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Abstract. In this work, we investigate one of the most renowned tools
used in differential privacy, namely the exponential mechanism. We first
study the optimality of the error introduced by the exponential mech-
anism in the average-case scenario, when the input/output universe of
the mechanism can be modeled as a graph where each node is associated
with a database. By leveraging linear programming theory, we provide
some regularity conditions on the graph structure under which the expo-
nential mechanism minimizes the average error. Moreover, we give a toy
example in which the optimality is preserved (up to a constant factor)
even if these regularity conditions hold only to a certain extent. Finally,
we prove the worst-case optimality of the exponential mechanism when
it is used to release the output of a sorting function.

1 Introduction

Differential privacy [8] is a highly popular paradigm for privacy-preserving statis-
tical analysis. It ensures privacy by limiting the influence of an individual input
datum on the released information. In addition to the rigorous privacy guar-
antees provided, the recognition of this framework can be traced back to some
crucial factors: the composition property which permits to combine differentially
private mechanisms while controlling privacy degradation, and the existence of
very simple tools which easily endorse its adoption. The Laplace [8] and the
exponential [19] mechanism represent the perfect example. While the Laplace
mechanism provides differential privacy to vector-valued functions, the expo-
nential mechanism is intentionally designed for applications where the response
set can be arbitrary and possibly non-numeric [19]. If we ignore the efficiency
issues that this algorithm inherently has, it has proved extremely successful in a
number of applications, from privately generating synthetic databases that can
accurately answer a large class of queries [4], to private PAC-learning [16]. More-
over, it has been shown to outperform the accuracy guarantees provided by the
Laplace mechanism in some numeric settings [3].

In this paper, we first investigate under which conditions the exponential
mechanism is optimal in terms of the average-case error. We consider the set-
ting where the input and output universe of a privacy mechanism coincide and
can be modeled as a graph, where each node is associated with a database, and
adjacent nodes correspond to neighboring databases. The optimal privacy mech-
anism can then be expressed as the solution of a linear program, where we seek



to minimize the average error introduced by the mechanism subject to the con-
straints induced by differential privacy. We show that, if the induced graph has
a transitive automorphism group and a so-called regular layer sequence, then
the exponential mechanism is actually optimal, i.e., its solution coincides with
that of the optimal mechanism. We then provide a toy example in which this
result holds (up to a constant factor) even if the aforementioned conditions are
met only to a large extent. Finally, we introduce the sorting function and show
that the error introduced by the exponential mechanism is actually optimal in
the worst-case. We underline that this last result carries over and extends the
analysis discussed in a work currently under review [1].

Related Work. A general upper bound on the error introduced by the exponential
mechanism is given by McSherry and Talwar [19]. Lower bounds in differential
privacy have been extensively studied and a range of techniques for proving lower
bounds have been introduced [13,18,6,12,7,1]. The optimality of differentially
private mechanisms has been the subject of recent studies. Kairouz et al. [15]
introduce a family of mechanisms which contains a utility-maximizer under the
local model of privacy. Koufogiannis et al. [17] investigate the optimality of the
Laplace mechanism under the Lipschitz privacy framework. In particular, they
show that the Laplace mechanism is optimal for identity queries in terms of the
mean-squared error, when privacy is guaranteed with respect to the L1-norm.
Geng et al. [10] show that the mean-squared error introduced by the staircase
mechanism is optimal for low-dimensional queries. Linear programming theory
can be leveraged to show lower bounds on the error needed for achieving any
meaningful privacy guarantee [9,6]. Hsu et al. [14] investigate how to solve a
linear program under differential privacy. Hardt and Talwar [13] exploit linear
programming theory to show tight upper and lower bounds on the amount of
noise needed to provide differential privacy for r linear queries on databases
in IRN . Our contribution is mostly related to the work of Ghosh et al. [11]
and Brenner and Nissim [5]. In their paper, Ghosh et al. [11] consider Bayesian
information consumers that wish to compute the number of entries in a database
satisfying a given predicate. An information consumer is characterized by a prior
belief and a loss-function, which quantify the consumer’s side knowledge and
the quality of the answer. Introducing a linear program modeling the privacy
constraints, they show that a discrete variant of the Laplace mechanism enables
optimality (after a deterministic post-processing of the output) for all Bayesian
information consumers. Such a mechanism is usually referred to as universally
optimal. In a follow up work, Brenner and Nissim [5] show that universally
optimal mechanisms for Bayesian consumers are extremely rare, proving that
they essentially exist only for a single count query. Their proof makes use of a
so-called privacy constraint graph, where the vertices correspond to the values
of the output space, and the edges correspond to pairs of values resulting by
applying the query function to neighboring databases. In contrast to [11] and [5],
we restrict our attention to a single information consumer who has a uniform
prior over the input/output space and measures the loss in terms of the record-
exchange metric. We then study under which conditions on the structure of



the privacy constraint graph the solution of the optimal differentially private
mechanism (modeled by a linear program similar to the one introduced by Ghosh
et al. [11]) coincides with the solution that the exponential mechanism delivers.

2 Preliminaries

Let X be a domain. A database D is an N -dimensional vector over X , i.e.
D ∈ XN . N is referred to as the size of the database D. Two databases D,D′
are said to be neighboring, denoted D ∼ D′, if they can be obtained from each
other by a single record exchange.

Definition 1 ([8]). Let X be a domain and R be a (possibly infinite) set of
responses. A random mechanism M : XN → R is said to provide ε-differential
privacy for ε > 0 if, for every pair (D,D′) of neighboring databases and for every
measurable S ⊆ R, we have

Pr[M(D) ∈ S] ≤ eε · Pr[M(D′) ∈ S] .

The exponential mechanism [19] is a well-known tool for achieving differential
privacy. Let u : XN ×R → IR be a utility function, mapping a database/output
pair to a score. Given a database D ∈ XN , the exponential mechanism defines a
probability distribution overR weighted according to the utility function u(D, ·).

Definition 2 ([19]). Let u : XN ×R → IR and ε > 0. The exponential mecha-
nismMexp : XN → R assigns to s ∈ R a probability density proportional to

exp

(
ε · u(D, s)
S(u)

)
, (1)

where S(u) = sups∈R supD∼D′ |u(D, s)− u(D′, s)| is the sensitivity of u. It then
returns a value sampled from such distribution.

We briefly note that the definition in [19] is slightly more general and has an
additional factor µ(s) in (1), which represents a prior distribution on R. In
this paper, we deal with a uniform prior and have therefore omitted µ(s) from
Definition 2.

Lemma 1 ([19]). The exponential mechanism provides 2ε-differential privacy.

In several cases (see for example the unit demand auction setting in [19]) the
factor 2 in the statement of Lemma 1 can be removed, strengthening the privacy
guarantees to ε-differential privacy.

3 Optimal Mechanisms and Linear Programming

Let G = (K, E) denote a graph with K = |K| nodes and diameter D. Intuitively,
we should think of each node x ∈ K as a piece of information associated with a



database D. Moreover, we should think of adjacent nodes in G as nodes whose
underlying databases are neighbored in the sense that they can be obtained
from each other by a single record exchange. Hence a node y has distance d from
another node x iff d is the smallest number of record exchanges which trans-
forms the database underlying y into the database underlying x. We consider
the following special situation:

– The (randomized) mechanisms M under investigation should provide ε-
differential privacy and, given a node x ∈ K, they should return another
node in K (the choice of which depends onM’s internal randomization).

– The cost (= negated utility) of an output y, given input x, is defined as
the distance between x and y in G, which is denoted as d(x, y). We will
refer to this distance measure as the record-exchange metric. Note that
|d(x, y)−d(x′, y)| ≤ 1 holds for all x, x′, y ∈ K such that x and x′ (resp. their
underlying databases) are neighbored. Thus −d (viewed as a utility function)
has sensitivity 1.

Note that the record-exchange metric coincides with what is called “geodesic
distance” w.r.t the graph G in some papers.

We consider two examples where, in both cases, the record-exchange metric
coincides with 1/2 times the L1-metric.

Example 1. Suppose that the nodes in G represent histograms with N users
and T types of records (briefly called (N,T )-histograms hereafter), i.e., we may
identify a node x ∈ K with a vector (v1, . . . , vT ) such that N =

∑T
t=1 vt and vt

is the number of users whose record is of type t. Note that the record-exchange
metric satisfies d(x, y) = 1

2‖y − x‖1 because each record-exchange can decrease
the L1-distance between two histograms by an amount of 2 (but not more).

Example 2. Suppose that the nodes in G represent sorted (N,T )-histograms,
i.e., we may identify a node x ∈ K with a sorted sequence v1 ≥ . . . ≥ vT such
that

∑T
t=1 vt = N . Here v1 (resp. v2 and so on) denotes the number of users

whose record occurs most often (resp. 2nd most often and so on) in the database.
Alternatively, we may be interested in the r ≤ T largest values of v1 ≥ . . . ≥ vT
only, i.e., we identify a node x ∈ K with the initial segment v1 ≥ . . . ,≥ vr of the
full sequence v1 ≥ . . . ≥ vT .

In this section, we investigate under which conditions the exponential mech-
anism is optimal in the sense of incurring the smallest possible expected error
(measured in terms of the record-exchange metric) where expectation is taken
over the (uniformly distributed) inputs x ∈R K and over the internal random-
ization of the mechanism. We start by introducing several linear programs. The
optimal solution of the first linear program we consider, denoted LP[1] below,
corresponds to the solution of the optimal ε-differentially private mechanism.
Another linear program, denoted LP[3] below, has an optimal solution which co-
incides with the one given by the exponential mechanism. We then provide some
regularity conditions on the graph G under which an optimal solution of LP[3]



also optimizes LP[1] (so that the exponential mechanism is optimal whenever
the regularity conditions are valid).

We can now continue with our general discussion. Note that a (randomized)
mechanismM with inputs and outputs taken from K is formally given by proba-
bility parameters p(y|x) denoting the probability of returning y ∈ K when given
x ∈ K as input. Since, for each x, p(y|x) is a distribution on K, we have

(∀x, y ∈ K : p(y|x) ≥ 0) ∧

∀x ∈ K :
∑
y∈K

p(y|x) = 1

 . (2)

Moreover, ifM provides ε-differential privacy, we have

∀y ∈ K,∀{x, x′} ∈ E : p(y|x′) ≥ e−ε · p(y|x) . (3)

Conversely, every choice of these probability parameters that satisfies (2) and (3)
represents a mechanism that provides ε-differential privacy.

Suppose that M is given by its probability parameters p = (p(y|x)) as de-
scribed above. The average distance between x ∈ K and the output y ∈ K,
returned byM when given x as input, is then given as follows:

fG(p) =
1

K
·
∑
x∈K

∑
y∈K

p(y|x)d(x, y) . (4)

Let Sd = Sd(y) denote the set of all nodes in K with distance d to y (the d-th
layer of G w.r.t. start node y). Then

fG(p) =
1

K
·
∑
y∈K

fGy (p) for fGy (p) =

D∑
d=0

∑
x∈Sd(y)

p(y|x)d . (5)

We pursue the goal to find an ε-differentially private mechanism M that min-
imizes d(x, y) on the average. For this reason, we say that a mechanism M∗
with probability parameters p∗ is optimal w.r.t. G if p∗ is a minimizer of fG(p)
among all p that satisfy (2) and (3). It is obvious from our discussion that the
probability parameters p∗(y|x) representing an optimal mechanism w.r.t. G are
obtained by solving the following linear program:

LP[1] : minp=(p(y|x))x,y∈K f
G(p) s.t. (2) and (3) .

We will refer to this linear program as LPG[1] whenever we want to stress the
dependence on the underlying graph G. We now bring into play the following
modifications of the condition (2):

(∀x, y ∈ K : p(y|x) ≥ 0) ∧

∑
x∈K

∑
y∈K

p(y|x) = K

 . (6)

(∀x, y ∈ K : p(y|x) ≥ 0) ∧

(
∀y ∈ K :

∑
x∈K

p(y|x) = 1

)
. (7)



Note that (7) implies (6). Consider the following relatives of LPG[1]:

LP[2] : minp=(p(y|x))x,y∈Kf
G(p) s.t. (6) and (3) ;

LP[3] : minp=(p(y|x))x,y∈Kf
G(p) s.t. (7) and (3) .

As for LPG[1], we will use the notations LPG[2] and LPG[3] to stress the depen-
dence on the underlying graph G. Given a graph G = (K, E), a permutation σ
of K is called automorphism if, for all x, y ∈ K, {x, y} ∈ E ⇔ {σ(x), σ(y)} ∈ E.
The set of all automorphisms of K, under the operation of composition of func-
tions, forms a group called the automorphism group of G. Such a group is called
transitive if, for every x, y ∈ K, there exists an automorphism σ of K such that
σ(x) = y.

Lemma 2. Suppose that the graph G has a transitive automorphism group.
Then every feasible solution p for LPG[2] can be transformed into another feasible
solution p′ such that fG(p′) ≤ fG(p) and p′ satisfies (7).

Proof. Let p be any feasible solution for LPG[2]. For every y ∈ K, let Ky(p) =∑
x∈K p(y|x). According to (6), we have

∑
y∈KKy(p) = K. Define

p̄(y|x) =
1

Ky(p)
p(y|x) and f̄y(p) =

D∑
d=0

∑
x∈Sd(y)

p̄(y|x)d

and note that p̄ satisfies (3) and (7). We may now write fG(p) as follows:

fG(p) =
∑
y∈K

Ky(p)

K
· f̄y(p) .

Thus fG(p) can be interpreted as the average of the cost terms fy(p) where
the term fy(p) is chosen with probability Ky(p)/K. According to the pigeonhole
principle, there exists y∗ ∈ K such that f̄y∗(p) ≤ fG(p). Our strategy is to use the
automorphism of G for building a new (and superior) feasible solution p′ whose
components contain K duplicates of the parameter collection (p̄(y∗|x)x∈K). To
this end, let σy be the automorphism which maps y to y∗ and define

p′(y|x) = p̄(y∗|σy(x)) .

Note that x ∈ Sd(y) if and only if σy(x) ∈ Sd(y∗). Obviously, p′ ≥ 0 and, for
every y ∈ K, we have

Ky(p′) =
∑
x∈K

p′(y|x) =
∑
x∈K

p̄(y∗|σy(x)) =
∑
x∈K

p̄(y∗|x) = 1 .

This shows that p′ satisfies (7). Moreover, p′ satisfies (3) since, for every y ∈ K
and every {x, x′} ∈ E, we have

e−ε · p′(y|x) = e−ε · p̄(y∗|σy(x)) ≤ p̄(y∗|σy(x′)) = p′(y|x′) ,



where the inequality follows from the fact that p̄ satisfies (3) and σy is an auto-
morphism. The following calculation shows that fy(p′) = f̄y∗(p) holds for every
y ∈ K:

fy(p′) =

D∑
d=0

∑
x∈Sd(y)

p′(y|x)d =

D∑
d=0

∑
x∈Sd(y)

p̄(y∗|σy(x))d

=

D∑
d=0

∑
x∈Sd(y∗)

p̄(y∗|x)d = f̄y∗(p) .

We now obtain

fG(p′) =
1

K
·
∑
y∈K

fy(p′) = f̄y∗(p) ≤ fG(p) ,

which concludes the proof. ut

The following result is an immediate consequence of Lemma 2.

Corollary 1. The optimal values of the problems LP[2] and LP[3] coincide.
Moreover, every optimal solution for LP[3] is an optimal solution for LP[2].

We say that the graph G has a regular layer sequence w.r.t. y ∈ K if, for
all d and for all x, x′ ∈ Sd(y), the nodes x and x′ have the same number of
neighbors in Sd−1(y) and the same number of neighbors in Sd+1(y). Let E[y] =
E ∩ (Sd(y)× Sd+1(y)), i.e., E[y] contains the edges in E which connect two
nodes in subsequent layers (but excludes the edges which connect two nodes in
the same layer).

Lemma 3. Suppose that the graph G = (K, E) has a transitive automorphism
group and a regular layer sequence w.r.t. any y ∈ K. Then the problems LPG[2]
and LPG[3] have an optimal solution that satisfies

∀y ∈ K,∀(x, x′) ∈ E[y] : p(y|x′) ≥ e−ε · p(y|x) (8)

with equality.

Proof. The problem LP[3] decomposes into K = |K| independent subproblems,
one subproblem LP(y) for each fixed choice of y ∈ K:

LP(y) : minp=(p(y|x))x∈Kf
G
y (p) =

D∑
d=0

 ∑
x∈Sd(y)

p(y|x)

 d

s.t. (p ≥ 0) ∧

(∑
x∈K

p(y|x) = 1

)
∧
(
∀{x, x′} ∈ E : p(y|x′) ≥ e−ε · p(y|x)

)
.

Let LP[5] (the numbering will become clear in Section 4) be the linear program
that is obtained from LP(y) by substituting the weaker constraint

∀(x, x′) ∈ E[y] : p(y|x′) ≥ e−ε · p(y|x)



for
∀{x, x′} ∈ E : p(y|x′) ≥ e−ε · p(y|x) .

In Section 4 we will prove the following result:

Claim 1. If G(y) has a regular layer sequence, then LP[5] has an optimal solu-
tion with the following properties:

1. The parameter vector (p(y|x))x∈K (with a fixed choice of y) assigns the same
probability mass to all nodes x taken from the same layer.

2. For every (x, x′) ∈ E[y], it satisfies the constraint p(y|x′) ≥ e−ε · p(y|x) with
equality.

It immediately follows that this optimal solution is also an optimal solution
for LP(y), which completes the proof. ut

The proof of Claim 1 is lengthy and will therefore be given later. See Lemma 5
in Section 4. Recall that d(x, y) denotes the distance between x and y w.r.t. the
record-exchange metric. Here comes the main result of this section which essen-
tially states that the exponential mechanism is optimal under the assumptions
made in Lemma 3.

Theorem 1. Under the same assumptions as in Lemma 3, the following holds.
An optimal mechanism for LPG[1] (and even for LPG[2] and for LPG[3]) is
obtained by setting

∀x, y ∈ K : p(y|x) ∝ exp(−ε · d(x, y)) .

Proof. Let p be the optimal solution for LPG[2] and LPG[3] that satisfies (8)
with equality so that

∀y ∈ K,∀(x, x′) ∈ E[y] : p(y|x′) = e−ε · p(y|x) .

Unrolling this recursion, we get

p(y0|x0) =
exp(−ε · d(x0, y0))∑
x∈K exp(−ε · d(x, y0))

.

The transitivity of the automorphism group of G implies that

∀x0, y0 ∈ K :
∑
x∈K

exp(−ε · d(x, y0)) =
∑
y∈K

exp(−ε · d(y, x0)) .

It follows that p(y0|x0) = p(x0|y0). As a feasible solution of LPG[3], p satisfies (7).
Since p(y0|x0) = p(x0|y0), it must also satisfy (2). Thus p is a feasible solution
for LPG[1]. Since it is even optimal among the feasible solutions of the relaxation
LPG[2], it must be optimal for LPG[1]. ut



4 Proof of Claim 1 and Additional Remarks on LP[5]

Recall that G = (K, E) denotes a graph with K = |K| nodes and diameter D.
Fix some y ∈ K and call it the “start node”. Recall that Sd = Sd(y) is the set of
all nodes in K with distance d to y (the d-th layer in G). The cardinality of Sd(y)
is denoted by sd(y), or simply by sd. For instance, S0 = {y} and S1 is the set of
all neighbors of y in G. An edge e ∈ E either connects two nodes in subsequent
layers or it connects two nodes in the same layer. Let again E[y] ⊆ E be the set
of edges of the former kind and let G[y] = (K, E[y]). In other words, G[y] is the
layered graph that contains all shortest paths to the start node y. We consider
an edge in E[y] as being directed away from y, i.e., (x, x′) ∈ E[y] implies that
x ∈ Sd and x′ ∈ Sd+1 for some d ∈ [0 : D−1]. Note that E[y] naturally partitions
into the (disjoint) union of E0, E1, . . . , ED−1 where Ed = E[y] ∩ (Sd × Sd+1).
Let 0 < γ < 1 denote a constant scaling factor. In this section, we consider the
following two linear optimization problems:

Linear Program 4 (LP[4]) Linear Program 5 (LP[5])
minp=(pd) f4(p) =

∑D
d=0 sdpdd minp=(px) f5(p) =

∑D
d=0

(∑
x∈Sd

px
)
d

s.t. p ≥ 0 ,
∑D

d=0 sdpd = 1 , s.t. p ≥ 0 ,
∑

x∈K px = 1 ,
(C4) ∀d ∈ [0 : d− 1] : pd+1 ≥ γ · pd. (C5) ∀(x, x′) ∈ E[y] : px′ ≥ γ · px.

In other words, we would like to find a probability distribution on K that
minimizes the average distance to the start node y subject to (C4) resp. (C5).
In Problem LP[5], we can assign individual probabilities to all nodes whereas, in
Problem LP[4], we have to assign the same probability pd to all nodes in the d-th
layer Sd (so that the total probability mass assigned to Sd equals sdpd). Note
that LP[5] yields the problem that occurs under the same name in the proof of
Lemma 3 provided that we set γ = e−ε and px = p(y|x).

As for LP[4], it is intuitively clear that we should move as much probability
mass as possible to layers close to the start node y. Thus the following result
(whose proof is omitted) does not come as surprise:

Lemma 4. LP[4] is bounded and feasible. Moreover, there is a unique optimal
solution that satisfies all constraints in (C4) with equality.

Recall that G with start node y is said to have a regular layer sequence if
nodes in the same layer of G[y] have the same in-degree and the same out-degree.
The next result is essentially a reformulation of Claim 1 from Section 3.

Lemma 5. LP[5] is bounded and feasible. Moreover, if G[y] = (K, E[y]) has a
regular layer sequence, then LP[5] has an optimal solution that, first, assigns the
same probability mass to all nodes in the same layer, and, second, satisfies all
constraints in (C5) with equality.



Proof. Clearly LP[5] is bounded. Showing the existence of a feasible solution is
straightforward and hence omitted. Thus we have only to show that LP[5] has
an optimal solution that satisfies all constraints in (C5) with equality. Call a
feasible solution p = (px) of LP[5] normalized if p assigns the same probability
mass to all nodes in the same layer, say px = p̄d for every node x in layer d. As for
normalized feasible solutions, LP[5] collapses to LP[4]. According to Lemma 4,
there is a unique optimal solution among all normalized feasible solutions of
LP[5] that satisfies all constraints in (C5) with equality.1 Thus, we now have to
show that every feasible solution can be normalized without increasing its cost.
To this end, let p = (px) denote a fixed but arbitrary feasible solution for LP[5].
For d = 0, 1, . . . , D, we set p̄d = 1

sd

∑
x∈Sd

px, i.e., p̄d is the probability mass
assigned by p to nodes in Sd on the average. We claim that setting p′x = p̄d for
every node x ∈ Sd yields a normalized feasible solution of the same cost as p.
Clearly p′ ≥ 0. Moreover

∑
x∈K p

′
x =

∑
x∈K px = 1 because p 7→ p′ leaves the

total probability mass assigned to any layer Sd unchanged. For the same reason
the cost of p′ coincides with the cost of p, i.e., f5(p′) = f5(p). It remains to show
that p′ satisfies (C5). To this end, pick any d ∈ [0 : D− 1] and any (x, x′) ∈ Ed.
Let t→d denote the out-degree of x (or of any other node from Sd) and let t←d+1

denote the in-degree of x′ (or of any other node from Sd+1). A simple double
counting argument shows that

sdt
→
d = |Ed| = sd+1t

←
d+1 . (9)

The following calculation shows that p′x′ ≥ γp′x:

p′x′ =
1

sd+1
·
∑

v∈Sd+1

pv

∗
=

1

sd+1t←d+1

·
∑

v∈Sd+1

∑
u:(u,v)∈Ed

pv

(9)
=

1

sdt→d
·
∑
u∈Sd

∑
v:(u,v)∈Ed

pv

≥ γ · 1

sdt→d
·
∑
u∈Sd

∑
v:(u,v)∈Ed

pu

∗
= γ · 1

sd
·
∑
u∈Sd

pu = γ · p′x

The equations marked “∗” make use of our assumption that G[y] has a regular
layer sequence. The whole discussion can be summarized by saying that p′ is a
normalized feasible solution for LP[5] and its cost equals the cost of the feasible
solution p that we started with. This concludes the proof. ut

Let LP[4]∞ and LP[5]∞ denote the optimization problems that result from
LP[4] and LP[5], respectively, when the underlying graph G = (K, E) has in-
finitely many nodes so that the layered graph G[y] = (K, E[y]) might have
1 (C5) collapses to (C4) for normalized feasible solutions.



infinitely many layers S0, S1, S2, . . .. In the formal definition of LP[4] and LP[5],
we only have to substitute ∞ for D. An inspection of the proofs of Lemmas 4
and 5 reveals that they hold, mutatis mutandis, for the problems LP[4]∞ and
LP[5]∞ as well:

Corollary 2. LP[4]∞ and LP[5]∞ are bounded and feasible. Moreover, there is
a unique optimal solution for LP[4]∞ that satisfies all constraints in (C4) with
equality and, if G[y] = (K, E[y]) has a regular layer sequence, then LP[5]∞ has
an optimal solution that satisfies all constraints in (C5) with equality.

Example 3. Let G1 be an infinite path y0, y1, y2, . . . with start node y0. It follows
from Corollary 2 that LP[5] has an optimal solution that satisfies all constraints
in (C5) with equality. This leads to the following average distance from y0:∑

d≥1 γ
dd∑

d≥0 γ
d

=

γ
(1−γ)2

1
1−γ

=
γ

1− γ
.

Let G2 be the graph consisting of two infinite paths, y0, y−1, . . . and y0, y1, . . .
both of which are starting from the start node y0. Again Corollary 2 applies and
the optimal average distance from y0 is calculated as follows:

2 ·
∑
d≥1 γ

dd

1 + 2 ·
∑
d≥1 γ

d
=

2γ
(1−γ)2

1 + 2γ
1−γ

=
2γ

1− γ2
. (10)

As for finite paths, we have the following result:

Lemma 6. Let P` be a path of length 2` and let y0 be the start node located in
the middle of P`. Let f(`) denote the optimal value that can be achieved in the
linear program LP[5] w.r.t. to G = P`. Then the following holds:

1. LP[5] has an optimal solution that satisfies all constraints in (C5) with equal-
ity so that

f(`) =
2 ·
∑`
d=1 γ

dd

1 + 2 ·
∑`
d=1 γ

d
. (11)

2. The function f(`) is strictly increasing with `.
3. We have

f(`) >
2γ

1− γ2
·
(
1− γ` − `γ`(1− γ)

)
. (12)

Moreover, if ` ≥ s
1−γ , then

f(`) >
2γ

1− γ2
·
(
1− (s+ 1)e−s

)
. (13)

4. lim`→∞ f(`) = 2γ
1−γ2 .

Proof. Let P` = y−`, . . . , y−1, y0, y1, . . . , y`.



1. Lemma 5 applies because P`[y0] has a regular layer sequence.
2. An optimal solution for P`+1 can be transformed into a feasible solution

for P` by transferring the probability mass of the nodes y−(`+1), y`+1 to
the nodes y−`, y`, respectively. This transfer strictly reduces the cost. The
optimal cost f(`) that can be achieved on P` is, in turn, smaller than the
cost of this feasible solution.

3. We start with the following calculation:

∑̀
d=1

γd−1d =
∑
d≥1

γd−1d−
∑
d≥`+1

γd−1d

=
1

(1− γ)2
− γ` ·

∑
d≥1

γd−1(d+ `)

=
1

(1− γ)2
− γ` ·

(
1

(1− γ)2
+

`

1− γ

)
=

1

(1− γ)2
·
(
1− γ` − `γ`(1− γ)

)
Setting F = 1− γ` − `γ`(1− γ), it follows that

f(`) =

2γ
(1−γ)2

1 + 2 ·
∑`
d=1 γ

d
· F >

2γ
(1−γ)2

1 + 2 ·
∑
d≥1 γ

d
· F .

Since the latter expression differs from (10) by the factor F only, we ob-
tain (12).
The function s 7→ (s+1)e−s is strictly monotonically decreasing for all s ≥ 0.
It suffices therefore to verify the bound (13) for s = (1− γ)` so that

γ` + `γ`(1− γ) = γ`(s+ 1) .

Noting that

γ` = γs/(1−γ) = (1− (1− γ))s/(1−γ) < e−s ,

we may conclude that γ`+`γ`(1−γ) < (s+1)e−s. From this, in combination
with (12), the bound (13) is immediate.

4. The fourth assertion of Lemma 6 is immediate from the third one.
ut

Even though the regularity conditions for G (transitive automorphism group
and regular layer sequence) are satisfied in simple settings (for instance, when
each node in the graph corresponds to a binary database of size N), we do not
expect this to be the case in most applications. For example, the regularity con-
ditions are not fully satisfied by the graph representing sorted (N,T )-histograms
introduced in Example 2. However, we conjecture, first, that these conditions are
approximately satisfied for very large databases and, second, that the exponential



mechanism is still approximately optimal when these conditions hold approxi-
mately. At the time being, we are not able to verify this conjecture for graphs
G of practical interest. In the next section, we will illustrate the kind of argu-
ments that we plan to bring into play by presenting a very precise analysis for
the simple case where the graph G actually is a long but finite path. Developing
these arguments further so as to analyze more reasonable classes of graphs (e.g.,
graphs representing the neighborhood relation for sorted histograms) remains a
subject of future research.

5 A Toy Example: the Path Graph

Throughout this section, we consider the graph G = (K, E) whose nodes y1, . . . ,
yK form a path of length K − 1. Note that G does not satisfy the regularity
condition: neither has G a transitive automorphism group nor has G[y] a regular
layer sequence (except for y being chosen as one of the endpoints and, ifK is odd,
for y being chosen as the point in the middle of the path). Let OPTG[1] denote
the smallest cost of a feasible solution for LPG[1]. We will show in this section
that, despite the violation of the regularity condition, the exponential mechanism
comes close to optimality provided that K is “sufficiently large”. The main idea
for proving this is as follows. We will split the set of nodes into a “central part”
(nodes separated away from the endpoints of the path) and a “peripheral part”
(nodes located close to the endpoints). Then we make use of the fact that all
ε-differentially private mechanisms are on the horns of the following dilemma:
– If a feasible solution p = (p(y|x))x,y∈K puts much probability mass on pe-

ripheral nodes y, then the cost contribution of the terms p(y|x) with y “pe-
ripheral” and x “central” will be large.

– If not, then the cost contribution of the terms p(y|x) with y “central” will be
large. The proof of this statement will exploit the fact that, if y has distance
at least ` to both endpoints of the path, then G[y] contains the path P` from
Lemma 6 (with y located in the middle of P`) as a subgraph. It is then easy
to argue that the term f(`) from Lemma 6 serves as a lower bound on the
cost achieved by p.

We will now formalize these ideas. Let ` ≥ 1 be arbitrary but fixed. We
assume that K ≥ 4`. We define the following sets of “peripheral” nodes:

K1 = {y1, . . . , y`} ∪ {yK−`+1, . . . , yK} and
K2 = {y1, . . . , y2`} ∪ {yK−2`+1, . . . , yK} .

In other words, K1 (resp. K2) contains all nodes that have a distance of at most
`−1 (resp. 2`−1) to one of the endpoints y1 and yK . The complements of these
sets are denoted K̄1 and K̄2, respectively. Note that each node in K̄1 (resp. K̄2)
has a distance of at least ` (resp. 2`) to both of the endpoints. Moreover, any
point in K1 has distance of at least ` to any node in K̄2. For every setM ⊆ K×K,
we define

P (M) =
∑

(x,y)∈M

p(x, y) =
1

K
·
∑

(x,y)∈M

p(y|x) ,



i.e., P (M) is the total probability mass assigned to pairs (x, y) ∈ M if x ∈ K
is uniformly distributed and y has probability p(y|x) conditioned to x. Then
P (K × K1) denotes the total probability assigned to pairs (x, y) with y ∈ K1.
The total mass of pairs from K̄2×K1 can then be bounded from below as follows:

P (K̄2 ×K1) = P (K̄2 ×K)− P (K̄2 × K̄1) ≥ P (K̄2 ×K)− P (K × K̄1)

=

(
1− 4`

K

)
− (1− P (K ×K1) = P (K ×K1)− 4`

K
.

Since p(x, y) = p(y|x)/K, we may rewrite the cost function fG(p) from (4) as
follows:

fG(p) =
∑

(x,y)∈K×K

p(x, y)d(x, y) .

Since, as mentioned above already, d(x, y) ≥ ` holds for all pairs (x, y) ∈ K̄2×K1,
we obtain a first lower bound on fG(p):

fG(p) ≥ P (K̄2 ×K1) · ` ≥
(
P (K ×K1)− 4`

K

)
· ` . (14)

The lower bound (14) is induced by the elements y taken from the “peripheral
region” K1. In the next step, we derive a lower bound that is induced by the
elements y taken from the “central region” K̄1. We remind the reader of the short
notation

Ky(p) =
∑
x∈K

p(y|x) and f̄y(p) =
∑
x∈K

p(y|x)

Ky(p)
· d(x, y)

and mention just another way of expressing the cost function:

fG(p) =
∑
y∈K

Ky(p)

K
f̄y(p) . (15)

We set p̄y(x) = p(y|x)/Ky(p) and observe that
∑
x∈K p̄y(x) = 1. In the sequel,

we set γ = e−ε. Let f(`) be the function given by (11).

Claim 2. If y ∈ K̄1, then f̄y(p) ≥ f(`).

The proof of Claim 2 is quite simple and hence omitted. In view of (15) and
in view of the obvious identity∑

y∈K̄1

Ky(p)

K
= P (K × K̄1) = 1− P (K ×K1) ,

the above claim, in combination with Lemma 6, immediately implies the follow-
ing second lower bound on the cost function:

fG(p) ≥ (1− P (K ×K1)) · f(`) (16)

> (1− P (K ×K1)) · 2γ

1− γ2
·
(
1− γ` − `γ`(1− γ)

)
(17)

≥ (1− P (K ×K1)) · 2γ

1− γ2
·
(
1− (s+ 1)e−s

)
, (18)



where the final inequality is valid provided that ` ≥ s
1−γ . If P (K × K1) ≥ 1/s,

we may invoke (14) and conclude that

fG(p) ≥
(

1

s
− 4`

K

)
· s

1− γ
=

(
1− 4s`

K

)
· 1

1− γ
.

Otherwise, if P (K ×K1) < 1/s, we may invoke (18) and conclude that

fG(p) >
2γ

1− γ2
·
(

1− 1

s

)
·
(
1− (s+ 1)e−s

)
.

We can summarize this discussion as follows.

Theorem 2. Let G = (K, E) be a path of length K − 1. Suppose that s ≥ 1,
0 < γ < 1, ` ≥ s

1−γ and K ≥ 4`. Then,

OPT[1] ≥ 1

1− γ
·min

{
1− 4s`

K
,

2γ

1 + γ
·
(

1− 1

s

)
·
(
1− (s+ 1)e−s

)}
.

Corollary 3. With the same notations and assumptions as in Theorem 2, the
following holds. If s ≥ 2 and K ≥ s2`(1+γ)

γ , then

OPT[1] ≥ 2γ

1− γ2

((
1− 1

s

)
· 1− (s+ 1)e−s

)
.

Proof. For s ≥ 2 and K ≥ s2`(1+γ)
γ the minimum in Theorem 2 is taken by the

second of the two possible terms. ut

We would like to show that the parameter vector (p(y|x)) which represents
the exponential mechanism comes close to optimality. To this end, we need an
upper bound on fG(p). In a first step, we determine an upper bound on the
cost induced by the exponential mechanism which makes p(y|x) proportional to
γd(x,y) = exp(−εd(x, y)). This mechanism might achieve 2ε-differential privacy
only. In a second step, we determine an upper bound on the cost induced by the
ε-differentially private exponential mechanism which makes p(y|x) proportional
to γd(x,y)/2 = exp(−εd(x, y)/2). But let’s start with the first step.

Lemma 7. Suppose that the graph G = (K, E) forms a path of length K − 1.
If p is determined by the 2ε-differentially private exponential mechanism which
makes p(y|x) proportional to γd(x,y), then

fG(p) <
2γ

1− γ2
.

Note that this is optimal asymptotically, i.e., when K and the slack parameters
`, s in Corollary 3 approach infinity. The proof of Lemma 7 is quite simple and
hence omitted. An application of Corollary 3 and of Lemma 7 (with γ1/2 =√
γ = e−ε/2 at the place of γ = e−ε) immediately leads to the following result:



Corollary 4. Suppose that the graph G = (K, E) forms a path of length K −
1, s ≥ 2 and K ≥ s2`(1+γ)

γ . If p is determined by the ε-differentially pri-
vate exponential mechanism which makes p(y|x) proportional to γd(x,y)/2 =
exp(−εd(x, y)/2), then

OPTG[1]

fG(p)
≥
γ(1−√γ2)
√
γ(1− γ2)

·
(

1− 1

s

)
·
(
1− (s+ 1)e−s

)
≥
√
γ

1 + γ
·
(

1− 1

s

)
·
(
1− (s+ 1)e−s

)
.

Note that
√
γ

1+γ is close to 1/2 if γ is close to 1.

6 Worst-case Optimality: Sorting Function

In this section we briefly discuss a scenario where the exponential mechanism is
optimal in terms of the worst-case error. More specifically, we consider the prob-
lem of publishing the output of the sorting function under differential privacy.
Similarly to Example 1 in Section 3, we assume that a database D is associated
with a vector v ∈ IRT , and that neighboring databases lead to values v, v′ ∈ IRT

such that ‖v − v′‖1 ≤ 2. For r ≤ T , the sorting function π : IRT → IRr is de-
fined as follows. For every v ∈ IRT , take a permutation σ of 1, . . . , T such that
vσ(1) ≥ . . . ≥ vσ(T ) and define π(v) = (vσ(1), . . . , vσ(r)). For instance, v may
be a frequency list from a password dataset D and the sorting function applied
to v would then return the frequency of the r most chosen passwords in the
dataset. In this case, the sorting function π is actually defined over INT , and
inputs can be thought of as histograms. Recent works [3,2] focus on the problem
of releasing the whole list of password frequencies under differential privacy, i.e,
for r = T . Here, we extend the analysis to a more general framework, where r
can be arbitrary and the sorting functions are not restricted to histograms.

We first present a lower bound on the minimax risk (under the L1-norm)
that any differentially private mechanism must incur when releasing the output
of the sorting function. The omitted proof is based on an application of Assouad’s
lemma. We underline that Theorem 3 is not entirely original, but carries over
and extends a result that appears in a paper currently under review [1].

Theorem 3. Let ε ≤ 1/8. Then, any ε-differentially private mechanism for the
sorting function π : IRT → IRr, applied to values with L1-norm upper-bounded
by N ≤ T , must incur the following minimax risks:

1. If N ≤ 1 + 1/(4ε), then R? = Ω(N);
2. If N ≥ 1/(2ε), then R? = Ω(

√
N/ε); or

3. If N ≥ r(r + 1)/(4ε) + r, then R? = Ω(r/ε).

We are now ready to prove the optimality of the exponential mechanism
when it is used to release the output of the sorting function. For s ∈ IRr, define



u(v, s) = −‖π(v)− s‖1. Note that the exponential mechanism instantiated with
this utility function corresponds to the Laplace mechanism which adds Laplace
noise with parameter 2/ε to the components of π(v). It then is straightforward to
show that the error introduced is O(r/ε). Therefore, for sufficiently large values
of N , this upper bound matches the corresponding lower bound in Theorem 3,
concluding the analysis.
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