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Abstract
We introduce a new model of teaching named “preference-based teaching” and a corresponding
complexity parameter—the preference-based teaching dimension (PBTD)—representing the worst-
case number of examples needed to teach any concept in a given concept class. Although the PBTD
coincides with the well-known recursive teaching dimension (RTD) on finite classes, it is radically
different on infinite ones: the RTD becomes infinite already for trivial infinite classes (such as half-
intervals) whereas the PBTD evaluates to reasonably small values for a wide collection of infinite
classes including classes consisting of so-called closed sets w.r.t. a given closure operator, includ-
ing various classes related to linear sets over N0 (whose RTD had been studied quite recently) and
including the class of Euclidean half-spaces (and some other geometric classes). On top of present-
ing these concrete results, we provide the reader with a theoretical framework (of a combinatorial
flavor) which helps to derive bounds on the PBTD.
Keywords: teaching dimension, preference relation, recursive teaching dimension

1. Introduction

The classical model of teaching (Shinohara and Miyano, 1991; Goldman and Kearns, 1995) formu-
lates the following interaction protocol between a teacher and a student:

• Both of them agree on a “classification-rule system”, formally given by a concept class L.

• In order to teach a specific concept L ∈ L, the teacher presents to the student a teaching set,
i.e., a set T of labeled examples so that L is the only concept in L that is consistent with T .

• The student determines L as the unique concept in L that is consistent with T .

Goldman and Mathias (1996) pointed out that this model of teaching is not powerful enough,
since the teacher is required to make any consistent learner successful. A challenge is to model
powerful teacher/student interactions without enabling unfair “coding tricks”. Goldman and Math-
ias hence defined a notion of “valid teacher/learner pair” that is intuitively free of coding tricks
while allowing for a much broader class of interaction protocols than the original teaching model.
In particular, teaching may thus become more efficient in terms of the number of examples in the
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teaching sets. Further definitions of how to avoid unfair coding tricks have been suggested (Zilles
et al., 2011), but they were less stringent than the one proposed by Goldman and Mathias.

The model of recursive teaching (Zilles et al., 2011; Mazadi et al., 2014), which is free of cod-
ing tricks according to the Goldman-Mathias definition, has recently gained attention because its
complexity parameter, the recursive teaching dimension (RTD), has shown relations to the VC-
dimension and to sample compression (Doliwa et al., 2014; Moran et al., 2015; Simon and Zilles,
2015), when focusing on finite concept classes. Below though we will give examples of rather sim-
ple infinite concept classes with infinite RTD, suggesting that the RTD is inadequate for addressing
the complexity of teaching infinite classes.

In this paper, we introduce a model called preference-based teaching, in which the teacher and
the student do not only agree on a classification-rule system L but also on a preference relation (a
strict partial order) imposed on L. If the labeled examples presented by the teacher allow for several
consistent explanations (= consistent concepts) in L, the student will choose a concept L ∈ L that
she prefers most. This gives more flexibility to the teacher than the classical model: the set of
labeled examples need not distinguish a target concept L from any other concept in L but only from
those concepts L′ over which L is not preferred. At the same time, preference-based teaching yields
valid teacher/learner pairs according to Goldman and Mathias’s definition. We will show that the
new model, despite avoiding coding tricks, is quite powerful. Moreover, as we will see in the course
of the paper, it often allows for a very natural design of teaching sets.

Assume teacher and student choose a preference relation that minimizes the worst-case number
M of examples required for teaching any concept in the class L. This number M is then called the
preference-based teaching dimension (PBTD) of L. In particular, we will show the following:

(i) Recursive teaching is a special case of preference-based teaching where the preference re-
lation satisfies a so-called “finite-depth condition”. It is precisely this additional condition that
renders recursive teaching useless for many natural and apparently simple infinite concept classes.
Preference-based teaching successfully addresses these shortcomings of recursive teaching, see Sec-
tion 3. For finite classes, PBTD and RTD are equal.

(ii) A wide collection of geometric and algebraic concept classes with infinite RTD can be taught
very efficiently, i.e., with low PBTD. To establish such results, we show in Section 4 that spanning
sets can be used as preference-based teaching sets with positive examples only — a result that is
very simple to obtain but quite useful.

(iii) In the preference-based model, linear sets over N0 with origin 0 and at most k generators
can be taught with k positive examples, while recursive teaching with a bounded number of positive
examples was previously shown to be impossible and it is unknown whether recursive teaching
with a bounded number of positive and negative examples is possible for k ≥ 4. We also give some
almost matching upper and lower bounds on the PBTD for other classes of linear sets, see Section 6.

(iv) The PBTD of halfspaces in Rd is upper-bounded by 2d + 2 (see Sections 7 and 8), while
its RTD is infinite. This result is based on the design of a lexicographic preference-relation that can
be described by a hierarchical rule system.

Moreover, in Section 9, we compute (bounds on) the PBTD of some geometric concept classes
when both positive and negative examples are used for teaching. Based on our results and the natu-
ralness of the teaching sets and preference relations used in their proofs, we claim that preference-
based teaching is far more suitable to the study of infinite concept classes than recursive teaching.

To keep the main body of the paper accessible, some formal proofs are given in the appendix.
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2. Basic Definitions and Facts

N0 denotes the set of all non-negative integers and N denotes the set of all positive integers. A
concept classL is a family of subsets over a universeX , i.e.,L ⊆ 2X where 2X denotes the powerset
of X . The elements of L are called concepts. A labeled example is an element of X × {+,−}.
Elements of X are called examples. Suppose that T is a set of labeled examples. Let T+ = {x ∈
X : (x,+) ∈ T} and T− = {x ∈ X : (x,−) ∈ T}. A set L ⊆ X is consistent with T if it includes
all examples in T that are labeled “+” and excludes all examples in T that are labeled “−”, i.e, if
T+ ⊆ L and T− ∩ L = ∅. A set of labeled examples that is consistent with L but not with L′ is
said to distinguish L from L′. The classical model of teaching is then defined as follows.

Definition 1 (Shinohara and Miyano (1991); Goldman and Kearns (1995)) A teaching set for
L ∈ L w.r.t. L is a set T of labeled examples such that L is the only concept in L that is con-
sistent with T , i.e., T distinguishes L from any other concept in L. Define TD(L,L) = inf{|T | :
T is a teaching set for L w.r.t. L}. i.e., TD(L,L) is the smallest possible size of a teaching set for
L w.r.t. L. If L has no finite teaching set w.r.t. L, then TD(L,L) = ∞. The number TD(L) =
supL∈L TD(L,L) ∈ N0 ∪ {∞} is called the teaching dimension of L.

For technical reasons, we will occasionally deal with the number TDmin(L) = infL∈L TD(L,
L), i.e., the number of examples needed to teach the concept from L that is easiest to teach.

In this paper, we will examine a teaching model in which the teacher and the student do not only
agree on a classification-rule system L but also on a preference relation, denoted as ≺, imposed on
L. We assume that ≺ is a strict partial order on L, i.e., ≺ is asymmetric and transitive. The partial
order that makes every pair L 6= L′ ∈ L incomparable is denoted by ≺∅. For every L ∈ L, let

L≺L = {L′ ∈ L : L′ ≺ L}

be the set of concepts over which L is strictly preferred. Note that L≺∅L = ∅ for every L ∈ L.
As already noted above, a teaching set T of L w.r.t. L distinguishes L from any other concept

in L. If a preference relation comes into play, then T will be exempted from the obligation to
distinguish L from the concepts in L≺L because L is strictly preferred over them anyway.

Definition 2 A teaching set for L ⊆ X w.r.t. (L,≺) is defined as a teaching set for L w.r.t. L\L≺L.
Furthermore define

PBTD(L,L,≺) = inf{|T | : T is a teaching set for L w.r.t. (L,≺)} ∈ N0 ∪ {∞} .

The number PBTD(L,≺) = supL∈L PBTD(L,L,≺) ∈ N0 ∪ {∞} is called the teaching dimen-
sion of (L,≺).

Definition 2 implies that
PBTD(L,L,≺) = TD(L,L \ L≺L) . (1)

Let L 7→ T (L) be a mapping that assigns a teaching set for L w.r.t. (L,≺) to every L ∈ L. It is
obvious from Definition 2 that T must be injective, i.e., T (L) 6= T (L′) if L and L’ are distinct con-
cepts from L. The classical model of teaching is obtained from the model described in Definition 2
when we plug in the empty preference relation ≺∅ for ≺. In particular, PBTD(L,≺∅) = TD(L).
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To avoid unfair coding tricks, Goldman and Mathias (1996) required that the student identify a
concept L ∈ L even from any superset S ⊇ T (L) of the set T (L) presented by the teacher, as long
as L is consistent with S. It is easy to see that preference-based teaching fulfills this requirement.

We are interested in finding the partial order that is optimal for the purpose of teaching and we
aim at determining the corresponding teaching dimension. This motivates the following notion:

Definition 3 The preference-based teaching dimension of L is given by

PBTD(L) = inf{PBTD(L,≺) : ≺ is a strict partial order on L} .

A relationR′ onL is said to be an extension of a relationR ifR ⊆ R′. The order-extension prin-
ciple states that any partial order has a linear extension (Jech, 1973). The following result (whose
second assertion follows from the first one in combination with the order-extension principle) is
pretty obvious:

Lemma 4

1. Suppose that ≺′ extends ≺. If T is a teaching set for L w.r.t. (L,≺), then T is a teaching set
for L w.r.t. (L,≺′). Moreover PBTD(L,≺′) ≤ PBTD(L,≺).

2. PBTD(L) = inf{PBTD(L,≺) : ≺ is a strict linear order on L}.

Preference-based teaching with positive examples only. Suppose that L contains two concepts
L,L′ such that L ⊂ L′. In the classical teaching model, any teaching set for L w.r.t. L has to
employ a negative example in order to distinguish L from L′. Symmetrically, any teaching set for
L′ w.r.t. L has to employ a positive example. Thus classical teaching cannot be performed with one
type of examples only unless L is an antichain w.r.t. inclusion. As for preference-based teaching,
the restriction to one type of examples is much less severe, as our results below will show.

A teaching set T forL ∈ Lw.r.t. (L,≺) is said to be positive if it does not make use of negatively
labeled examples, i.e., if T− = ∅. In the sequel, we will occasionally identify a positive teaching set
T with T+. A positive teaching set for L w.r.t. (L,≺) can clearly not distinguish L from a proper
superset of L in L. Thus, the following holds:

Lemma 5 Suppose thatL 7→ T+(L) maps eachL ∈ L to a positive teaching set forLw.r.t. (L,≺).
Then ≺ must be an extension of ⊃ (so that proper subsets of a set L are strictly preferred over L)
and, for every L ∈ L, the set T+(L) must distinguish L from every proper subset of L in L.

Define

PBTD+(L,L,≺) = inf{|T | : T is a positive teaching set for L w.r.t. (L,≺)} . (2)

The number PBTD+(L,≺) = supL∈L PBTD
+(L,L,≺) (possibly∞) is called the positive teach-

ing dimension of (L,≺). The positive preference-based teaching dimension of L is then given by

PBTD+(L) = inf{PBTD+(L,≺) : ≺ is a strict partial order on L} . (3)
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Monotonicity. A complexity measure K that assigns a number K(L) ∈ N0 to a concept class L
is said to be monotonic if L′ ⊆ L implies that K(L′) ≤ K(L). It is well known (and trivial to see)
that TD is monotonic. It is fairly obvious that PBTD is monotonic, too:

Lemma 6 PBTD and PBTD+ are monotonic.

As an application of monotonicity, we show the following result:

Lemma 7 For every finite subclass L′ of L, we have PBTD(L) ≥ PBTD(L′) ≥ TDmin(L′).

Proof The first inequality holds because PBTD is monotonic. The second inequality follows from
the fact that a finite partially ordered set must contain a minimal element. Thus, for any fixed choice
of ≺, L′ must contain a concept L′ such that L′≺L′ = ∅. Hence,

PBTD(L′,≺) ≥ PBTD(L′,L′,≺) (1)
= TD(L′,L′ \ L′≺L′) = TD(L′,L′) ≥ TDmin(L′) .

Since this holds for any choice of ≺, we get PBTD(L′) ≥ TDmin(L′), as desired.

3. Preference-based versus Recursive Teaching

The preference-based teaching dimension is a relative of the recursive teaching dimension. In fact,
both notions coincide on finite classes, as we will see shortly. We first recall the definitions of the
recursive teaching dimension and of some related notions (Zilles et al., 2011; Mazadi et al., 2014).

A teaching sequence for L is a sequence of the form S = (Li, di)i≥1 where L1,L2,L3, . . . form
a partition of L into non-empty sub-classes and, for every i ≥ 1, we have that

di = sup
L∈Li

TD
(
L,L \ ∪i−1j=1Lj

)
. (4)

If, for every i ≥ 1, di is the supremum over all L ∈ Li of the smallest size of a positive teaching
set for L w.r.t. ∪j≥iLj (and di = ∞ if some L ∈ Li does not have a positive teaching set w.r.t.
∪j≥iLj), then S is said to be a positive teaching sequence for L. The order of a teaching sequence
or a positive teaching sequence S (possibly ∞) is defined as ord(S) = supi≥1 di. The recursive
teaching dimension of L (possibly ∞) is defined as the order of the teaching sequence of lowest
order for L. More formally, RTD(L) = infS ord(S) where S ranges over all teaching sequences
for L. Similarly, RTD+(L) = infS ord(S), where S ranges over all positive teaching sequences
for L. Note that the following holds for every L′ ⊆ L and for every teaching sequence S for L′
such that ord(S) = RTD(L′):

RTD(L) ≥ RTD(L′) ≥ ord(S) ≥ d1 = sup
L∈L1

TD(L,L′) ≥ TDmin(L′) . (5)

The depth of L ∈ L w.r.t. a strict partial order imposed on L is defined as the length of the
longest chain in (L,≺) that ends in L (resp. as∞ if there is no bound on the length of these chains).
The recursive teaching dimension is related to the preference-based teaching dimension as follows:
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Lemma 8 RTD(L) = inf≺ PBTD(L,≺) and RTD+(L) = inf≺ PBTD
+(L,≺) where≺ ranges

over all strict partial orders on L that satisfy the following “finite-depth condition”: every L ∈ L
has a finite depth w.r.t. ≺.

The following is an immediate consequence of Lemma 8 and the trivial observation that the
finite-depth condition is always satisfied if L is finite:

Corollary 9 PBTD(L) ≤ RTD(L), with equality if L is finite.

As for infinite classes, the gap between PBTD and RTD can be arbitrarily large:

Lemma 10 There exists an infinite class L∞ of VC-dimension 1 such that PBTD+(L∞) = 1
and RTD(L∞) = ∞. Moreover, for every k ≥ 1, there exists an infinite class Lk such that
PBTD+(Lk) = 1 and RTD(Lk) = k.

The complete proof of Lemma 10 is given in Appendix A. Here we only specify the classes L∞
and Lk that are employed in this proof:

• Choose L∞ as the class of half-intervals [0, a], where 0 ≤ a < 1, over the universe [0, 1).1

• Let X = [0, 2). For each a =
∑

n≥1 αn2
−n ∈ [0, 1) and for all i = 1, . . . , k, let 1 ≤ ai < 2

be given by ai = 1 +
∑

n≥0 αkn+i2
−n. Finally, let Ia = [0, a) ∪ {a1, . . . , ak} ⊆ X and let

Lk = {Ia : 0 ≤ a < 1}.

.

4. Teaching with Positive Examples Only

The main purpose of this section is to relate positive preference-based teaching to “spanning sets”
and “closure operators”, which are well-studied concepts in the computational learning theory lit-
erature. For any subsets S and L of the universe, we say that S is a spanning set of L w.r.t. L if
S ⊆ L and any set in L that contains S must contain L as well. 2 In other words, L is the unique
smallest concept in L that contains S. We say that S is a weak spanning set of L w.r.t. L if S is not
contained in any proper subset of L in L. We denote by I(L) (resp. I ′(L)) the smallest number k
such that every concept L ∈ L has a spanning set (resp. a weak spanning set) w.r.t. L of size at most
k. Note that S is a spanning set of L w.r.t. L iff S distinguishes L from all concepts in L except
for supersets of L, i.e., iff S is a positive teaching set for L w.r.t. (L,⊃). Similarly, S is a weak
spanning set of L w.r.t. L iff S distinguishes L from all its proper subsets in L (which is necessarily
the case when S is a positive teaching set). These observations can be summarized as follows:

I ′(L) ≤ PBTD+(L) ≤ PBTD+(L,⊃) ≤ I(L) . (6)

Suppose L is intersection-closed. Then ∩L∈L:S⊆LL is the unique smallest concept in L con-
taining S. If S ⊆ L0 is a weak spanning set of L0 ∈ L, then ∩L∈L:S⊆LL = L0 because, on the one
hand, ∩L∈L:S⊆LL ⊆ L0 and, on the other hand, no proper subset of L0 in L contains S. Thus the
distinction between spanning sets and weak spanning sets is blurred for intersection-closed classes:

1. RTD(L∞) =∞ had been observed by Moran et al. (2015) already.
2. This generalizes the classical definition of a spanning set (Helmbold et al., 1990), which is given w.r.t. intersection-

closed classes only.
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Lemma 11 Suppose that L is intersection-closed. Then I ′(L) = PBTD+(L) = I(L).

Example 1 LetRd denote the class of d-dimensional axis-parallel hyper-rectangles (= d-dimensio-
nal boxes). This class is intersection-closed and clearly I(Rd) = 2. Thus PBTD+(Rd) = 2.

A mapping cl : 2X → 2X is said to be a closure operator on the universe X if the following
conditions hold for all sets A,B ⊆ X :

A ⊆ B ⇒ cl(A) ⊆ cl(B) and A ⊆ cl(A) = cl(cl(A)) .

The following notions refer to an arbitrary but fixed closure operator. The set cl(A) is called the
closure of A. A set C is said to be closed if cl(C) = C. It follows that precisely the sets cl(A) with
A ⊆ X are closed. Let C denote the set of all closed subsets of X . Then L = cl(S) and S ⊆ L′ for
L′ ∈ C implies that L = cl(S) ⊆ cl(L′) = L′. Thus we obtain the following result:

Lemma 12 If L = cl(S), then S is a spanning set of L w.r.t. C.

For every closed set L ∈ L, let scl(L) denote the size (possibly∞) of the smallest set S ⊆ X
such that cl(S) = L. With this notation, we get the following (trivial but useful) result:

Theorem 13 Given a closure operator, let C[m] be the class of all closed subsets C ⊆ X with
scl(C) ≤ m. Then PBTD+(C[m]) ≤ PBTD+(C[m],⊃) ≤ m. Moreover, this holds with equality
provided that C[m] \ C[m− 1] 6= ∅.

Proof The inequality PBTD+(C[m],⊃) ≤ m follows directly from Equation 6 and Lemma 12.
Pick a concept C0 ∈ C[m] such that scl(C0) = m. Then any subset S of C0 of size less than m
spans only a proper subset of C0, i.e., cl(S) ⊂ C0. Thus S does not distinguish C0 from cl(S). It
follows that there is no positive teaching set of size less than m for C0 w.r.t. C[m].

Many natural classes can be cast as classes of the form C[m] by choosing the universe and the
closure operator appropriately.

Example 2 Let
LINSETk = {〈G〉 : (G ⊂ N) ∧ (1 ≤ |G| ≤ k)}

where 〈G〉 =
{∑

g∈G a(g)g : a(g) ∈ N0

}
. Note that the mapping G 7→ 〈G〉 is a closure operator

over the universe N0. Since obviously LINSETk\LINSETk−1 6= ∅, we obtain PBTD+(LINSETk) =
k.
Let X = R2 and let cl(S) be the convex closure of S. Then C[k] is the class of convex polygons
with at most k vertices. It follows that PBTD+(C[k]) = k.

5. A Convenient Technique for Proving Upper Bounds

In this section, we shall give an alternative definition of the preference-based teaching dimension
using the notion of an “admissible mapping”. Given a concept class L over a universe X , let T be a
mapping L 7→ T (L) ⊆ X ×{+,−} that assigns a set T (L) of labeled examples to every set L ∈ L.
The order of T , denoted as ord(T ), is defined as supL∈L |T (L)| ∈ N ∪ {∞}. Define the mappings
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T+ and T− by setting T+(L) = {x : (x,+) ∈ T (L)} and T−(L) = {x : (x,−) ∈ T (L)} for
every L ∈ L. We say that T is positive if T−(L) = ∅ for every L ∈ L. In the sequel, we will
occasionally identify a positive mapping L 7→ T (L) with the mapping L 7→ T+(L). The symbol
“+” as an upper index of T will always indicate that the underlying mapping T is positive.
Consider the following relation RT on L:

RT = {(L′, L) ∈ L × L : (L′ 6= L) ∧ (L′ is consistent with T (L))} .

The transitive closure of RT is denoted as R+
T in the sequel. The following notion will play an

important role in this paper:

Definition 14 A mapping L 7→ T (L) with L ranging over all concepts in L is said to be admissible
for L if the following holds:

1. For every L ∈ L, L is consistent with T (L).

2. The relation R+
T is asymmetric (which clearly implies that RT is asymmetric too).

If T is admissible, then R+
T is transitive and asymmetric, i.e., R+

T is a strict partial order on L. We
will therefore use the notation ≺T instead of R+

T whenever T is known to be admissible.

Lemma 15 Suppose that T+ is a positive admissible mapping for L. Then the relation ≺T+ on L
extends the relation ⊃ on L. More precisely, the following holds for all L,L′ ∈ L:

L′ ⊂ L⇒ (L,L′) ∈ RT+ ⇒ L ≺T+ L′ .

Proof If T+ is admissible, then L′ is consistent with T+(L′). Thus T+(L′) ⊆ L′ ⊂ L so that L is
consistent with T+(L′) too. Therefore (L,L′) ∈ RT+ , i.e., L ≺T+ L′.

The following result clarifies how admissible mappings are related to preference-based teaching:

Lemma 16 For each concept class L, the following holds:

PBTD(L) = inf
T

ord(T ) and PBTD+(L) = inf
T+

ord(T+)

where T ranges over all mappings that are admissible for L and T+ ranges over all positive map-
pings that are admissible for L.

Proof We restrict ourselves to the proof for PBTD(L) = infT ord(T ) because the equation
PBTD+(L) = infT+ ord(T+) can be obtained in a similar fashion. We first prove that PBTD(L)
≤ infT ord(T ). Let T be an admissible mapping for L. It suffices to show that, for every L ∈ L,
T (L) is a teaching set for L w.r.t. (L,≺T ). Suppose L′ ∈ L \ {L} is consistent with T (L). Then
(L′, L) ∈ RT and thus L′ ≺T L. It follows that ≺T prefers L over all concepts L′ ∈ L \ {L} that
are consistent with T (L). Thus T is a teaching set for L w.r.t. (L,≺T ), as desired.
We now prove that infT ord(T ) ≤ PBTD(L). Let ≺ be a strict partial order on L and let T be
a mapping such that, for every L ∈ L, T (L) is a teaching set for L w.r.t. (L,≺). It suffices to
show that T is admissible for L. Consider a pair (L′, L) ∈ RT . The definition of RT implies that
L′ 6= L and that L′ is consistent with T (L). Since T (L) is a teaching set w.r.t. (L,≺), it follows
that L′ ≺ L. Thus, ≺ is an extension of RT . Since ≺ is transitive, it is even an extension of R+

T .
Because ≺ is asymmetric, R+

T must be asymmetric, too. It follows that T is admissible.
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6. Preference-based Teaching of Linear Sets

In this section, we consider several concept classes over the universe X = N0. Let G = {g1, . . .
, gk} be a finite subset of N. We denote by 〈G〉 resp. by 〈G〉+ the following sets:

〈G〉 =

{
k∑

i=1

aigi : a1, . . . , ak ∈ N0

}
and 〈G〉+ =

{
k∑

i=1

aigi : a1, . . . , ak ∈ N

}
.

In this section, we will determine (at least approximately) the preference-based teaching dimension
of the following concept classes over N0:

LINSETk = {〈G〉 : (G ⊂ N) ∧ (1 ≤ |G| ≤ k)} .
CF-LINSETk = {〈G〉 : (G ⊂ N) ∧ (1 ≤ |G| ≤ k) ∧ (gcd(G) = 1)} .
NE-LINSETk = {〈G〉+ : (G ⊂ N) ∧ (1 ≤ |G| ≤ k)} .

NE-CF-LINSETk = {〈G〉+ : (G ⊂ N) ∧ (1 ≤ |G| ≤ k) ∧ (gcd(G) = 1)} .

A subset of N0 whose complement in N0 is finite is said to be co-finite. The letters “CF” in
CF-LINSET mean “co-finite”. The concepts in LINSETk have the algebraic structure of a monoid
w.r.t. addition. The concepts in CF-LINSETk are also known as “numerical semigroups” (Rosales
and Garcı́a-Sánchez, 2009). A zero coefficient aj = 0 erases gj within the linear combination∑k

i=1 aigi. Coefficients from N are non-erasing in this sense. The letters “NE” in “NE-LINSET”
mean “non-erasing”.
The shift-extension L′ of a concept class L over the universe N0 is defined as follows:

L′ = {c+ L : (c ∈ N0) ∧ (L ∈ L)} . (7)

The following bounds on RTD and RTD+ (for sufficiently large values of k)3 are known
from (Gao et al., 2015):

RTD+ RTD

LINSETk =∞ ?
CF-LINSETk = k ∈ {k − 1, k}
NE-LINSET′k = k + 1 ∈ {k − 1, k, k + 1}

Here NE-LINSET′k denotes the “shift extension” of NE-LINSETk .
The following result shows the corresponding bounds with PBTD in place of RTD:

Theorem 17 The bounds in the following table are valid:

PBTD+ PBTD

LINSETk = k ∈ {k − 1, k}
CF-LINSETk = k ∈ {k − 1, k}
NE-LINSETk ∈

[⌊
k−1
2

⌋
: k
]
∈
[⌊

k−1
2

⌋
: k
]

NE-CF-LINSETk ∈
[⌊

k−1
2

⌋
: k
]
∈
[⌊

k−1
2

⌋
: k
]

3. For instance, RTD+(LINSETk) =∞ holds for all k ≥ 2 and RTD(LINSETk) = ? (where “?” means “unknown”)
holds for all k ≥ 4.

9
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Moreover
PBTD+(L′) = k + 1 ∧ PBTD(L′) ∈ {k − 1, k, k + 1} (8)

holds for all L ∈ {LINSETk,CF-LINSETk,NE-LINSETk,NE-CF-LINSETk}.

Note that the equation PBTD+(LINSETk) = k was already stated in Example 2. All upper
bounds in Theorem 17 are easy to derive from this equation. The lower bounds in Theorem 17 are
much harder to obtain. A complete proof of Theorem 17 will be given in Appendix B.

7. Hierarchical Preference-based Teaching

Suppose that L is a parametrized concept class in the sense that any concept of L can be fixed by
assigning real values q = (q1, . . . , qd) to “programmable parameters” Q = (Q1, . . . , Qd). The
concept resulting from setting Qi = qi for i = 1, . . . , d is denoted as Lq. Let D ⊆ Rd be a set
which makes the representation q of Lq unique, i.e., Lq = Lq′ with q, q′ ∈ D implies that q = q′.
We will then identify a preference relation over L with a preference relation over D. For every
p ∈ {↓, ↑}d, let ≺p be the following algorithmically defined (lexicographic) preference relation:

1. Given q 6= q′ ∈ D, find the smallest index i ∈ [d] such that qi 6= q′i, say qi < q′i.

2. If pi =↓ (resp. pi =↑), then q′ ≺p q (resp. q ≺ q′).

Imagine a student with this preference relation who has seen a collection of labeled examples. The
following hierarchical system of Rules i = 1, . . . , d clarifies which value q′i she should assign to the
unknown parameter Qi:

Rule i: With i-highest priority do the following. Choose q′i as small as possible if pi =↓ and as
large as possible if pi =↑. Assign the value q′i to the parameter Qi.

It is important to understand that this rule system is hierarchical (as expressed by the distinct prior-
ities of the rules): when Rule i becomes active, then the values of the parameters Q1, . . . , Qi−1 (in
accordance with the rules 1, . . . , i− 1) have been chosen already.

Suppose that Lq with q ∈ D is the target concept. A teacher who designs a teaching set for Lq

w.r.t. (L,≺p) can proceed in stages i = 1, . . . , d as follows:

Stage i: Suppose that pi =↓ (resp. pi =↑). Choose the next part Ti of the teaching set so that every
hypothesis Lq′ with q′ ∈ D, and q′1 = q1, . . . , q

′
i−1 = qi−1 satisfies the following condition:

if Lq′ is consistent with T1 ∪ . . . ∪ Ti−1 ∪ Ti, then q′i ≥ qi (resp. q′i ≤ qi).

In other words, the teacher chooses T1 so that the student with preference relation ≺p will assign
the value q1 to Q1. Given that Q1 = q1, the teacher chooses T2 so that the student will next assign
the value q2 to Q2, and so on.

This basic technique can be made a little bit more flexible by allowing to handle more than one
parameter in a single stage.

10
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8. Application: Teaching Halfspaces

Suppose that w ∈ Rd and b ∈ R. The halfspace induced by w and b is then given by

Hw,b = {x ∈ Rd : w>x+ b ≥ 0} .

Let Hd = {Hw,b : (w ∈ Rd) ∧ (b ∈ R)} denote the class of d-dimensional Euclidean halfspaces.
Hd decomposes intoHd[b < 0] andHd[b ≥ 0] (with the obvious meaning of the two sub-classes).

Lemma 18 At the expense of just 1 example, it can be taught to which of the two sub-classes
Hd[b < 0] andHd[b ≥ 0] a target concept taken fromHd belongs.

Proof A target concept from Hd that is consistent with (0,−) (resp. with (0,+)) must belong to
Hd[b < 0] (resp. toHd[b ≥ 0]).

Lemma 19 PBTD(Hd[b < 0]) ≤ d.

The full proof of Lemma 19 is given in Appendix C. Here we only specify the (lexicographic)
preference relation that is used in the proof.
We normalize the representation (w, b) of a halfspace Hw,b by setting ‖w‖∞ = 1. Initially, we
impose the constraints ‖W‖∞ = 1 and B < 0 on the unknown weight vector W ∈ Rd and the
unknown bias B ∈ R. We choose the preference relation according to the following rules:

Rule 1: With highest priority, choose the bias B as small as possible.

Rule 2: With second highest priority, choose (|W1|, . . . , |Wd|) as small as possible w.r.t. the partial
order ≤ inRd.

Lemma 20 PBTD(Hd[b ≥ 0]) ≤ 2d+ 1.

The full proof of Lemma 20 is given in Appendix C. Here we only specify the (lexicographic)
preference relation that is used in the proof.
We normalize the representation (w, b) of a halfspace Hw,b by setting ‖w‖1 = 1. Initially, we
impose the constraints ‖W‖1 = 1 and B ≥ 0 on the unknown weight vector W ∈ Rd and the
unknown bias B ∈ R. We choose the preference relation according to the following rules:

Rule 1: With highest priority, set B = 0 unless this rules out consistency.

Rule 2: With second highest priority, assign the value 0 to as many components of W as possible.

Rule 3: With third highest priority, choose the bias B as small as possible.

Rule 4: Let I ⊆ [d] be the set of indices i ∈ [d] with Wi 6= 0 (in accordance with Rule 2). With
fourth highest priority, choose (|Wi|)i∈I as large as possible w.r.t. the partial order ≤ inR|I|.

Lemmas 18, 19 and 20 can be combined to obtain the following result:

Theorem 21 PBTD(Hd) ≤ 2d+ 2.

We briefly note that the RTD of halfspaces is infinite simply because (1-dimensional) half-
intervals can be seen as special (d-dimensional) halfspaces.

11
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9. Some Geometric Classes and Their PBTD

Let Pk denote the class of convex polygons in the plane with at most k vertices. We know from
Example 2 that PBTD+(Pk) = k. We claim that PBTD(P6) ≥ 4. This can be seen as follows.
Let P6 denote a convex polygon with vertices P1, . . . , P6 as shown in Fig. 1. Let P ′6 ⊂ P6 denote
the family of polygons that result from P6 by using a subset of the four possible shortcuts. For
instance the polygon with vertices P1,M0, P4, P5,M1 is among the possible choices. Note the
one-to-one correspondence between the four shortcuts and the four shaded triangles in Fig. 1. In
order to distinguish between the polygons in P ′6, the following observations can be made:

• The only informative points are found within the four triangles.

• Points within the same triangle give the same information to the student: the point is marked
“-” iff the corresponding shortcut is used.

It follows that teaching P ′6 is equivalent to teaching the powerset over a universe of size 4. Hence
PBTD(P6) ≥ PBTD(P ′6) = 4. A similar but more general reasoning leads to the following result:

Theorem 22 For all k ≥ 3, the following holds:

PBTD(Pk) ≥
{

2bk/3c+ 1 if k ≡ 2 (mod 3)
2bk/3c otherwise

Proof The construction from Fig. 1 can be generalized in the obvious fashion to convex polygons
with k vertices, using 2bk/3c resp. 2bk/3c+ 1 shortcuts. It is easy to fill in the details.

Let L be a concept class over a universe X . We denote by Lk the class of concepts which can
be written as a union of at most k concepts from L. We denote by L̇k the set of concepts which can
be written as a union of at most k concepts from L provided that these concepts have at least one
element in common. We remind the reader thatRd denotes the class of d-dimensional boxes.

Theorem 23 2d(k − d+ 1) ≤ PBTD+(Ṙk
d) ≤ 2dk.

The proof of the upper bound makes use of the following fact (which is illustrated in Fig. 2): if B
is a d-dimensional box with vertices P1, . . . , P2d and w is any point in Rd, then the boxes spanned
by {w,P1}, . . . , {w,P2d}, respectively, fully cover B. (In case that w ∈ B, they even form a
partition of B.) This can be used to argue that the total set of vertices of (up to) k boxes that have a
common point forms a spanning set of their union w.r.t. Ṙk

d. The full proof of Theorem 23 is given
in Section D.

It seems that the class Rk
d poses a harder teaching problem in the preference-based setting than

its subclass Ṙk
d. Presenting the set of all (up to k2d many) vertices does not seem to be sufficient

because the student does not know how to decompose them into (up to) k clusters consisting of 2d

vertices each (and this problem occurs in general for classes Lk whose concepts are k-unions of
concepts taken from a basic class L). As a matter of fact, this “clustering problem” can be solved by
adding only few negative examples when we deal with disjoint unions of topologically open boxes:

Theorem 24 The PBTD of the class of disjoint unions of up to k topologically open d-dimensional
boxes is upper-bounded by k(2d+ 1).

12
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Proof The proof is very simple. Choose the following hierarchical preference relation. With first
priority choose a union of as few as possible boxes. With second priority, prefer a concept R (=
union of boxes) over all concepts R′ that are proper subsets of R. Fig. 3 shows how the teaching
set for each single box of the target concept should be chosen. If the student gets (up to) k teaching
sets of this kind, she will put the largest possible box around each positive example. The negative
examples at the border of the box ensure that these boxes do not become too large.

10. Conclusions

Preference-based teaching uses the natural notion of preference relation to extend the classical
teaching model. The resulting model is (i) more powerful than the classical one, (ii) resolves dif-
ficulties with the recursive teaching model in the case of infinite concept classes, and (iii) is at the
same time free of coding tricks even according to the definition by Goldman and Mathias (1996).
Our examples of algebraic and geometric concept classes demonstrate that preference-based teach-
ing can be achieved very efficiently with naturally defined teaching sets and based on intuitive
preference relations such as inclusion. We believe that further studies of the PBTD will provide in-
sights into structural properties of concept classes that render them easy or hard to learn in a variety
of formal learning models.

We have shown that spanning sets lead to a general-purpose construction for preference-based
teaching sets of only positive examples. While this result is fairly obvious, it provides further
justification of the model of preference-based teaching, since the teaching sets it yields are often
intuitively exactly those a teacher would choose in the classroom (for instance, one would repre-
sent convex polygons by their vertices). It should be noted, too, that it can sometimes be difficult
to establish whether the upper bound on PBTD obtained this way is tight, or whether the use of
negative examples or preference relations other than inclusion yield smaller teaching sets. A further
challenge is posed by the study of unions of geometric objects such as axis-aligned boxes. There
seems to be no obvious way of combining preference-based teaching sets for a number of objects to
a preference-based teaching set for their union, and it is unclear how to choose preference relations
in the best possible way. Generally, the choice of preference relation provides a degree of freedom
that increases the power of the teacher but also increases the difficulty of establishing lower bounds
on the number of examples required for teaching.

Acknowledgements. Sandra Zilles was supported by the Natural Sciences and Engineering Re-
search Council of Canada (NSERC), in the Discovery Grant and Canada Research Chairs programs.
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Appendix A. Proof of Lemma 10

We first show that there exists a class of VC-dimension 1, say L∞, such that PBTD+(L∞) = 1
while RTD(L∞) = ∞. To this end, let L∞ be the family of half-intervals over [0, 1), i.e., L∞ =
{[0, a] : 0 ≤ a < 1}. We first prove that PBTD+(L∞) = 1. Consider the preference relation given
by [0, b] ≺ [0, a] iff a < b. Then, for each 0 ≤ a < 1, we have

PBTD([0, a],L∞,≺)
(1)
= TD([0, a], {[0, b] : 0 ≤ b ≤ a}) = 1

because the single example (a,+) suffices for distinguishing [0, a] from any interval [0, b] with
b < a.
It had been observed by Moran et al. (2015) already that RTD(L∞) = ∞ because every teaching
set for some [0, a] must contain an infinite sequence of rationals that converges from above to a.
Thus RTD(L∞) ≥ TDmin(L∞) =∞.

Next we show that, for every k ≥ 1, there exists a class, say Lk, such that PBTD+(Lk) = 1
while RTD(Lk) = k. To this end, let X = [0, 2). For each a =

∑
n≥1 αn2

−n ∈ [0, 1) and
for all i = 1, . . . , k, let 1 ≤ ai < 2 be given by ai = 1 +

∑
n≥0 αkn+i2

−n. Finally, let Ia =
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P1

P2

M0

P3

P4

P5

M1

P6

Figure 1: The polygon P6 with vertices P1, . . . , P6, its four shortcuts
(P1,M0), (M0, P4), (P4,M1), (M1, P1) and the corresponding (shaded) trian-
gles.

w

1 2 R

(a)

w

1 2

3 4

R

(b)

Figure 2: (a) a box R covered by the boxes induced by w /∈ R (b) a box R partitioned by the
sub-boxes induced by w ∈ R

Figure 3: A teaching set for a topologically open box: hollow points indicate negative examples
whereas the black point in the center serves a positive example.
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[0, a) ∪ {a1, . . . , ak} ⊆ X and let Lk = {Ia : 0 ≤ a < 1}. Clearly PBTD+(Lk) = 1 because,
using the preference relation given by Ib ≺ Ia iff a < b, we can teach Ia w.r.t. Lk by presenting the
single example (a,+) (the same strategy as for half-intervals). Moreover, note that Ia is the only
concept in Lk that contains a1, . . . , ak, i.e., {a1, . . . , ak} is a positive teaching set for Ia w.r.t. Lk.
It follows that RTD(Lk) ≤ TD(Lk) ≤ k. It remains to show that RTD(Lk) ≥ k. To this end, we
consider the subclass L′k consisting of all concepts Ia such that a has only finitely many 1’s in its
binary representation. Pick any concept Ia ∈ L′k. Let T be any set of at most k−1 examples labeled
consistently according to Ia. At least one of the positive examples a1, . . . , ak must be missing, say
ai is missing. Let J be the set of indices given by J = {n ∈ N0 : αkn+i = 0}. The following
observations show that there exists a′ ∈ X \ {a} such that Ia′ is consistent with T .

• When we set some (at least one but only finitely many) of the bits αkn+i with n ∈ J from 0
to 1 (while keeping fixed the remaining bits of the binary representation of a), then we obtain
a number a′ 6= a such that Ia′ is still consistent with all positive examples in T (including the
example (a,+) which might be in T ).

• Note that J is an infinite set. It is therefore possible to choose the bits that are set from 0 to 1
in such a fashion that the finitely many bit patterns represented by the numbers in T− ∩ [1, 2)
are avoided.

• It is furthermore possible to choose the bits that are set from 0 to 1 in such a fashion that the
resulting number a′ is as close to a as we like so that Ia′ is also consistent with the negative
examples from T− ∩ [0.1).

It follows from this discussion that no set with less than k examples can possibly be a teaching set
for Ia. Since this holds for an arbitrary choice of a, we may conclude that RTD(Lk) ≥ RTD(L′k) ≥
TDmin(L′k) = k.

Appendix B. Proof of Theorem 17

In Section B.1, we present a general result which helps to verify the upper bounds within Theo-
rem 17. These upper bounds are then derived in Section B.2. Section B.3 is devoted to the derivation
of the lower bounds.

B.1. The Shift Lemma

In this section, we assume that L is a concept class over a universe X ∈ {N0,Q+
0 ,R

+
0 }. We

furthermore assume that 0 is contained in every concept L ∈ L. We can extend L to a larger class,
namely the shift-extension L′ of L, by allowing each of its concepts to be shifted by some constant
which is taken from X :

L′ = {c+ L : (c ∈ X ) ∧ (L ∈ L)} .

The next result states that this extension has little effect only on the complexity measures PBTD
and PBTD+:

Lemma 25 (Shift Lemma) With the above notation and assumptions, the following holds:

PBTD(L) ≤ PBTD(L′) ≤ 1+PBTD(L) and PBTD+(L) ≤ PBTD+(L′) ≤ 1+PBTD+(L) .
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Proof It suffices to verify the inequalities PBTD(L′) ≤ 1 + PBTD(L) and PBTD+(L′) ≤ 1 +
PBTD+(L) because the other inequalities hold by virtue of monotonicity. Let T be an admissible
mapping for L. It suffices to show that T can be transformed into an admissible mapping T ′ for L′
such that ord(T ′) ≤ 1+ord(T ) and such that T ′ is positive provided that T is positive. To this end,
we define T ′ as follows:

T ′(c+ L) = {(c,+)} ∪ {(c+ x, b) : (x, b) ∈ T (L)} .

Obviously ord(T ′) ≤ 1+ord(T ). Note that c ∈ c+L because of our assumption that 0 is contained
in every concept in L. Moreover, since the admissibility of T implies that L is consistent with T (L),
the above definition of T ′(c + L) makes sure that c + L is consistent with T ′(c + L). It suffices
therefore to show that the relationR+

T ′ is asymmetric. Consider a pair (c′+L′, c+L) ∈ RT ′ . By the
definition ofRT ′ , it follows that c′+L′ is consistent with T ′(c+L). Because of (c,+) ∈ T ′(c+L),
we must have c′ ≤ c. Suppose that c′ = c. In this case, L′ must be consistent with T (L). Thus
L′ ≺T L. This discussion shows that (c′ + L′, c + L) ∈ RT ′ can happen only if either c′ < c or
(c′ = c) ∧ (L′ ≺T L). Since ≺T is asymmetric, we may now conclude that R+

T ′ is asymmetric, as
desired. Finally note that, according to our definition above, the mapping T ′ is positive provided
that T is positive. This concludes the proof.

B.2. The Upper Bounds in Theorem 17

We remind the reader that the equality PBTD+(LINSETk) = k was stated in Example 2. In
combination with the Shift Lemma, this implies that PBTD+(LINSET′k) ≤ k + 1. All remaining
upper bounds in Theorem 17 follow now by virtue of monotonicity.

B.3. The Lower Bounds in Theorem 17

The lower bounds in Theorem 17 are an immediate consequence of the following result:

Lemma 26 The following lower bounds are valid:

PBTD+(NE-CF-LINSET′k) ≥ k + 1 . (9)

PBTD(NE-CF-LINSET′k) ≥ k − 1 . (10)

PBTD(NE-CF-LINSETk) ≥
k − 1

2
. (11)

PBTD(CF-LINSETk) ≥ k − 1 . (12)

This lemma can be seen as an extension and a strengthening of a similar result in (Gao et al.,
2015) where the following lower bounds were shown:

RTD+(NE-LINSET′k) ≥ k + 1

RTD(NE-LINSET′k) ≥ k − 1

RTD(CF-LINSETk) ≥ k − 1

The proof of Lemma 26 builds on some ideas that are found in (Gao et al., 2015) already, but it
requires some elaboration to get the stronger results.
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We now briefly explain why the lower bounds in Theorem 17 directly follow from Lemma 26.
Note that the lower bound k − 1 in (8) is immediate from (10) and a monotonicity argument. Note
furthermore that PBTD+(CF-LINSET′k) ≥ k + 1 because of (9) and a monotonicity argument.
Then the Shift Lemma implies that PBTD(CF-LINSETk) ≥ k. All remaining lower bounds in
Theorem 17 are obtained from these observations by virtue of monotonicity.

The proof of Theorem 17 can therefore be accomplished by proving Lemma 26. It turns out
that the proof of this lemma is quite involved. We will present in Section B.3.1 some theoretical
prerequisites. Sections B.3.2 and B.3.3 are devoted to the actual proof of the lemma.

B.3.1. SOME BASIC CONCEPTS IN THE THEORY OF NUMERICAL SEMIGROUPS

Recall from Section 6 that 〈G〉 =
{∑

g∈G a(g)g : a(g) ∈ N0

}
. The elements of G are called

generators of 〈G〉. A set P ⊂ N is said to be independent if none of the elements in P can be
written as a linear combination (with coefficients from N0) of the remaining elements (so that 〈P ′〉
is a proper subset of 〈P 〉 for every proper subset P ′ of P ). It is well known (Rosales and Garcı́a-
Sánchez, 2009) that independence makes generating systems unique, i.e., if P, P ′ are independent,
then 〈P 〉 = 〈P ′〉 implies that P = P ′. Moreover, for every independent set P , the following
implication is valid:

(S ⊆ 〈P 〉 ∧ P 6⊆ S) ⇒ (〈S〉 ⊂ 〈P 〉) . (13)

Let P = {a1, . . . , ak} be independent with a1 = minP . It is well known4 and easy to see
that the residues of a1, a2, . . . , ak modulo a1 must be pairwise distinct (because, otherwise, we
would obtain a dependence). If a1 is a prime and |P | ≥ 2, then the independence of P implies that
gcd(P ) = 1. Thus the following holds:

Lemma 27 If P ⊂ N is an independent set of cardinality at least 2 and minP is a prime, then
gcd(P ) = 1.

In the remainder of the paper, the symbols P and P ′ are reserved for denoting independent sets of
generators.

It is well known that 〈G〉 is co-finite iff gcd(G) = 1 (Rosales and Garcı́a-Sánchez, 2009). Let P
be a finite (independent) subset of N such that gcd(P ) = 1. The largest number in N \ 〈P 〉 is called
the Frobenius number of P and is denoted as F (P ). It is well known (Rosales and Garcı́a-Sánchez,
2009) that

F ({p, q}) = pq − p− q (14)

provided that p, q ≥ 2 satisfy gcd(p, q) = 1.

B.3.2. PROOF OF (9)

The shift-extension of NE-CF-LINSETk is (by way of definition) the following class:

NE-CF-LINSET′k = {c+ 〈P 〉+ : (c ∈ N0) ∧ (P ⊂ N) ∧ (|P | ≤ k) ∧ (gcd(P ) = 1)} . (15)

4. E.g., see (Rosales and Garcı́a-Sánchez, 2009)
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It is easy to see that this can be written alternatively in the form

NE-CF-LINSET′k =

N + 〈P 〉 : N ∈ N0 ∧ P ⊂ N ∧ |P | ≤ k ∧ gcd(P ) = 1 ∧
∑
p∈P

p ≤ N


(16)

where N in (16) corresponds to c+
∑

p∈P p in (15).
For technical reasons, we define the following subfamilies of NE-CF-LINSET′k. For each N ≥

0, let
NE-CF-LINSET′k[N ] = {N + L : L ∈ LINSETk[N ]}

where

LINSETk[N ] =

〈P 〉 ∈ LINSETk : (gcd(P ) = 1) ∧

∑
p∈P

p ≤ N

 .

In other words, NE-CF-LINSET′k[N ] is the subclass consisting of all concepts in NE-CF-LINSET′k
(written in the form (16)) whose constant is N .
A central notion for proving (9) is the following one:

Definition 28 Let k,N ≥ 2 be integers. We say that a set L ∈ NE-CF-LINSET′ is (k,N)-special
if it is of the form L = N + 〈P 〉 such that the following holds:

1. P is an independent set of cardinality k and minP is a prime (so that gcd(P ) = 1 according
to Lemma 27, which furthermore implies that 〈P 〉 is co-finite).

2. Let q(P ) denote the smallest prime that is greater than F (P ) and greater than maxP . For
a = minP and r = 0, . . . , a− 1, let

tr(P ) = min{s ∈ 〈P 〉 : s ≡ r (mod a)} and tmax(P ) = max
0≤r≤a−1

tr(P ) .

Then
N ≥ k(a+ tmax(P )) and N ≥ q(P ) +

∑
p∈P\{a}

p . (17)

We need at least k positive examples in order to distinguish a (k,N)-special set from all its
proper subsets in NE-CF-LINSET′k[N ], as the following result shows:

Lemma 29 For all k ≥ 2, the following holds. If L ∈ NE-CF-LINSET′ is (k,N)-special, then
L ∈ NE-CF-LINSET′[N ] and I ′(L,NE-CF-LINSETk[N ]) ≥ k.

Proof Suppose that L = N + 〈P 〉 is of the form as described in Definition 28. Let P =
{a, a2 . . . , ak} with a = minP . For the sake of simplicity, we will write tr instead of tr(P )
and tmax instead of tmax(P ). The independence of P implies that tai mod a = ai for i = 2, . . . , k.
It follows that tmax ≥ maxP . Since, by assumption, N ≥ k · tmax, it becomes obvious that
L ∈ NE-CF-LINSET′[N ].
Assume by way of contradiction that the following holds:

(A) There is a weak spanning set S of size k − 1 for L w.r.t. NE-CF-LINSET′k[N ].
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Since N is contained in any concept from NE-CF-LINSET′k[N ], we may assume that N /∈ S so
that S is of the form S = {N + x1, . . . , N + xk−1} for integers xi ≥ 1. For i = 1, . . . , k − 1, let
ri = xi mod a ∈ {0, 1, . . . , a − 1}. It follows that each xi is of the form xi = qia + tri for some
integer qi ≥ 0. Let X = {x1, . . . , xk−1}. We proceed by case analysis:

Case 1: X ⊆ {a2, . . . , ak} (so that, in view of |X| = k − 1, we even have X = {a2, . . . , ak}).
Let L′ = N + 〈X〉. Then S ⊆ L′. Note that X ⊆ P but P 6⊆ X . We may conclude
from (13) that 〈X〉 ⊂ 〈P 〉 and, therefore, L′ ⊂ L. Thus L′ is a proper subset of L which
contains S. Note that (17) implies that N ≥

∑k
i=2 ai =

∑k−1
i=1 xi. If gcd(X) = 1, then L′ ∈

NE-CF-LINSET[N ] and we have an immediate contradiction to the above assumption (A).
Otherwise, if gcd(X) ≥ 2, then we define L′′ = N+〈X ∪ {q(P )}〉. Note that S ⊆ L′ ⊆ L′′.
Since q(P ) > F (P ), we have X ∪ {q(P )} ⊆ 〈P 〉 and, since q(P ) > maxP , we have
P 6⊆ X ∪ {q(P )}. We may conclude from (13) that 〈X ∪ {q(P )}〉 ⊂ 〈P 〉 and, therefore,
L′′ ⊂ L. Thus, L′′ is a proper subset of L which contains S. Because X = {a2, . . . , ak}
and q(P ) is a prime that is greater than maxP , it follows that gcd(X ∪ {q(P )}) = 1.
In combination with (17), it easily follows now that L′′ ∈ NE-CF-LINSET[N ]. Putting
everything together, we arrive at a contradiction to the assumption (A).

Case 2: X 6⊆ {a2, . . . , ak}.
If ri = 0 for i = 1, . . . , k− 1, then each xi is a multiple of a. In this case, N + 〈a, q(P )〉 is a
proper subset of L = N + 〈P 〉 that is consistent with S, and we arrive at a contradiction. We
may therefore assume that there exists i′ ∈ {1, . . . , k − 1} such that ri′ 6= 0. From the case
assumption, X 6⊆ {a2, . . . , ak}, it follows that there must exist an index i′′ ∈ {1, . . . , k − 1}
such that qi′′ ≥ 1 or tri′′ /∈ {a2, . . . , ak}. For i = 1, . . . , k − 1, let q′i = min{qi, 1}
and x′i = q′ia + tri . Note that q′i′′ = 1 iff qi′′ ≥ 1. Define L′′ = N + 〈X ′〉 for X ′ =
{a, x′1, . . . , x′k−1} and observe the following. First, the set L′′ clearly contains S. Second,
the choice of x′1, . . . , x

′
k−1 implies that X ′ ⊆ 〈P 〉. Third, it easily follows from q′i′′ = 1 or

tri′′ /∈ {a2, . . . , ak} that P 6⊆ {a, x′1, . . . , x′k−1}. We may conclude from (13) that 〈X ′〉 ⊂
〈P 〉 and, therefore, L′′ ⊂ L. Thus, L′′ is a proper subset of L which contains S. Since ri′ 6= 0
and a is a prime, it follows that gcd(a, x′i′) = 1 and, therefore, gcd(X ′) = 1. In combination
with (17), it easily follows now that L′′ ∈ NE-CF-LINSET[N ]. Putting everything together,
we arrive again at a contradiction to the assumption (A).

For the sake of brevity, let L = NE-CF-LINSET′. Assume by way of contradiction that there
exists a positive mapping T of order k that is admissible for Lk. We will pursue the following
strategy:

1. We define a set L ∈ Lk of the form L = N + p+ 〈1〉.

2. We define a second set L′ = N + 〈G〉 ∈ L that is (k,N)-special and consistent with T+(L).
Moreover, L′ \ L = {N}.

If this can be achieved, then the proof will be accomplished as follows:

• According to Lemma 29, T+(L′) must contain at least k examples (all of which are different
from N ) for distinguishing L′ from all its proper subsets in Lk[N ].
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• Since L′ is consistent with T+(L), the set T+(L′) must contain an example which distin-
guishes L′ from L. But the only example which fits this purpose is (N,+).

• The discussion shows that T+(L′) must contain k examples in order to distinguish L′ from
all its proper subsets in Lk plus one additional example, N , needed to distinguish L′ from L.

• We arrived at a contradiction to our initial assumption that T+ is of order k.

We still have to describe how our proof strategy can actually be implemented. We start with the
definition of L. Pick the smallest prime p ≥ k + 1. Then {p, p + 1, . . . , p + k} is independent.

Let M = F ({p, p + 1}) (14)
= p(p + 1) − p − (p + 1). An easy calculation shows that k ≥ 2 and

p ≥ k + 1 imply that M ≥ p+ k. Let I = {p, p+ 1, . . . ,M}. Choose N large enough so that all
concepts of the form

N + 〈P 〉 where |P | = k, p = minP and P ⊆ I

are (k,N)-special. With these choices of p andN , let L = N+p+〈1〉. Note thatN+p,N+p+1 ∈
T+(L) because, otherwise, one of the concepts N + p + 1 + 〈1〉, N + p + 〈2, 3〉 ⊂ L would be
consistent with T+(L) whereas T+(L) must distinguish L from all its proper subsets in Lk. Setting
A = {x : N + x ∈ T+(L)}, it follows that |A| = |T+(L)| ≤ k and p, p + 1 ∈ A. The set A
is not necessarily independent but it contains an independent subset B such that p, p + 1 ∈ B and
〈A〉 = 〈B〉. Since M = F ({p, p + 1}), it follows that any integer greater than M is contained in
〈p, p+ 1〉. Since B is an independent extension of {p, p+ 1}, it cannot contain any integer greater
than M . It follows that B ⊆ I . Clearly, |B| ≤ k and gcd(B) = 1. We would like to transform B
into another generating system G ⊆ I such that

〈B〉 ⊆ 〈G〉, gcd(G) = 1 and |G| = k .

If |B| = k, we can simply set G = B. If |B| < k, then we make use of the elements in the indepen-
dent set {p, p+ 1, . . . , p+ k} ⊆ I and add them, one after the other, to B (thereby removing other
elements from B whenever their removal leaves 〈B〉 invariant) until the resulting set G contains k
elements. We now define the set L′ by setting L′ = N + 〈G〉. Since G ⊆ I = {p, p+ 1, . . . ,M},
and p, p + 1 ∈ G, it follows that p = minG, gcd(G) = 1 and min(L′ \ {N}) is N + p. Thus,
L′ \ L = {N}, as desired. Moreover, since N had been chosen large enough, the set L′ is (k,N)-
special. Thus L and L′ have all properties that are required by our proof strategy and the proof of (9)
is complete.

B.3.3. PROOF OF (10), (11) AND (12)

We make use of some well known (and trivial) lower bounds on TDmin:

Example 3 For every k ∈ N, let [k] = {1, 2, . . . , k}, let 2[k] denote the powerset of [k] and, for all
` = 0, 1, . . . , k, let (

[k]

`

)
= {S ⊆ [k] : |S| = `}

denote the class of those subsets of [k] that have exactly ` elements. It is trivial to verify that

TDmin

(
2[k]
)
= k and TDmin

((
[k]

`

))
= min{`, k − `} .

21



GAO RIES SIMON ZILLES

In view of PBTD+(LINSETk) = k, the next results show that negative examples are of limited
help only as far as preference-based teaching of concepts from LINSETk is concerned:

Lemma 30 For every k ≥ 1 and for all ` = 0, . . . , k − 1, let

Lk = {〈k, p1, . . . , pk−1〉 : pi ∈ {k + i, 2k + i}} ,
Lk,` = {{〈k, p1, . . . , pk−1〉 ∈ Lk : |{i : pi = k + i}| = `} .

With this notation, the following holds:

TDmin(Lk) ≥ k − 1 and TDmin(Lk,`) ≥ min{`, k − 1− `} .

Proof For k = 1, the assertion in the lemma is vacuous. Suppose therefore that k ≥ 2. An
inspection of the generators k, p1, . . . , pk−1 with pi ∈ {k + i, 2k + i} shows that

Lk = {Lk,S : S ⊆ {k + 1, k + 2, . . . , 2k − 1}}
Lk,` = {Lk,S : (S ⊆ {k + 1, k + 2, . . . , 2k − 1}) ∧ (|S| = `)}

where
Lk,S = {0, k} ∪ {2k, 2k + 1, . . .} ∪ S .

Note that the examples in {0, 1, . . . , k} ∪ {2k, 2k+1, . . . , } are redundant because they do not dis-
tinguish between distinct concepts from Lk. The only useful examples are therefore contained
in the interval {k + 1, k + 2, . . . , 2k − 1}. From this discussion, it follows that teaching the
concepts of Lk (resp. of Lk,`) is not essentially different from teaching the concepts of 2[k−1](

resp. of
([k−1]

`

))
. This completes the proof of the lemma because we know from Example 3 that

TDmin(2
[k−1]) = k − 1 and TDmin

(([k−1]
`

))
= min{`, k − 1− `}.

We claim now that the inequalities (10), (11) and (12) are valid, i.e., we claim that the following
holds:.

1. PBTD(CF-LINSETk) ≥ k − 1.

2. PBTD(NE-CF-LINSETk) ≥ b(k − 1)/2c.

3. PBTD(NE-CF-LINSET′k) ≥ k − 1.

Proof For k = 1, the inequalities are obviously valid. Suppose therefore that k ≥ 2.

1. Since gcd(k, k + 1) = gcd(k, 2k + 1) = 1, it follows that Lk is a finite subclass of
CF-LINSETk. Thus PBTD(CF-LINSETk) ≥ PBTD(Lk) ≥ TDmin(Lk) ≥ k − 1.

2. Define Lk[N ] = {N + L : L ∈ Lk} and Lk,`[N ] = {N + L : L ∈ Lk,`}. Clearly
TDmin(Lk[N ]) = TDmin(Lk) and TDmin(Lk,`[N ]) = TDmin(Lk,`) holds for every N ≥ 0.
It follows that the lower bounds in Lemma 30 are also valid for the classes Lk[N ] and Lk,`[N ]
in place of Lk and Lk,`, respectively. Let

N(k) = k2+(k−1−b(k−1)/2c)k+
k−1∑
i=1

i = k2+(k−1−b(k−1)/2c)k+1

2
(k−1)k . (18)
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It suffices to show that N(k) + Lk,b(k−1)/2c is a finite subclass of NE-CF-LINSETk. To this
end, first note that

〈k, p1, . . . , pk−1〉+ = k +

k−1∑
i=1

pi + 〈k, p1, . . . , pk−1〉 .

Call pi “light” if pi = k + i and call it “heavy” if pi = 2k + i. Note that a concept L from
N(k) + Lk,` is of the general form

L = N(k) + 〈k, p1, . . . , pk−1〉 (19)

with exactly ` light parameters among p1, . . . , pk−1. A straightforward calculation shows that,
for ` = b(k− 1)/2c, the sum k+

∑k−1
i=1 pi equals the number N(k) as defined in (18). Thus,

the concept L from (19) with exactly b(k−1)/2c light parameters among {p1, . . . , pk−1} can
be rewritten as follows:

L = N(k) + 〈k, p1, . . . , pk−1〉 = 〈k, p1, . . . , pk−1〉+ .

This shows thatL ∈ NE-CF-LINSETk. AsL is a concept fromN(k)+Lk,b(k−1)/2c in general
form, we may conclude that N(k) + Lk,b(k−1)/2c is a finite subclass of NE-CF-LINSETk, as
desired.

3. The proof of third inequality is similar to the above proof of the second one. It suffices to show
that, for every k ≥ 2, there existsN ∈ N such thatN +Lk is a subclass of NE-CF-LINSET′k.
To this end, we set N = 3k2. A concept L from 3k2 + Lk is of the general form

L = 3k2 + 〈k, p1, . . . , pk−1〉

with pi ∈ {k+ i, 2k+ i} (but without control over the number of light parameters). It is easy
to see that the constant 3k2 is large enough so that L can be rewritten as

L = 3k2 −

(
k +

k−1∑
i=1

pi

)
+ 〈k, p1, . . . , pk−1〉+

where 3k2 −
(
k +

∑k−1
i=1 pi

)
≥ 0. This shows that L ∈ NE-CF-LINSET′k. As L is a

concept from 3k2 + Lk in general form, we may conclude that 3k2 + Lk is a finite subclass
of NE-CF-LINSET′k, as desired.

Appendix C. Proof of Lemmas 19 and 20

Proof [Lemma 19] We have to show that PBTD(Hd[b < 0]) ≤ d. To this end, we normalize the
representation (w, b) of a halfspace Hw,b by setting ‖w‖∞ = 1. Initially, we impose the constraints
‖W‖∞ = 1 and B < 0 on the unknown weight vector W ∈ Rd and the unknown bias B ∈ R. We
choose the preference relation according to the following rules:
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Rule 1: With highest priority, choose the bias B as small as possible.

Rule 2: With second highest priority, choose (|W1|, . . . , |Wd|) as small as possible w.r.t. the partial
order ≤ inRd.

Let Hw,b be the target concept. Let I = {i ∈ [d] : wi 6= 0}. For every i ∈ I , choose the example
((−b/wi)1i,+) where 1i denotes the vector with 1 in position i and zeroes elsewhere. Since the
label is positive, the pair (W,B) can be consistent with these examples only if −bWi/wi +B ≥ 0.
Since b, B < 0, it follows that sgn(Wi) = sgn(wi) so that (in combination with |Wi| ≤ 1) the
constraint −bWi/wi +B ≥ 0 can be written in the form

|b|/|wi| − |B| ≥ |b| · |Wi|/|wi| − |B| ≥ 0 .

Making use of ‖w‖∞ = 1, we obtain |B| ≤ mini∈I(|b|/|wi|) = |b|. From b, B < 0, we may con-
clude that 0 > B ≥ b. According to Rule 1, the biasB will be chosen asB = b. Now the constraint
|b| · |Wi|/|wi| − |B| ≥ 0 can be written as |b| · |Wi|/|wi| − |b| ≥ 0 which, after cancellation of |b|,
becomes |Wi| ≥ |wi|. According to Rule 2, the parameter Wi with i ∈ I will be chosen such that
|Wi| = |wi| (implying that Wi = wi because sgn(Wi) = sgn(wi)). Moreover, the parameter Wj

with j /∈ I will be chosen such that Wj = |Wj | = 0. Thus W = w. It follows from this discussion
that the above |I| ≤ d examples form a preference-based teaching set for Hw,b. This concludes the
proof of the lemma.

Proof [Lemma 20] We have to show that PBTD(Hd[b ≥ 0]) ≤ 2d+1. To this end, we normalize the
representation (w, b) of a halfspace Hw,b by setting ‖w‖1 = 1. Initially, we impose the constraints
‖W‖1 = 1 and B ≥ 0 on the unknown weight vector W ∈ Rd and the unknown bias B ∈ R. We
choose the preference relation according to the following rules:

Rule 1: With highest priority, set B = 0 unless this rules out consistency.

Rule 2: With second highest priority, assign the value 0 to as many components of W as possible.

Rule 3: With third highest priority, choose the bias B as small as possible.

Rule 4: Let I ⊆ [d] be the set of indices i ∈ [d] with Wi 6= 0 (in accordance with Rule 2). With
fourth highest priority, choose (|Wi|)i∈I as large as possible w.r.t. the partial order ≤ inR|I|.

We first discuss the case that the target concept is represented by (w, 0) with ‖w‖1 = 1. Let
u1, . . . , ud−1 ∈ Rd be a basis of the (d − 1)-dimensional space 〈w〉⊥. Choose a teaching set T
of size 2d − 1 that consists of (ui,+), (−ui,+) for i = 1, . . . , d − 1 and of (w,+). According to
Rule 1, the bias B will be chosen as B = 0. Given that B = 0, setting W = w is the only chance
for achieving consistency with T and for satisfying the normalization condition ‖W‖1 = 1.
Suppose now that the target concept is represented by (w, b) with ‖w‖1 = 1 and b > 0. Let
I = {i ∈ [d] wi 6= 0}. Note that I 6= ∅ because w 6= 0. Let σi = sgn(wi) and σ = (σ1, . . . , σd)

>.
Choose a teaching set T that consists of the following examples:

• the example (u,+) = (−bσ,+),

• the example (vi,+) = ((−b/wi)1i,+) for every i ∈ I ,
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• the example (2vi,−) for every i ∈ I .

It is easy to check that Hw,b is consistent with T :

w>u+ b = −b
d∑

i=1

σiwi + b = −b‖w‖1 + b = 0 ,

w>vi + b = −b+ b = 0 ,

w>(2vi) + b = −2b+ b = −b < 0 .

For every i ∈ I , the hypothesis HW,B is consistent with (vi,+) and (2vi,−) iff

W>vi +B = −bWi

wi
+B ≥ 0 and W>(2vi) +B = −2bWi

wi
+B < 0 . (20)

An inspection of (20) shows that, for every i ∈ I , the hypothesis HW,B can be consistent with
(2vi,−) only if sgn(Wi) = σi. It follows that (W,B) with B ≥ 0 can be consistent with (vi,+)
and (2vi,−) only if B > 0. Since B = 0 is not possible, Rule 2 applies so that Wj is set to Wj = 0
for every j ∈ [d] \ I . In combination with the normalization condition ‖W‖1 = 1, we obtain∑

i∈I |Wi| = 1. Since the components Wj with j /∈ I have been set to 0 already, we even have
sgn(Wi) = σi for all i = 1, . . . , d. Now Rule 3 becomes active. The pair (W,B) is consistent with
(u,+) iff

W>u+B = −b
d∑

i=1

σiWi +B = −b‖W‖1 +B = −b+B ≥ 0 ,

i.e., iff B ≥ b. According to Rule 3, the parameter B is now set to B = b, and Rule 4 becomes
active. Suppose that i ∈ I . Given that B = b and sgn(Wi) = sgn(wi) = σi, condition (20)
implies that −b|Wi|/|wi|+ b = −bWi/wi + b ≥ 0. Canceling the factor b from this inequality and
resolving for |Wi|, one obtains |Wi| ≤ |wi|. According to Rule 4, the parameter Wi is chosen so
that |Wi| = |wi|. Since the signs of Wi and wi coincide, it follows that W = w. The discussion
shows that T is a preference-based teaching set for Hw,b of size 2|I|+ 1 ≤ 2d+ 1. This concludes
the proof of the lemma.

Appendix D. Proof of Theorem 23

The proof makes use of the following fairly obvious result:

Lemma 31 Let R be a d-dimensional box and w ∈ Rd. Let P1, . . . , P2d denote the vertices of R.
Then the boxes spanned by (w,P1), . . . , (w,P2d), respectively, fully cover R. Moreover, if w ∈ R,
then these boxes form a partition of R.

See Fig. 2 for an illustration.
We first show that PBTD(Ṙk

d) ≤ 2kd. Let R = R1 ∪ . . . ∪ Rm be a union of d-dimensional
boxes such that 1 ≤ m ≤ k andR1∩. . .∩Rm 6= ∅. Suppose thatR is to be taught. For i = 1, . . . ,m,
let Vi be the set of the (2d many) vertices of Ri. It suffices to show that V = V1 ∪ . . . ∪ Vm is a
spanning set forR. Consider any concept from Ṙk

d that contains V , say the concept S = S1∪. . .∪Sn
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such that 1 ≤ n ≤ k, S1 ∩ . . . ∩ Sn 6= ∅ and V ⊆ S. We have to show that R ⊆ S. Let w be a
common point of the boxes S1, . . . , Sn. Clearly S must contain all boxes spanned by w and one of
the vertices in V . According to Lemma 31, these boxes cover the box Ri for every i ∈ [m]. Thus
R ⊆ S, as desired.
We now show that PBTD(Ṙk

d) ≥ (k − d+ 1)2d. We may clearly assume that k ≥ d. Let R ∈ Ṙk
d

be the union of m ≤ k− d+1 boxes, say R = R1 ∪ . . .∪Rm for 1 ≤ m ≤ k− d+1, so that these
m boxes have the additional property that Vi ∩ Rj = ∅ for every 1 ≤ i 6= j ≤ m. In other words,
the vertices of the i-th box Ri are not contained in any other box Rj . See Figure 4 for an illustration
in R2. Let V = V1 ∪ . . . ∪ Vm be the total set of vertices in R. It suffices to show that any set V ′

that does not contain V is not even a weak spanning set for R w.r.t. Ṙk
d. The crucial observation

which confirms this claim is the following one:
Let B be any d-dimensional box and, let P be a vertex of B and let Q ⊂ B be a finite subset of
B \ {P}. Then there exists a union R(B,P,Q) of at most d boxes such that Q ⊂ R(B,Q,P ) ⊂
B \ {P}.
Why is this observation true? Simply move every hyperfaceH incident to vertex P slightly towards
the interior ofB so that P becomes excluded but all vertices inQ\H are still included. See Figure 5
for an illustration.
Why does this observation show that V ′ is not a weak spanning set for R w.r.t. Ṙk

d? The answer
is simple. Suppose that a vertex P of Ri does not belong to V ′. Let Q = Ri ∩ V ′. Then we may
replace the box Ri in the union R by R(Ri, Q, P ). Let R′ = R(Ri, Q, P ) ∪ ∪j 6=iRj . Note that R′

is still a union of at most d boxes. Moreover, by construction, we have V ′ ⊆ R′ ⊂ R. Thus V ′ is
not a weak spanning set for R w.r.t. Ṙk

d, as desired.
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O

Figure 4: A collection of boxes such no vertex of one box belongs to another one.

sub-box 1

sub-box 2

Figure 5: Excluding a vertex of a box without excluding another finite set of points in the box: a
union of d = 2 sub-boxes suffices.
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