcontrast ̸= ∅), the latter which (c3) the
explainer successfully counters (ℰcounter contains only R-leaves). Furthermore, (c4) the position
taken by R in ℰclaim and ℰcounter must be 𝒞-compatible. A semi-successful dialogue features
(c1), but H is not able to demonstrate the adequacy of the contrastive link (ℰcontrast = ∅). A
dialogue can be unsuccessful for various reasons, e.g., R cannot provide an illative or dialectic
explanation, or R cannot argue against H’s counter-claim.

Under saturation, it can be easily checked that the sub-dialogues in ℰclaim and ℰcounter are for
sem ∈ {preferred, grounded} instances of credulous preferred and grounded argumentation
games [10] (where for the latter credulous equals skeptical entailment). Hence, we obtain
dialogue models that construct explanations for credulous I/O entailment (i.e., when sem =
preferred) and for skeptical I/O entailment under shared reasons (i.e., when sem = grounded).

Proposition 6. Let 𝒜ℱ(𝒦) = ⟨Arg,Att⟩ be DAC-induced, sem ∈ {preferred, grounded}, and
ℰ* = ⟨𝑚𝑖, . . . ,𝑚𝑛⟩ be 𝒜ℱ(𝒦)-based with lo(𝑚𝑖) = argue(𝑎) and * ∈ {claim, counter}:

• if ℰ* is saturated and contains only R leaves then 𝑎 ∈ 𝒮 for some sem-extension;
• if 𝑎 ∈ 𝒮 for some sem-extension 𝒮 , there is a saturated extension of ℰ* with only R leaves.

Proof. Straightforward modification of the proofs of Theorems 6.2 and 6.5 in [10].
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Example 3. Let sem ∈ {preferred,grounded}: Figure i) provides a successful saturated sem-CED
for “Why ¬𝑡𝑜, despite 𝑡𝑜?,” notice that ℰcomp is empty since ℰR = {𝑎, 𝑏} is 𝒞-compatible. Figure ii)
contains an unsuccessful saturated sem-CED for “Why 𝑡𝑜, despite ¬𝑡𝑜?” where H refutes the claim
(with 𝑏) and defends the counter-claim (with 𝑎 and 𝑏). The arguments in i) and ii) reference those
in Fig. 2 of Ex. 2 (for space reasons, we adopted an example for which grounded equals stable).

R: ¬𝑡𝑜!

H: why(¬𝑡𝑜)despite(𝑡𝑜)?

R: argue(a) R: despite(𝑡𝑜)?

H: argue(𝑑) H: argue(𝑥)

ℰclaim ℰcounter

ℰcontrast

ℰcomp

R: argue 𝑏H: ∅

R: 𝑡𝑜!

H: why(𝑡𝑜)despite(¬𝑡𝑜)?

R: argue(𝑑) R: despite(¬𝑡𝑜)?

H: argue(𝑎) H: argue(𝑥)

ℰclaim

ℰcounter

ℰcontrast

ℰcomp

H: argue 𝑏

H: ∅

H: argue(𝑒)

R: argue(𝑏)

H: argue(𝑏)

R: argue 𝑒

i) ii)

An alternative successful CED for i) exists that includes R moving 𝑔 against 𝑒, followed by H moving
𝑓 , which is then defeated by R moving 𝑏. However, here we can use Proposition 3-1, giving us for
sem = grounded the existence of a strategic shortcut by directly moving argument 𝑏 against 𝑒.

5. Challenges for Dialogical Deontic Explanations

This paper shows how to incorporate existing results in formal argumentation and refine them to
yield contrastive explanatory dialogues (CEDs) in the context of defeasible normative reasoning,
Input/Output logic in particular. This work is the first of its kind and, so, we end by highlighting
some key challenges for deontic explanations (through formal argumentation).

Challenge 1: Conflict Types The contrastive claims offered by the explainee may give rise
to various kinds of conflicts with the main claim. Two particularly interesting cases when
dealing with (conditional) norms are specificity (you are not allowed to park, unless you
are medical personnel) and contrary-to-duty (don’t be late, but if you are, not more than
10 minutes). Good explanations should make transparent the type of conflicts involved.

Challenge 2: Cognitive Adequacy A good explainer seeks to understand the explainee in
order to tailor the given explanation to precisely target the gaps in the explainee’s
understanding. For this the explainer may use queries and strategic argumentation, com-
plemented by a theory of (the explainee’s) mind. Moreover, the knowledge bases of the
explainer and the explainee may be disjoint and incomplete. Tailored explanations must
additionally keep track of commitments and shifts therein throughout a dialogue.

Challenge 3: Richer Handling of Contrastives The explainee may offer contrastive claims
that are, under thorough analysis, not really incompatible with the offered claim. A good
explainer should catch such cases and provide an argument concerning the compatibility
of the claims. For this, more proof-theoretic resources have to be developed. In such
cases, the explainee should be able to withdraw or replace the contrast.

Challenge 4: Richer Deontic Vocabulary Often, normative codes are richer than the ones
studied here, e.g., they may contain priority orderings over norms and permissive norms.
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These come with challenges, for instance concerning reinstatement (e.g., permissions
generally do not reinstate obligations). Dialogues ideally accommodate such complexity.

Challenge 5: Casuistry In many application contexts of ethical (e.g., in bioethics) and legal
reasoning, we find case-based reasoning when reasoning towards obligations, rights, and
permissions. Deontic explanations of such conclusions need a different conceptual base
than the one provided here, posing their own specific challenges (e.g., balancing reasons).

Acknowledgements. This work was partially funded by the “Logical Methods of Deontic
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