
Hierarchical Design of
Fast Minimum Disagreement Algorithms

Malte Darnstädta, Christoph Riesa, Hans Ulrich Simona

aFakultät für Mathematik, Ruhr-Universität Bochum, D-44780 Bochum

Abstract

We compose a toolbox for the design of Minimum Disagreement algorithms.
This box contains general procedures which transform (without much loss of
efficiency) algorithms that are successful for some d-dimensional (geometric)
concept class C into algorithms which are successful for a (d + 1)-dimensional
extension of C. An iterative application of these transformations has the poten-
tial of starting with a base algorithm for a trivial problem and ending up at a
smart algorithm for a non-trivial problem. In order to make this working, it is
essential that the algorithms are not proper, i.e., they return a hypothesis that
is not necessarily a member of C. However, the “price” for using a super-class
H of C is so low that the resulting time bound for achieving accuracy ε in the
model of agnostic learning is significantly smaller than the time bounds achieved
by the up-to-date best (proper) algorithms.

We evaluate the transformation technique for d = 2 on both artificial and
real-life data sets and demonstrate that it provides a fast algorithm, which can
successfully solve practical problems on large data sets.

1. Introduction

In this paper, we are concerned with the Minimum Disagreement problem
(sometimes also called Maximum Weight problem) associated with a family C
of sets over some ground set X : given a sequence S = [(x1, w1), . . . , (xn, wn)] ∈
(X × R)n of points in X along with their weights, find a set C ∈ C whose
total weight WS(C) :=

∑
i:xi∈C wi is as large as possible. Note that WS(C) is

maximized iff
ES(C) :=

∑
i:wi>0,xi /∈C

wi −
∑

i:wi<0,xi∈C
wi (1)

is minimized. In statistical learning theory, ES(C) is called the empirical error
of C on S, and this term plays a central role, especially in the model of agnostic
learning [1].

Email addresses: malte.darnstaedt@rub.de (Malte Darnstädt),
christoph.ries@rub.de (Christoph Ries), hans.simon@rub.de (Hans Ulrich Simon)

Preprint submitted to Elsevier July 10, 2017



Although the Minimum Disagreement problem is intractable for a wide va-
riety of classes [2, 1], it has been noticed by several researchers in an early
stage of learning theory already that relatively simple and low-dimensional clas-
sification rules (e.g. axis-parallel rectangles [3, 4, 5], unions of intervals [6], or
2-level decision trees [7]) can be quite successful on benchmark data provided
that these rules are given in terms of the (few) most relevant attributes. For
this reason a couple of algorithms have been developed which solve the Mini-
mum Disagreement problem w.r.t. some simple classes and run in polynomial
time [8, 7, 9, 10].

It seems that efficient algorithms for the Minimum Disagreement problem
have been found in the past mainly for geometric classes of a relatively low
dimension d. The run-time of these algorithms usually exhibits an exponential
dependence on d. Moreover, improving on the currently best time bounds does
not appear to be an easy job. For instance, the algorithm from [8] solves the Min-
imum Disagreement problem for axis-parallel rectangles in time1 O(n2 log(n)).
It was not until recently [10] that a faster algorithm has been found (time
O(n2) in case of axis-parallel rectangles or, more generally, time O(nd) in case
of d-dimensional axis-parallel hyper-rectangles). Thus, one may easily get the
impression that the early attempts of designing efficient Minimum Disagree-
ment algorithms got stuck, and even modest improvements on the existing time
bounds are not easy to obtain.

One means of escape from the marshy grounds of intractability is opened
up by the usage of convex surrogate loss functions at the place of the discrete
loss function underlying the Minimum Disagreement problem. This option is
taken, for instance, by the Support Vector Machine [11, 12]. In this paper,
we investigate another relaxation of the original problem: instead of searching
for a set C ∈ C with the smallest possible value of ES(C), we bring suitably
chosen classes H into play and search for a set H ∈ H such that ES(H) ≤
minC∈C ES(C). While this approach is well known in the context of Boolean
classes [2] and standard in the theory of agnostic learning [1], it is apparently
not exploited to full extent in the context of geometric classes. Here is a short
summary of our approach:

• We make use of the clever data structures that have been invented in
the past in order to solve the Minimum Disagreement problem for low-
dimensional geometric classes. We observe that these data structures nat-
urally lead to the concept of “flexible” algorithms. Here, “flexibility” means
that the underlying data structure can easily be updated in reaction to a
modified weight parameter.

• We show that a flexible algorithm which solves the Minimum Disagreement
problem for two d-dimensional classes, say C and H, can be transformed
(without much loss of efficiency) into a new flexible algorithm which solves

1The machine model used throughout the paper is a random-access machine with unit
costs (even on real arithmetic).

2



the Minimum Disagreement problem for two (more expressive) (d + 1)-
dimensional classes. An iterative application of these transformations has
the potential of starting with a base algorithm for a trivial problem and
ending up at a smart algorithm for a non-trivial problem.

• By a suitable choice of the class H, we obtain algorithms which achieve
an accuracy of ε in the model of agnostic learning considerably faster
than the best currently known algorithms do. For instance, we obtain a
(non-proper) algorithm that agnostically learns axis-parallel rectangles in
time Õ(1/ε2) while the learning procedure based on the up to date fastest
proper algorithm from [10] needs time Õ(1/ε4). In this paper, Õ is defined
as Landau’s O but additionally hides factors logarithmic in its argument
and the dependency on confidence parameter δ.

It should be mentioned that fragments of our approach heavily build on existing
work [8, 9]; in particular, the employed data structures are a variant of Segment
Trees2 [13]. But it seems to be the combination of three factors—data structures
that provide flexibility, iteratively applicable transformations, clever choice of
the class H—which generates a surprising amount of additional horse power.

The paper is structured as follows. In Section 2, we formally introduce the
notions that will play a central role in this paper and we call into mind some
basic facts. Section 3 describes our transformation which maps a d-dimensional
geometric concept class C to a (d + 1)-dimensional extension of C. Section 4
is the central section in this paper. Here we describe how an algorithm that
(inproperly) solves the Minimum Disagreement problem for concept class C and
hypothesis class H can be transformed (without much loss of efficiency) into
an algorithm that solves the Minimum Disagreement problem for two higher-
dimensional extensions of these classes. In Section 5, we discuss the implications
of these results to inproper agnostic learning. In the final Section 6, we evaluate
our transformation technique for d = 2 on both artificial and real-life data sets
and demonstrate that it provides a fast algorithm, which can successfully solve
practical problems on large data sets.

2. Definitions, Notations and Facts

In Section 2.1, we introduce the Minimum Disagreement problem. In Sec-
tion 2.2, we describe its relation to agnostic PAC learning. In Section 2.3 we
introduce our variant of Segment Trees, which is used later for storing partitions
of R or of discrete subsets of R.

2A Segment Tree is a binary tree storing a set of intervals with endpoints from a finite set of
(sorted) real valued points. Each leaf of the tree corresponds to an elementary interval (either
a point itself or an open interval between two points) and each internal node corresponds to
the union of the intervals given by the children. Any interval over the points can easily be
represented by an antichain of vertices.

3



2.1. The Minimum Disagreement Problem
Let C and H be two classes of sets over some ground set X . A pair (x, b) ∈

X × {0, 1} is called a labeled example. A sequence of labeled examples is called
a labeled sample over X . A sequence of the form S = [(x1, w1), . . . , (xn, wn)] ∈
(X × R)n is called a weighted sample over X . Intuitively, we should think of a
labeled sample S as a special case of a weighted sample S′: if (x, 1) (resp. (x, 0))
occurs r-times in S, it will be represented as (x, r) (resp. as (x,−r)) in S′.

Let C and H be two classes over the same ground set X . The Minimum
Disagreement problem for C and H is denoted by MinDis(C,H) in the sequel.
Recall from Section 1 that it is the following problem: given a weighted sample
S, find a hypothesis H ∈ H such that H does not perform worse on S than the
best concept in C does, i.e., ES(H) ≤ minC∈C ES(C) with ES as given in (1).

Suppose that H = ∪`≥1H` for a hierarchy H1 ⊆ H2 ⊆ H3 ⊆ . . . of classes.
If an algorithm A solves MinDis(C,H) and if A, when applied to a weighted
sample of size n, returns a hypothesis from H`(n), then we will say that A solves
MinDis(C,H`(n)).

2.2. Agnostic PAC Learning
Let X be a ground set, let D be a distribution on X ×{0, 1}, let H ⊆ X , and

let χH : X → {0, 1} denote the characteristic function of H, i.e., χH(x) = 1 if
x ∈ H and χH(x) = 0 otherwise. Then we define the expected prediction error
of H w.r.t. D as follows:

erD(H) = Pr
(x,y)∼D

[χH(x) 6= y] .

Kearns, Schapire and Sellie [1] have presented a very general learning model.
The following definition is obtained when their definition is restricted to the
special case where all the functions to be learned are binary, where we deal with
the zero-one loss function and where we allow arbitrary distributions on the set
of labeled examples:

Definition 1. Let C and H be classes of sets over some ground set X . We say
that C is agnostically learnable by H if there is an algorithm L and a function
n(ε, δ) that is bounded by a fixed polynomial in 1/ε and 1/δ such that, for any
distribution D on X × {0, 1} and any inputs 0 < ε, δ ≤ 1, the following holds.
Given a sequence S consisting of n ≥ n(ε, δ) labeled examples drawn indepen-
dently at random according to D, the algorithm L halts after a finite number
of steps and returns a hypothesis A(S) ∈ H such that, with a probability3 of at
least 1− δ, we have that

erD(A(S)) ≤ inf
C∈C

erD(C) + ε . (2)

If an algorithm agnostically learns C by C, then it is called a proper agnostic
learning algorithm. If H = ∪`≥1H` for an infinite hierarchy H1 ⊆ H2 ⊆ H3 ⊆

3taken over the random sequence S

4



. . . of classes and if L, when applied to a labeled sample of size n, returns a
hypothesis from H`(n), then we say that L agnostically learns C by H`(n).

In the parlance of learning theory, the class C is referred to as the concept class
over X , and the class H is referred to as the hypothesis class over X .

Recall from Section 2.1 that an algorithm A solving MinDis(C,H) returns
a hypothesis H = A(S) ∈ H such that ES(A(S)) ≤ minC∈C ES(C) where
ES denotes the empirical error on S. If S is drawn independently at random
according to D, then the empirical error ES with S ∼ Dn may be a good
approximation of the true error term erD. Indeed, if

∀C ∈ C,∀H ∈ H : |ES(C)− erD(C)| ≤
ε

2
∧ |ES(H)− erD(H)| ≤ ε

2
(3)

were valid4, then the success condition (2) of agnostic PAC learning would
follow immediately from ES(A(S)) ≤ minC∈C ES(C). This raises the following
question: how large must n(ε, δ) be chosen so that the uniform-convergence
condition (3) holds with a probability of at least 1 − δ? The answer to this
question involves the following combinatorial parameter associated with the
hypothesis class H.

Definition 2 ([14]). The VC-dimension of a class H of sets over a ground set
X , denoted VCD(H), is defined as the cardinality of the largest subset M ⊆ X
such that every subset of M can be written in the form M ∩H for some H ∈ H.
If there is no bound on the size of such sets M , then VCD(H) =∞.

The following result leads to an upper bound on the required sample size
n(ε, δ) in terms of ε, δ and VCD(H).

Lemma 3 ([15]). There exist universal constants c1, c2, c3 > 0 such that the
following holds for any ground set X , for any hypothesis class H over X of finite
VC-dimension, say VCD(H) = d, for any distribution D on X ×{0, 1}, and for
any n ≥ 1:

Pr
S∼Dn

[∃H ∈ H : | erD(H)− ES(H)| ≥ ε] ≤ c1cd2e−c3ε
2n . (4)

Setting the right hand-side of (4) less than or equal to δ and solving for n,
it follows that there is a sample size n = n(ε, δ, d) of order O((d+ log(1/δ))/ε2)
so that, with a probability of at least 1 − δ, the uniform convergence condi-
tion (3) is satisfied. With this in mind, the following learnability results are
easily obtained:

Corollary 4. Suppose that C is a concept class and that H is a hypothesis class
over some ground set X . Suppose further that there is an algorithm A that solves

4We may even replace “∀H ∈ H” by “for all hypotheses which are possibly chosen by the
Minimum Disagreement algorithm”.

5



the problem MinDis(C,H). Let d be an upper bound on the VC-dimensions of
Cand H. Then A can be transformed (without much loss of efficiency) into
an algorithm L which agnostically learns C by H. Moreover, the sample size
n = n(ε, δ, d) required by L is bounded by O((d+ log(1/δ))/ε2).

Proof. An agnostic learning algorithm L is obtained simply by running A on
a sufficiently large random sample. Some details follow.
Let D be a distribution on X × {0, 1}. According to Lemma 3, a sample size
n of order O(d + log(1/δ))/ε2) is sufficient for achieving condition (3) with
probability at least 1−δ. As discussed above already, condition (3) implies that
the hypothesis returned by A on input S ∼ Dn satisfies (2). �

The following result proves useful when the choice of the hypothesis class
may depend on the sample size:

Corollary 5. Let C be a concept class over some ground set X . Let H =
∪`≥1H` for an infinite hierarchy C ⊆ H1 ⊆ H2 ⊆ H3 ⊆ . . . of classes over the
same ground set X , and let the VC-dimension of H` be bounded by O(`). Let
`(n) = O(log n). Suppose that there is an algorithm A that solves the problem
MinDis(C,H`(n)). Then A can be transformed (without much loss of efficiency)
into an algorithm L which agnostically learns C by H`(n). Moreover, the sample
size n = n(ε, δ) required by L is bounded by O

(
1
ε2 log

(
1
εδ

))
.

Proof. Again an agnostic learning algorithm L is obtained by running A on a
sufficiently large random sample. Let D be a distribution on X × {0, 1}. Note
that the VC-dimension of H`(n) is bounded by `(n) = O(log(n)). According to
Lemma 3, there is a sufficiently large constant c > 0 such that a sample size n
satisfying

n ≥ c

ε2
·
(
log(n) + log

(
1

δ

))
(5)

is sufficient for achieving condition (3) (with H`(n) in place of H) with proba-
bility at least 1− δ. As discussed above already, condition (3) implies that the
hypothesis returned by A on input S ∼ Dn satisfies (2). It suffices therefore
to analyze how large n has to be chosen so as to satisfy (5). The following
condition implies (5):(

n

2
≥ c log(n)

ε2

)
∧
(
n

2
≥ c

ε2
log

(
1

δ

))
.

The first (resp. the second) inequality can be satisfied by some function n =
n(ε, δ) of order O(log(1/ε)/ε2) (resp. of order O(log(1/δ)/ε2). This shows that
the required sample size is bounded by O

(
1
ε2 log

(
1
εδ

))
, as desired. �

2.3. Ordered Partitions and their Tree Representations
Let P(k) denote the family of all ordered partitions of the reals into k

non-empty intervals, i.e., P(k) consists of all k-tuples (I1, . . . , Ik) such that

6



I1, . . . , Ik ⊆ R are pairwise disjoint non-empty intervals whose union equals
R, and the right endpoint of Ij coincides with the left endpoint of Ij+1 for
j = 1, . . . , k− 1. For instance ((−∞, 0), [0, 10), [10,∞)) is a member of the fam-
ily P(3). Analogously, let P ′(k) denote the family of all ordered partitions of
some bounded non-empty interval over the reals into k consecutive non-empty
sub-intervals. For instance, ([−10, 0), [0, 10), [10, 20)) is a member of the fam-
ily P ′(3).

A sub-interval [c, d] of [a, b] is said to be left-aligned (resp. right-aligned)
in [a, b] if c = a (resp. d = b). It is called a proper sub-interval of [a, b] if it
does not coincide with [a, b]. If [c, d] ⊆ (a, b) it is said to be located in the
interior of [a, b]. Clearly, a proper sub-interval of [a, b] is either left-aligned,
right-aligned, or located in the interior of [a, b]. In the first (resp. second or
third) case, we say that it is of type “L” (resp. of type “R” or of type “I”).

Let Z ⊂ R be finite. A partition of Z is said to be ordered if it is induced by
an ordered partition of R. Suppose that (Z1, . . . , Zk) is an ordered partition of
Z into k classes Z1, . . . , Zk (so that maxZi < minZi+1). Its canonical extension
to a partition of the reals is defined as (I1, . . . , Ik) ∈ P ′(k) where I1, . . . , Ik are
given by

I1 = (−∞,maxZ1] , I2 = (maxZ1,maxZ2], . . .

Ik−1 = (maxZk−2,maxZk−1] , Ik = (maxZk−1,∞) .

Suppose that a, b ∈ R so that a ≤ b. We define [a : b] = [a, b]∩Z. Moreover,
for any finite set Z ⊂ R, we define [a : b]Z = [a, b] ∩ Z. Sets of the form [a : b]Z
will be called intervals in Z in what follows (or simply intervals if Z is clear from
the context). Again we classify proper sub -intervals [c : d]Z ⊂ [a : b]Z as being of
type either “L” (if min[c : d]Z = min[a : b]Z) , “R” (if max[c : d]Z = max[a : b]Z)
or “I” (otherwise). Let (Z1, . . . , Zk) be an ordered partition of [a : b]Z . Its
canonical extension to a partition of [a, b] is then defined as (I1, . . . , Ik) ∈ P(k)
where I1, . . . , Ik are given by

I1 = [a,maxZ1] , I2 = (maxZ1,maxZ2], . . .

Ik−1 = (maxZk−2,maxZk−1] , Ik = (maxZk−1, b] .

Let B = Bn be a complete binary tree with root rB and with n leaves that
are numbered 1, . . . , n from left to right. For a node u ∈ B, let B(u) be the sub-
tree of B rooted at u, and let l(u) (resp. r(u)) be the smallest (resp. largest)
number of a leaf in B(u). Then I(u) = [l(u) : r(u)] is called the Z-interval
represented by u. Suppose that the i-th leaf of B stores a real number zi such
that z1 < . . . < zn. Let Z = {z1, . . . , zn}. Then IZ(u) = [zl(u) : zr(u)]Z
is called the Z-interval represented by u. As usual, two distinct nodes in B
are said to be independent in none of them is a descendant of the other one.
A set of pairwise independent nodes in B is called an antichain in B. An
antichain A in B is called a Z-representation of an interval [a, b] ⊂ R in B
if [a : b]Z = ∪u∈AIZ(u). An example of an antichain and the corresponding
interval is given in Fig. 1. An antichain A is called maximal if it cannot be

7



rB

1 2 3 4 5 6 7 8

z1 = 0.3 z2 = 1.4 z3 = 1.59 z4 = 2.65 z5 = 3.5 z6 = 8.97 z7 = 9.3 z8 = 23

Figure 1: The complete binary tree B8 with Z = {0.3, 1.4, 1.59, 2.65, 3.5, 8.97, 9.3, 23}. The
green nodes form an anti-chain, which is a Z-representation of the interval [1.4, 2.65]. The blue
nodes form a maximal anti-chain , which represents the partition {1, 2, 3, 4}, {5, 6}, {7}, {8} of
[1 : 8] resp. {0.3, 1.4, 1.59, 2.65}, {3.5, 8.97}, {9.3}, {23} of Z.

properly extended within B, i.e., if for every node v ∈ B \ A there is a node
u ∈ A such that v is a descendant of u or vice versa. Every maximal antichain
A in B represents a partition P (A) of [1 : n], respectively a partition PZ(A)
of Z = {z1, . . . , zn}, in the obvious manner. For instance V = {rB} represents
the trivial partition with the single equivalence class [1 : n] (resp. the trivial
partition with the single equivalence class Z). The set of leaves in B represents
the partition of [1 : n] into n singletons {1}, . . . , {n} (resp. the partition of Z into
the singletons {z1}, . . . , {zn}). The other maximal antichains induce partitions
which are in between these two extremes, one such example is given in Fig. 1.
The following result is “folklore” (but we will sketch the proof for the sake of
completeness):

Lemma 6. For every n ≥ 2, the following holds:

1. Let s(n) denote the smallest integer such that every interval [a, b] ⊂ R has
a Z-representation of size s(n) in Bn. Then s(n) ≤ 2blog nc.

2. Let k ≥ 1. Let `1(n) = 1, `2(n) = dlog ne+ 1 and `k(n) = (k − 1) log(n).
Furthermore, let s(n, k) be the smallest integer such that, for every par-
tition (I1, . . . , Ik) ∈ P(k), there exists a maximal antichain A of size at
most s(n, k) in Bn such that PZ(A) is a refinement of the partition induced
by (I1, . . . , Ik) on Z. Then s(n, k) ≤ `k(n).

Proof. For the sake of simplicity, we assume throughout the proof that n
is a power of 2 (but introducing rounding operations would yield the general
statement). Note that the left and the right subtree of the root rB of B = Bn
are isomorphic to Bn/2, respectively. The recursive formulas that will be used
within this proof are based on this observation.

1. Let sL(n) (resp. sR(n)) denote the smallest integer such that every interval
[a, b] ⊂ R with a = z1 (resp. b = zn) has a Z-representation of size sL(n)

8



(resp. sR(n)) in Bn. The following (in-)equalities for X = L,R and every
n ≥ 4 are rather obvious:

sX(2) = 1 and sX(n) ≤ 1 + sX(n/2) .

s(2) = 1 and s(n) ≤ max{s(n/2), sR(n/2) + sL(n/2)} .

For instance, the inequality with s(n) on the left hand-side follows from
the observation that a Z-interval [a : b]Z either is fully contained in one
of the sets [z1 : zn/2]Z , [zn/2+1 : zn]Z or it is the composition of a sub-
interval of [z1 : zn/2]Z of type “R” (resp. the full interval [z1 : zn/2]Z)
with a sub-interval of [zn/2+1 : zn]Z of type “L” (resp. the full interval
[zn/2+1 : zn]Z). The above (in-)equalities imply that sX(n) ≤ log(n), and
this implies that s(n) ≤ 2(log(n)− 1).

2. It is easy to see that s(n, 1) = 1 and s(n, 2) = log(n)+1. Let k0 (resp. k1)
be the number of intervals Ij among I1, . . . , Ik such that Ij∩ [z1 : zn/2]Z 6=
∅ (resp. Ij ∩ [zn/2+1 : zn]Z 6= ∅). There is at most one interval among
I1, . . . , Ik which satisfies both conditions. It follows that k0+ k1 ∈ {k, k+
1}. Hence s(n, k) is upper-bounded by

max{s(n/2, k0) + s(n/2, k1) : 1 ≤ k0, k1 ≤ n/2 ∧ k0 + k1 = k + 1} . (6)

Let k ≥ 3. We assume inductively that s(n, k′) ≤ (k′ − 1) log(n) holds
for every 3 ≤ k′ < k. In order to upper-bound (6), we proceed by case
analysis:
Case 1: k0, k1 ≥ 3. It follows inductively that

s(n/2, k0) + s(n/2, k1) ≤ (k0 − 1) log(n/2) + (k1 − 1) log(n/2)

< (k − 1) log(n) .

Case 2: k0 = 2 and k1 = k− 1 ≥ 3 (or vice versa). It follows inductively
that

s(n/2, k0) + s(n/2, k1) ≤ log(n/2) + 1 + (k1 − 1) log(n/2)

< (k − 1) log(n) .

Case 3: k = 3 and k0 = k1 = 2. It follows inductively that

s(n/2, k0)+s(n/2, k1) ≤ 2(log(n/2)+1) = 2 log(n) = (k−1) log(n) .

Case 4: k0 = 1 and k1 = k (or vice versa). This case can occur only if
n ≥ 2k (since, otherwise, the largest antichain in the left or the right
subtree of rB would be of size n/2 < k). We may therefore assume
inductively that s(n′, k) ≤ `k(n) for every n′ < n. Hence

s(n/2, k0) + s(n/2, k1) ≤ 1 + (k1 − 1) log(n/2) < (k − 1) log(n) .

In each case `k(n) upper-bounds s(n, k). �

9



3. From Simple to More Complex Concept Classes

With each concept class C over some ground set X and with each k ≥ 1, we
associate the following concept classes over R×X :

C[k] =
{ k′⋃
j=1

(Ij × Cj) : 0 ≤ k′ ≤ k ∧ (I1, . . . , Ik′) ∈ P(k′) ∧ C1, . . . , Ck′ ∈ C
}

Analogously, let C′[k] be defined as C[k] with P replaced by P ′. Note that the
empty set is a member of C[k] and C′[k].

In the sequel, I denotes the class of bounded intervals over the ground set R,
R denotes the class of bounded axis-parallel rectangles over the ground set R2,
Ik denotes the class of unions of at most k bounded intervals, and Rk denotes
the class of unions of at most k bounded axis-parallel rectangles.

Example 7. Let X = {x} and C1 = {X} and C2 = {∅,X}. We identify the
ground set R× {x} with R in the obvious manner. Then, for each k ≥ 1, C′1[k]
coincides with I and C′2[2k− 1] coincides with Ik. Moreover, Ik is a subclass of
C2[2k + 1].

Example 8. Obviously, I ′[1] = R. The class I ′[k] with k ≥ 2 contains hori-
zontally connected sequences of at most k bounded axis-parallel rectangles, i.e.,
it contains concepts of the form ∪k′l=1(Il × Jl) with k′ ≤ k, (I1, . . . , Ik′) ∈ P ′(k′)
and J1, . . . , Jk′ ∈ I.

Example 9. Obviously, I ′s[k] is the class over R2 whose concepts are of the
form ∪k′l=1(Il×Ul) with k′ ≤ k, (I1, . . . , Ik′) ∈ P ′(k′) and U1, . . . , Uk′ ∈ Is. It is
easy to see that Rk is a subclass of I ′k[2k − 1] and Ik[2k + 1], respectively. See
Fig. 2 for an illustration.

4. From Trivial to Smart Algorithms

We will assume from now on that a ground set X is equipped with a linear
order and that a weighted sample of the form S = [(x1, w1), . . . , (xn, wn)] ∈
(X × R)n is ordered so that x1 ≤ . . . ≤ xn.

An algorithm that solves MinDis(C, C) is called a proper Minimum Disagree-
ment algorithm for C. An algorithm A that solves MinDis(C,H) is called a
flexible Minimum Disagreement algorithm with time bounds T1, T2, T3 if the
following holds:

1. Given a sorted weighted sample S = [(x1, w1), . . . , (xn, wn)] ∈ (X × R)n,
A builds a data structure DS(S) in time T1(n).

2. After a modification of one of the weights in S, the data structure DS(S)
can be updated accordingly in time T2(n).

10



I ′4[7]: I1 I2 I3 I4 I5 I6 I7

I4[9]: I1 I2 I3 I4 I5 I6 I7 I8 I9

Figure 2: An example showing that a union of 4 rectangles can be viewed as a concept from
I′
4[7] or as a concept from I4[9], respectively.

3. DS(S) implicitly represents a hypothesis H(S) ∈ H which satisfies

ES(H(S)) ≤ min
C∈C

ES(C) . (7)

Given DS(S) and x ∈ X , it can be decided in time T3(n) whether x ∈
H(S).

4. Given DS(S), the quantity ES(H(S)) can be computed in constant time.

Moreover we say that the data structure DS can be merged efficiently if, for every
pair S1, S2 of sorted weighted samples (with the x-components in S1 being not
greater than the x-components in S2), the data structure for the composition
of S1 and S2 can be built in constant time from DS(S1) and DS(S2).

Here is a trivial example for a proper and flexible Minimum Disagreement
algorithm, that we will use as a building block for the design of clever and highly
non-trivial algorithms:

Example 10. Let C1 = {X} for X = {x} be the trivial class that we had con-
sidered in Example 7 already. We claim that the (trivial) problem MinDis(C1, C1)
can be solved by a flexible algorithm with time bounds T1(n) = O(n), T2(n) =
O(1) and T3(n) = O(1):

• For S = [(x,w1), . . . , (x,wn)], set DS(S) := W−S :=
∑
i:wi<0 wi. Thus,

DS(S) is simply a real number that can be determined in time O(n).

• If a weight wk is replaced by a new weight w′k, then DS(S) is updated in
constant time by setting W−S :=W−S +min{w′k, 0} −min{wk, 0}.

• DS(S) represents H(S) := {x}, the only hypothesis in H. The evaluation
problem for H(S) is trivial.

11



• Note that ES({x}) = |W−S |. Thus, given DS(S) = W−S , ES(H(S)) is
computed in constant time.

If the sample S is the composition of the samples S1 and S2, then W−S =W−S1
+

W−S2
. Thus, the data structure DS can be merged efficiently.

Let C2 be the other trivial class that we had considered in Example 7. We
briefly note that there is a flexible algorithm for MinDis(C2, C2) which has the
same time bounds as the algorithm for MinDis(C1, C1).

In the sequel, we assume that Ti(n) = o(n) for i = 2, 3 and T1(n) is of the
form nh(n) for some monotonically non-decreasing function h(n) ≥ 1. From the
latter assumption, it follows that

s∑
i=1

ni = n =⇒

(
s∑
i=1

T1(ni) ≤
s∑
i=1

(nih(n)) = nh(n) = T1(n)

)
. (8)

Here comes the first main result of this section:

Theorem 11. A flexible algorithm A solving MinDis(C,H) with time bounds
T1, T2, T3 can be transformed into a flexible algorithm A′ that solves MinDis(C′[1],
H′[2blog nc]) with time bounds T ′i (n) = O(log(n)Ti(n)) for i = 1, 2 and T ′3(n) =
O(log(n) + T3(n)). Moreover, if the data structure used by A can be merged ef-
ficiently, then the first two time bounds for A′ are even better, namely T ′1(n) =
O(T1(n)) and T ′2(n) = O(log(n) + T2(n)).

Proof. We write vectors from R × X in the form x′ = (z, x) with z ∈ R and
x ∈ X , and we equip R×X with the lexicographic order. Let

S′ = [(x′1, w1), . . . , (x
′
n, wn)] ∈ (R×X × R)n (9)

be a lexicographically sorted weighted sample. Let S = [(x1, w1), . . . , (xn, wn)] ∈
(X×R)n be the sequence obtained by stripping off the z-coordinates of the items
in S′. Note that segments of S with the same z-coordinate are sorted according
to the linear order of X . Let z′1 < . . . < z′n′ with n

′ ≤ n be the sorted sequence
of distinct z-coordinates of the items in S′ and let Z = {z′1, . . . , z′n′}. For each
interval [l : r] ⊆ [1 : n′], we define S′[l : r] as the coherent sub-sequence of S′
consisting of all items in S′ whose z-coordinate lies in the interval [z′l : z

′
r], i.e.,

S′[l : r] = {(x′k, wk) : z′l ≤ zk ≤ z′r} .

Let S[l : r] be the corresponding list with z-coordinates omitted. Let B be a
complete binary tree with n′ leaves which are numbered 1, . . . , n′ from left to
right. With each node u in B, we associate the following pieces of information:

1. l(u) ∈ [1 : n′] (resp. r(u) ∈ [1 : n′]) is the number of the leftmost
(resp. rightmost) leaf in the sub-tree of B induced by u.

2. S(u) is defined as the “sorted version” of S[l(u) : r(u)], i.e., it contains
the same items as S[l(u) : r(u)] but in S(u) they are ordered according to
non-decreasing x-values.

12



3. DS(u) = DS(S(u)), i.e., DS(u) is the data structure returned by the algo-
rithm A on input S(u).

4. d0(u) = ES(u)(∅). Note that d0(u) equals the sum of all positive weights
that are found in S(u).

5. Let H(u) = H(S(u)), i.e., H(u) is the hypothesis which is represented by
the data structure DS(u). Let d1(u) = ES(u)(H(u)). We may conclude
from (7) that, for all nodes u in B,

d1(u) = ES(u)(H(u)) ≤ min
C∈C

ES(u)(C) . (10)

6. Recall from Section 2.3 that I(u) = [l(u) : r(u)] and IZ(u) = [z′l(u) :

z′r(u)]Z . For a, b ∈ I(u), define J(a, b) = [z′a : z′b]Z . Let V (a, b) be the
smallest Z-representation of J(a, b) in B(u) s.t. J(a, b) = ∪v∈V (a,b)IZ(v).
We say that

Ha,b(u) =
⋃

v∈V (a,b)

IZ(v)×H(v) (11)

is the hypothesis induced by J(a, b) at node u. Note that |V (a, b)| ≤
2blog nc according to Lemma 6. Given the convention min ∅ = ∞, we
set

dI(u) = min
a,b∈I(u):a≤b

ES′(u)(Ha,b(u)) ,

dL(u) = min
b∈I(u)

ES′(u)(Hl(u),b(u)) ,

dR(u) = min
a∈I(u)

ES′(u)(Ha,r(u)(u)) ,

i.e., dI(u) is the error on S′(u) of the best hypothesis among the ones
which are induced by some sub-interval of I(u) of type “I”. The analogous
remark applies to dL(u) and dR(u), respectively. The sub-interval [a : b] of
I(u) of type “I” that satisfies dI(u) = ES′(u)(Ha,b(u)) is denoted JI(u) =
[aI(u) : bI(u)] in what follows. The notations JL(u) = [l(u) : bL(u)] and
JR(u) = [aR(u) : r(u)] are understood analogously.

The tree B augmented by K = (K(u))u∈B for

K(u) = [l(u), r(u),DS(u) , d0(u), d1(u), dL(u), dR(u), dI(u) ,

JL(u), JR(u), JI(u)]

constitutes the data structure DS(S′). Leaving out of account the computation
of K, B can be built in time O(n). The additional piece of information, K, can
be computed as follows:

1. The quantities (l(u), r(u), d0(u))u∈B are easy to compute within O(n)
steps in a bottom-up fashion. The sorted sequences (S(u))u∈B can be
computed bottom-up in time O(n log(n)) (in the same way as it is done
by “Mergesort”).

13



2. Making use of (8), it is easy to see that, within T1(n) steps, we can compute
DS(u) for all nodes at a fixed level. Thus, it takes time O(T1(n) log(n))
to compute (DS(u))u∈B . Moreover, if DS can be merged efficiently, then
it is easy to see that the sequences (S(u))u∈B are not needed because
(DS(u))u∈B can be computed directly in time O(T1(n) + n) = O(T1(n)).

3. For each u ∈ B, the parameter d1(u) can be computed in constant time
given DS(u) (due to the fourth property from the definition of a flexible
Minimum Disagreement algorithm).

4. Given (d1(u))u∈B , we can compute the quantities (dL(u), dR(u), dI(u),
JL(u), JR(u), JI(u))u∈B in a bottom-up fashion in time O(n). Let u be
a node with left child u0 and right child u1, then dR(u) is computed
according to

dR(u) = min{d0(u0) + dR(u1), d0(u0) + d1(u1), dR(u0) + d1(u1)} .

This equation mimics the following fact: a sub-interval of I(u) of type
“R” is either a sub-interval of I(u1) of type “R” or equals I(u1) or it is
composed of a sub-interval of I(u0) of type “R” and I(u1). A similar
reasoning shows that

dL(u) = min{dL(u0) + d0(u1), d1(u0) + d0(u1), d1(u0) + dL(u1)} ,
dI(u) = min{d0(u0) + dL(u1), d0(u0) + dI(u1), dR(u0) + d0(u1),

dI(u0) + d0(u1), dR(u0) + dL(u1)} .

Moreover, for each X ∈ {L,R, I}, the computation of JX(u) is just as
easy as the computation of dX(u).

It follows from the previous discussion that (K(u))u∈B can be computed in time
O(log(n)T1(n)). Moreover, if DS can be merged efficiently, then time O(T1(n))
is sufficient.

Suppose that for one item in S′, say the item (zk, xk, wk), the weight pa-
rameter is modified. Let j be the unique index with z′j = zk and let v be the
leaf in B numbered j. Since K(u) need not be changed for all nodes in B but
only for those which are located on the path P from v to the root rB of B, it
follows that (K(u))u∈B can be updated in time O(log(n)T2(n)), or even in time
O(log(n) + T2(n)) if DS can be merged efficiently.

Let dmin = min{d0(rB), d1(rB), dL(rB), dR(rB), dI(rB)}. We now claim that
DS(S′) represents an easy-to-evaluate hypothesis H(S′) ∈ H′[2blog nc] that sat-
isfies dmin = ES′(H(S′)). This can be seen as follows. If dmin = d0(rB), we
set H(S′) = ∅. If dmin = d1(rB), we set H(S′) = H1,n′(rB) ∈ H. Finally, if
dmin = dX(rB) for X ∈ {I, L,R}, then we set H(S′) to a properly defined ex-
tension of HaX(rB),bX(rB)(rB) (as explained below). The evaluation problem for
H(S′) = ∅ is trivial. As for the remaining cases, note first that (z, x) ∈ H1,n′(rB)
iff z ∈ [z′1, z

′
n′ ] and x ∈ H(rB). Suppose now that dmin = dX(rB). For the

sake of brevity, let a = aX(rB) and b = bX(rB). If z /∈ [z′a, z
′
b], then clearly

(z, x) /∈ Ha,b(rB). We may therefore assume that z ∈ [z′a, z
′
b]. The intervals

IZ(v) with v ∈ V (a, b) form a partition of [z′a : z′b]Z . Let I
E
Z (v) with v ∈ V (a, b)

14



be the canonical extension to a partition of the continuous interval [z′a, z′b]. This
induces the following extension of Ha,b:

HE
a,b =

⋃
v∈V (a,b)

IEZ (v)×H(v) .

Set H(S′) = HE
a,b. In order to test whether (z, x) ∈ H(S′) for some z ∈ [z′a, z

′
b],

we proceed as follows:

Step 1: Find the node v ∈ V (a, b) such that z ∈ IEZ (v).
The search for v is started at rB and proceeds top-down. Assume that
the search has reached a node u. Note that u = v iff

d1(v) = min{d0(v), d1(v), dL(v), dR(v), dI(v)} .

Suppose that we have not yet reached v. Then u must be an inner node.
The search proceeds to the left child if z ≤ zr(u), and it proceeds to the
right child of u otherwise. It follows that Step 1 takes time O(log(n).

Step 2: Check whether x ∈ H(v).
Here, we make use of the fact that (z, x) ∈ H(S′) iff x ∈ H(v). Checking
whether x ∈ H(v) takes time T3(n).

Thus time O(log(n) + T3(n)) is sufficient for the execution of both steps, as
desired.
Clearly, dmin is retrieved from DS(S′) in constant time. The following reasoning
shows that dmin ≤ minC∈C′[1]ES′(C):

• The claim is obvious if the concept from C′[1] with the best performance
on S′ assigns label 0 to all instances in S′. We may therefore assume that
this is not the case. It follows that, without loss of generality, the concept
from C′[1] with the best performance on S′ is of the form [z′a∗ , z

′
b∗ ] × C∗

for some a∗, b∗ ∈ [1 : n′] with a∗ ≤ b∗ and some C∗ ∈ C.

• The update scheme for d0(u), d1(u), dL(u), dR(u), dI(u) implies that dmin ≤
mina,b∈[1:n′]:a≤bES′(Ha,b(rB)). Specifically, dmin ≤ ES′(Ha∗,b∗(rB)).

• Finally, Condition (10) implies that ES′(Ha∗,b∗(rB)) ≤ ES′([a∗, b∗]×C∗).

The fact that dmin ≤ minC∈C′[1]ES′(C) concludes the proof of the theorem. �

Note that the proof of Theorem 11 is completely constructive. The minimum
disagreement algorithms given in the following arise from an iterative application
of Theorem 11 and the trivial Example 10.

Recall that I denotes the class of bounded real intervals. As discussed in
Example 7, I = C′1[1] = C′1[2blog nc]. We immediately obtain the following
result:

15



•
−1

•
2

•
−1

•
2

•
−1

•
2

•
1

•
2

•
1

•
−1

•
1

•
1

•
−3

•
1

•
1

Figure 3: The qualitative difference between sets of maximal weight from R (in blue) and from
I′[2blognc] (in green). The n = 15 sample points are shown together with their real-valued
weights.

Theorem 12. The transformation from Theorem 11 applied to the flexible al-
gorithm for MinDis(C1, C1) from Example 10 yields a flexible algorithm that
solves MinDis(I, I) with time bounds T1(n) = O(n) and Ti(n) = O(log(n)) for
i = 2, 3.

The flexible algorithm for MinDis(I, I) resulting from Theorem 12 basically
coincides with the algorithm for MinDis(I, I) from [8]. However, since our
transformation is general and can be iterated, we can now go one step further
and obtain the following result:

Theorem 13. The problem MinDis(R, I ′[2blog nc]) can be solved by a flexible
algorithm with time bounds T1(n) = O(n log(n)), and T2(n) = O(log2(n)) and
T3(n) = O(log(n)).

Proof. Recall from Example 8 that R = I ′[1]. The theorem now follows
immediately from Theorems 11 and 12. �

An example showing the difference between a proper rectangle from R and
a set from I ′[2blog nc] can be found in Fig. 3.
The proof of the next result bears some similarity to the proof of Theorem 11:

Theorem 14. Let the function `k(n) be defined as in Lemma 6. Suppose that
there is a flexible algorithm A for MinDis(C,H) with time bounds T1, T2, T3.
Then the problem MinDis(C[k],H[`k(n)]) can be solved by a flexible algorithm
with time bounds T ′1(n) = O(log(n)T1(n)+k

2n log2(n)), T ′2(n) = O(log(n)T2(n)+
k2 log3(n)) and T ′3(n) = O(log(n)+T3(n)). Moreover, if the data structure used
by A can be merged efficiently, then the first two time bounds are even better,
namely T ′1(n) = O(T1(n) + k2n log2(n)) and T ′2(n) = O(T2(n) + k2 log3(n)).

Proof. We reuse the notation from the proof of Theorem 11. For instance, S′
as given by (9) denotes a lexicographically sorted weighted sample and DS(S′)
denotes the corresponding data structure (which we still have to describe). As
in the proof of Theorem 11, the tree B (with exactly one leaf for each distinct

16



z-coordinate in S′) is part of DS(S′). We augment B by storing for every node
u ∈ B the following piece of information:

K(u) = [l(u), r(u),DS(u), (d`(u))`=1,...,`k(n), `0(u), `1(u)] .

The parameters l(u), r(u),DS(u) and d1(u) have precisely the same meaning
as in the proof of Theorem 11. The remaining parameters have the following
meaning:

1. Think of d`(u) as the smallest empirical error on S′(u) that can be achieved
by a hypothesis which is induced by a maximal antichain of size ` in B(u).
More formally, let H(u) = H(S(u)) be the hypothesis from H which is
represented by the data structure DS(u). Then, for every set V of nodes
in B, we define

HV =
⋃
v∈V

IZ(v)×H(v) . (12)

The parameter d1(u) is given by d1(u) = ES(u)(H(u)) as in the proof of
Theorem 11. The inequality (10) is valid again. For every ` = 2, . . . , `k(n),
we set

d`(u) = min{ES′(u)(HV ) : V is a maximal antichain of size ` in B(u)} .

We denote by V (u) be the maximal antichain in B(u) that minimizes
ES′(u)(HV ).

2. Recall our convention that the minimum of the empty set equals∞. Since
the size of the largest antichain in B(u) equals r(u) − l(u) + 1 (which is
the number of leaves in B(u)), it follows that d`(u) = ∞ for all ` >
r(u)− l(u) + 1. Specifically, if u is a leaf, then d`(u) =∞ for all ` ≥ 2.

3. Let u be an inner node in B with left child u0 and right child u1. A
maximal antichain V in B(u) either consists of u only or decomposes into
a maximal antichain V0 of size `0 in B(u0) and a maximal antichain V1
of size `1 in B(u1) so that V is of size ` = `0 + `1. Hence the following
recursive formula is valid for ` = 2, . . . , `k(n):

d`(u) = min{d`0(u0) + d`1(u1) : (`0, `1 ≥ 1) ∧ (`0 + `1 = `)} . (13)

4. If d1(u) = min{d`(u) : ` = 1, . . . , `k(u)}, then we set `0(u) = `1(u) = 0.
This definition applies, for instance, to all leaves in B(u). Suppose now
that d1(u) > min{d`(u) : ` = 1, . . . , `k(n)}, which implies that u is an
inner node, say a node with left child u0 and right child u1. In this case,
we set `0(u) (resp `1(u)) equal to the number of nodes of V (u) which
belong to B(u0) (resp. to B(u1)).

It is easy to see that building this data structure takes time O(log(n)T1(n) +
k2n log2(n)). The term log(n)T1(n) accounts for the time needed to compute
l(u), r(u),DS(u), d1(u) for every node u in B (which can be done in the same
way as described in the proof of Theorem 11). The term k2n log2(n) accounts

17



for the time needed to compute d`(u) recursively according to (13) which has
to be done for every node u ∈ B and for ` = 2, . . . , `k(n). The fact that the
first term in the time bound, log(n)T1(n), can be replaced by T1(n) if the data
structure used by A can be merged efficiently follows in the same way as in the
proof of Theorem 11.
Suppose that for one item in S′ the weight parameter is modified. Let v be the
leaf that stores the z-coordinate of this item. Then K(u) must be changed only
for the nodes u located on the path from v to the root rB of B. It is easy to
see that this takes time O(log(n)T2(n)+k

2 log3(n)) (resp. O(T2(n)+k
2 log3(n))

if the data structure used by A can be merged efficiently). The first term in
this bound accounts for the time needed to update l(u), r(u),DS(u), d1(u). The
second term accounts for the time needed to update d`(u) for ` = 2, . . . , `k(n)
according to (13). This takes time O((`k(n)

2) = O(k2 log2(n)) for each node on
the path from v to rB and hence it takes a total time of order O(k2 log3(n)).
Recall that V (rB) denotes the maximal antichain V inB that minimizes ES′(HV ).
The hypothesisHV (rB) does not necessarily belong toH[`k(n)] because—compare
with (12)—the intervals IZ(v) = [z′l(v) : z

′
r(v)]Z with v ranging over the nodes in

V (rB) form a partition of Z but not yet a partition of R. However, we obtain
a hypothesis from H[`k(n)] when we replace the partition (IZ(v))v∈V (rB) by its
canonical extension. The latter will be denoted by (IEZ (v))v∈V (rB). With these
notations, the hypothesis HV (rB) and its extension HE

V (rB) are given as follows:

HV (rB) =
⋃

v∈V (rB)

IZ(v)×H(v) and HE
V (rB) =

⋃
v∈V (rB)

IEZ (v)×H(v) .

For the sake of brevity, we set H∗ = HE
V (rB).

We claim that it can be tested in time O(log(n)+T3(n)) whether a given point
(z, x) ∈ R×X belongs to H∗. We proceed as follows:

Step 1: Find the node v in V (rB) such that z ∈ IEZ (v).
The search for this v is started at rB and proceeds top-down. Assume that
the search has reached a node u. Note that u = v if `0(v) = `1(v) = 0
(which indicates that the best antichain at u is the singleton {u}). Suppose
that we have not yet reached v. Then u must be an inner node. The search
proceeds to the left child if z ≤ zr(u), and it proceeds to the right child of
u otherwise. It follows that Step 1 takes time O(log(n)).

Step 2: Check whether x ∈ H(v).
Here, we make use of the fact that (z, x) ∈ H∗ iff x ∈ H(v). Checking
whether x ∈ H(v) takes time T3(n).

Thus time O(log(n) + T3(n)) is sufficient for the execution of both steps, as
desired.
Let dmin = min{d`(rB) : ` = 1, 2, . . . , `k(n)}. Note that dmin = d1(rB) iff
`0(rB) = `1(rB) = 0 (as exploited earlier in the proof already). Otherwise,
dmin = d` for ` = `0(rB) + `1(rB). It follows that dmin is retrieved from
DS(S′) in constant time. Making use of (10), it easily follows (by a reasoning

18



similar to the corresponding reasoning in the proof of Theorem 11) that dmin ≤
minC∈C′[k]ES′(C). This concludes the proof. �

Recall that Ik denotes the class of unions of at most k bounded intervals.
As mentioned in Example 7, Ik is a subclass of C2[2k+ 1]. A flexible algorithm
that successfully competes with the best concept from Ik is obtained when we
apply the transformation from Theorem 14 to the (trivial) flexible algorithm
for MinDis(C2, C2). The resulting time bounds are T1(n) = O(k2n log2(n)),
T2(n) = O(k2 log3(n)) and T3(n) = O(k + log(n)). However, the algorithm
resulting from this general transformation is inferior to the algorithm from [8]
(which is specialized to the class Ik):5

Theorem 15 ([8]). The problem MinDis(Ik, Ik) can be solved by a flexible al-
gorithm with T1(n, k) = O(k2n), T2(n, k) = O(k2 log(n)) and T3(n, k) = O(k).

As a final application, we consider unions of axis-parallel rectangles:

Theorem 16. Let the function `k(n) be defined as in Lemma 6. Then the
problem MinDis(Rk, Ik[`2k+1(n)]) can be solved by a flexible algorithm with
T1(n, k) = O(k2n log2(n)), T2(n, k) = O(k2 log3(n)) and T3(n, k) = O(k +
log(n)).

Proof. Recall from Example 9 that Rk is a subclass of Ik[2k + 1]. Combin-
ing Theorems 15 and 14, we may conclude that the problem MinDis(Ik[2k +
1], Ik[`2k+1(n)]) can be solved by a flexible algorithm with time bounds as given
in the assertion of the theorem. �

The transformations described in Theorems 11 and 14 preserve flexibility
but destroy properness. As for the transformation described in the following
theorem, we have the reverse situation:

Theorem 17. A flexible algorithm A for MinDis(C,H) with time bounds T1, T2,
T3 can be transformed into an algorithm A′ that solves the problem MinDis(C[2],
H[2]) in time O(n log(n) + T1(n) + nT2(n)).

Proof. Let S′ = [(x′1, w1), . . . , (x
′
n, wn)] = [(z1, x1, w1), . . . , (zn, xn, wn)] ∈

(R× X × R)n be a given instance of MinDis(C[2],H[2]). Let n′ be the number
of distinct z-coordinates in S′, and let z′1 < z′2 < . . . < z′n′ be the correspond-
ing sorted sequence. For sake of convenience, let z′n′+1 = z′n′ + 1. For k =
1, . . . , n′ + 1, let S′1(k) = {(x′i, wi) : zi < z′k} and S′2(k) = {(x′i, wi) : zi ≥ z′k}.
Similarly, let S1(k) = {(xi, wi) : zi < z′k} and S2(k) = {(xi, wi) : zi ≥ z′k}.

Without loss of generality let C∗ = ((−∞, z′k′)× C1) ∪ ([z′k′ ,+∞)× C2) ∈
C[2] be the concept with the smallest empirical error on S′ among all concepts

5In [8], flexibility of algorithms is not an issue. An inspection of the algorithm for
MinDis(Ik, Ik) reveals, however, that the underlying data structure provides flexibility.

19



from C[2]. For each k ∈ {1, . . . , n′ + 1}, let Hk
1 (resp. Hk

2 ) be the hypothesis
represented by DS(S1(k)) (resp. by DS(S2(k)). Let

Hk = ((−∞, z′k)×Hk
1 ) ∪ ([z′k,∞)×Hk

2 ) .

Furthermore, let k′′ be a minimizer of

W (k) := ES1(k)(H
k
1 ) + ES2(k)(H

k
2 ) (14)

and let H∗ = Hk′′ . With these notations, we get

ES′(H
∗) = ES1(k′′)(H

k′′

1 ) + ES2(k′′)(H
k′′

2 ) ≤ ES1(k′)(H
k′

1 ) + ES2(k′)(H
k′

2 )

≤ ES1(k′)(C1) + ES2(k′)(C2) = ES′(C
∗) .

Thus the empirical error of H∗ ∈ H[2] on S′ is not larger than the empirical
error of C∗ ∈ C[2] on S′. Suppose that we know the values W (k) for all k =
1, . . . , n′ + 1. Then we can determine (a representation of) H∗ as follows:

1. Set k′′ := argmin{W (k) : k ∈ {1, . . . , n′ + 1}}. This takes O(n) steps.
2. Extract S1(k

′′) and S2(k
′′) from S′ and sort each of these two sequences

according to the x-coordinates of its items. This takes O(n log(n)) steps.
3. Feed S1(k

′′) (resp. S2(k
′′)) intoA and obtain the data structureDS(S1(k

′′))
(resp. DS(S2(k

′′))). This takes O(T1(n)) steps.
4. Recall that DS(Si(k

′′)) represents Hk′′

i for i = 1, 2. These data struc-
tures augmented by z′k′′ form a suitable and easy-to-evaluate representa-
tion of H∗.

It remains to answer the question how the values W (k) for k = 1, . . . , n′+1 can
be computed efficiently. We observe first that the operation of deleting an item
(xk, wk) from a set S of (at most n) items can be simulated by setting wk = 0.
According to (14), W (k) is easy to compute from ES1(k)(H

k
1 ) and ES2(k)(H

k
2 ).

For reasons of symmetry, it suffices to describe how the values ES1(k)(H
k
1 ) for

k = 1, . . . , n′ + 1 can be computed efficiently. This is done (similarly to a
procedure used in [7] for learning 2-level decision trees) as follows:

1. Given S′, let k := n′ + 1, S := S1(k) and sort this sequence according to
non-decreasing x-coordinates. This takes O(n log(n)) steps.

2. Feed S into A and obtain DS(S). This takes O(T1(n)) steps.
3. Given DS(S), compute ES(Hk

1 ) and store it in W (k). This takes O(1)
steps.

4. If k = 1, then stop. Otherwise, set wk := 0, update the data structure
DS(S) accordingly, set k := k− 1 and go back to Step 3. This takes T2(n)
steps.

The time complexity of the whole procedure for computing H∗ is dominated by
the amount of time needed for computing the quantitiesW (k) for k = 1, . . . , n′+
1, and this takes O(n log(n) + T1(n) + nT2(n)) steps. �

20



5. The Advantages of Inproper Agnostic Learning

Recall from Corollary 4 that an algorithm A that solves MinDis(C,H) can be
transformed into an algorithm that agnostically learns C by H. In the previous
section, we have seen some smart algorithms for Minimum Disagreement whose
design is based on choosing a hypothesis class H that is more powerful than the
concept class C. When these algorithms are used for the purpose of learning,
they are inproper agnostic learning algorithms. The advantages of using these
algorithms are as follows:

• The algorithms for MinDis(C,H) are sometimes much more efficient than
the best up-to-date known algorithms for MinDis(C, C).

• The algorithm that solves MinDis(C,H) is guaranteed to return a hypoth-
esis H whose empirical error on the input sequence S is provably not
greater (and sometimes considerably smaller!) than the smallest possible
empirical error that can be achieved by some hypothesis from C.

A close inspection of Corollary 4 reveals, however, that this comes at a price:
as the required sample size is proportional to the VC-dimension of the more
powerful class H, we need to feed a comparably large sample into the algorithm
that solves MinDis(C,H). The hope is that the higher efficiency and the (po-
tentially) smaller empirical risk overcompensate the larger sample size that is
actually required. In this section, we give theoretical support for this hope.
In Section 5.1, we show that the price that we have to pay (in terms of an in-
creased VC-dimension) is relatively low. In Section 5.2, we present an algorithm
for inproperly agnostically learning axis-parallel rectangles whose time bound
for achieving accuracy ε in the model of agnostic learning is significantly smaller
than the time bounds achieved by the up-to-date best (proper) algorithms.

5.1. VC-Dimension Considerations
The first result in this section clarifies how much the VC-dimension can grow

when we expand a concept class C to C[k] or to C′[k]:

Theorem 18. Let C be a concept class of VC-dimension d over some ground
set X such that ∅ ∈ C. Then, for all k ≥ 1, we have that:

1. VCD(C[k]) ≤ VCD(C′[k]) ≤ VCD(C[k]) + 2.
2. kd ≤ VCD(C[k]) ≤ k(d+ 1)− 1.
3. kd ≤ VCD(C′[k]) ≤ k(d+ 1) + 1.

Proof. It suffices to prove the following inequalities:

kd ≤ VCD(C[k]) ≤ VCD(C ′[k]) ≤ VCD(C[k])+2 , VCD(C[k]) ≤ (d+1)k−1 .

The inequality kd ≤ VCD(C[k]) is obvious from the following implication:

x1, . . . , xd is shattered by C ⇒ {1, . . . , k} × {x1, . . . , xd} is shattered by C[k] .

21



Next observe that any finite sequence (z1, x1), . . . , (zd, xd) that is shattered by
C[k] can be shattered by C ′[k] too (because there is a bounded interval that
contains z1, . . . , zd). This shows that VCD(C[k]) ≤ VCD(C ′[k]).
We move on and verify the inequality VCD(C ′[k] ≤ VCD(C[k])+2. To this end,
let S = [(z1, x1), . . . , (zs, xs)] be a sequence of instances from R × X ordered
according to non-decreasing z-coordinates. Suppose that S is shattered by C′[k].
Then each label combination (b1, . . . , bs) ∈ {0, 1}s can be realized by some
concept in C′[k]. Let ∪k′j=1(I

′
j × Cj) ∈ C′[k] be a concept realizing the bit

pattern (1, b2, . . . , bs−1, 1) on S. Then the same bit pattern can be realized by
∪k′j=1(Ij ×Cj) ∈ C[k] where I1 is the interval from −∞ to the right endpoint of
I ′1, Is is the interval from the left endpoint of I ′s to∞, and Ij = I ′j for j /∈ {1, s}.
It follows that VCD(C′[k]) ≤ VCD(C[k]) + 2, as desired.
As for the only remaining inequality, VCD(C[k]) ≤ (d + 1)k − 1, we have to
show that a sequence S = [(z1, x1), . . . , (zs, xs)] of length s = (d+1)k cannot be
shattered by C[k]. This can be seen as follows. Split S into k segments of length
d+1. For each segment, choose a label combination that cannot be realized by
any concept from C. It is then easy to see that the resulting label combination
for the full sequence S cannot be realized by any concept from C[k].6 From this
discussion, it follows that VCD(C[k]) ≤ (d+ 1)k − 1, as desired. �

The following two lemmas show that the bounds given in Theorem 18 are
tight.

Lemma 19. Let Xd = {x1, . . . , xd} be a ground set of size d. Let Cd be the
powerset of Xd (so that VCD(Cd) = d). Then VCD(Cd[k]) = kd. Moreover, if k
is even, then VCD(C′d[k]) = kd.

Proof. We know from Theorem 18 that VCD(C′d[k]) ≥ VCD(Cd[k]) ≥ kd.
It suffices therefore to show that kd upper-bounds the VC-dimension of these
classes. Let s = kd + 1 and let S = [(z1, x

′
1), . . . , (zs, x

′
s)] ∈ (R × Xd)s where

z1 ≤ . . . ≤ zs. It suffices to show that the members of the sequence S are not
shattered by Cd[k] and, if k is even, not even shattered by C′d[k]. According to
the pigeonhole principle, there must exist an element x ∈ Xd that occurs at
least k + 1 times within the sequence x′1, . . . , x′s, say x = x′i(0) = . . . = x′i(k)
for 1 ≤ i(0) < . . . < i(k) ≤ s. For ` = 0, . . . , k, assign label 1 to (zi(`), x

′
i(`))

if ` is even, and assign label 0 to (zi(`), x
′
i(`)) otherwise. A concept of the form

∪k′j=1(Ij×Cj) ∈ Cd[k] cannot be consistent with this labeling because there must
exist two subsequent occurrences of x, say the occurrences at coordinates z′i(`)
and z′i(`+1), that fall into the same interval of the ordered partition I1, . . . , Ik′ ,
say they fall into Ij′ . But, since the examples (zi(`), x′i(`)) and (zi(`+1), x

′
i(`)+1)

have opposite labels, the concept Cj′ cannot label both of them correctly. This
shows that VCD(Cd[k]) ≤ kd. It is easy to see that basically the same reasoning

6The same argument was used in [1] in connection with a class of piecewise defined functions
over the ground set R.

22



applies to the class C′d[k] in place of Cd[k] provided that both of (zi(0), x′i(0))
and (zi(k), x

′
i(k)) are labeled 1. This is precisely the case when k is even, which

concludes the proof. �

Lemma 20. For every a ∈ Rd, let Ca = {x ∈ Rd : xi ≤ ai for i = 1, . . . , d}.
Let Bd = {Ca : a ∈ Rd} (so that VCD(Bd) = d). Then VCD(Bd[k]) = k(d+1)−1
and VCD(B′d[k]) = k(d+ 1) + 1.

Proof. Within this proof, the all-ones vector is denoted by ~e and the vector
with 1 in component i and 0 in the remaining components is denoted by ~ei.
We know from Theorem 18 that VCD(Bd[k]) ≤ k(d + 1) − 1, VCD(B′d[k]) ≤
k(d + 1) + 1 and that VCD(Bd[k]) ≥ VCD(B′d[k] − 2. It suffices therefore to
show that VCD(B′d[k]) ≥ k(d + 1) + 1. To this end, consider the following
sequence S of length s = k(d + 1) + 1 consisting of k segments of length d + 1
and an extra-example:

• For ` = 1, . . . , k, the `-th segment S` of S is given by

((`−1)(d+1)+1, (`−1/2)~e) , ((`−1)(d+1)+2, ` ~e1) , . . . , (`(d+1), ` ~ed) .

• The extra-example is (k(d+ 1) + 1, (k − 1/2)~e).

We call (`− 1/2)~e the sum vector in S`. The vectors `~e1, . . . , ` ~ed are called the
spanning vectors in S`. We refer to the numbers (`− 1)(d+ 1) + 1, (`− 1)(d+
1) + 2, . . . , `(d+ 1) as the z-coordinates of these vectors. Likewise k(d+ 1) + 1
is referred to as the z-coordinate of the extra-example. It is easy to check that
the sequence S has the following properties:

1. For every ` ∈ {1, . . . , k} and every b ∈ {0, 1}d, the label combination
(1, b1, . . . , bd) for the vectors [(` − 1/2)~e, `~e1, . . . , ` ~ed] is realizable by a
suitable concept7 in Bd.

2. For every ` ∈ {2, . . . , k} and every b ∈ {0, 1}d, the label combination
(b1, . . . , bd, 0) for the vectors [(`−1)~e1, . . . , (`−1)~ed, (`−1/2)~e] is realizable
by some concept in Bd.

3. For every b ∈ {0, 1}d, the label combination (b1, . . . , bd, 1) for the vectors
[k ~e1, . . . , k ~ed, (k − 1/2)~e] is realizable by some concept in Bd.

It suffices to show that the members of the sequence S are shattered by B′d[k].
Consider an arbitrary label combination for the members of S. We choose the
intervals (I1, . . . , Ik) ∈ P ′(k) according to the following rules:

1. For every ` ∈ {1, . . . , k}, the z-coordinates of the spanning vectors in S`
fall into I`. If the sum vector in S` has label 1, then its z-coordinate falls
into I` too.

7In this and in the following properties, the smallest concept from Bd that covers all vectors
with label 1 is suitable.

23



2. For every ` ∈ {2, . . . , k}, the z-coordinate of the sum vector in S` falls into
I`−1 if it has label 0.

3. Ik includes (resp. excludes) the z-coordinate of the extra-example if the
latter has label 1 (resp. label 0).

4. I1 includes (resp. excludes) the z-coordinate of the sum vector of S1 if the
latter has label 1 (resp. label 0).

It follows from the aforestated properties of S that the intervals I1, . . . , Ik can
be provided with concepts C1, . . . , Ck ∈ Bd such that ∪k`=1(I`×C`) is consistent
with the given labeling of the members of S. �

5.2. Agnostic Learning of Bounded Axis-parallel Rectangles
Recall that R denotes the class of axis-parallel rectangles and I denotes the

class of bounded real intervals. The class I has VC-dimension 2. According to
Theorem 18, the VC-dimension of I ′[k] is at most 3k+1. Let now `(n) = 2blog nc
and d(n) = 3`(n) + 1. According to Theorem 13, there is a flexible algorithm
that solves MinDis(R, I ′[`(n)]) with time bounds T1(n) = O(n log(n)), T2(n) =
O(log2(n)) and T3(n) = O(log n). Recall that T1 is the time required to build up
the data structure DS(S) for a given sequence S, and DS(S) implicitly represents
the hypothesis from I ′[`(n)]. Moreover T3(n) is the time required to evaluate
this hypothesis on a new data point. According to Corollary 5, the algorithm
solving MinDis(R, I ′[`(n)]) can be transformed into a learning algorithm L that
agnostically learns R by I ′[`(n)] provided that the sample size n satisfies

n ≥ c · 1
ε2

log

(
1

εδ

)
for a sufficiently large constant c > 0. The time needed by L for achieving
accuracy ε with probability at least 1− δ, is therefore bounded by

O

(
T1

(
1

ε2
log

(
1

εδ

)))
= Õ

(
1

ε2

)
.

This favorably compares to the time Õ(1/ε4) needed by the up-to-date fastest
algorithm for properly learning R in the agnostic model.

6. Experimental Results

We conducted several experiments to compare the performance of our algo-
rithm with established methods from the literature on both synthetic and real-
word data sets. We chose to investigate Minimum Disagreement algorithms for
R, the class of axis-aligned rectangles in two dimensions, because we expect to
observe a considerable improvement in the running time in light of the much
lower asymptotic worst-case time bound.

The goal of this section is to demonstrate that our algorithm

1. is able to solve real world machine learning problems with a level of quality
comparable to established methods,

24



2. is fast enough to be feasible even on large data sets,
3. is especially significantly faster than the up-to-date best proper algorithms

solving the Minimum Disagreement Problem for rectangles. In particular,
we would like to confirm our theoretical results from Section 5.2.

This section is organized as follows. We present the investigated algorithms
and data sets in Section 6.1 resp. Section 6.2. We report and discuss the results
of the experiments in Section 6.3.

6.1. Algorithms
We implemented the following three algorithms as single-threaded Java pro-

grams:

• The algorithm solving the Minimum Disagreement Rectangle problem
from [8], which we denote by RECT, with an asymptotic worst-case time
bound of O(n2 log(n)), where n denotes the sample size.

• The algorithm solving the Minimum Disagreement Rectangle problem
from [10], which we denote by RECT2, with an asymptotic worst-case time
bound of O(n2).

• Our method as described by Theorem 13, which will be denoted by TRANS
in this section. Its asymptotic worst-case time bound is O(n log(n)).

6.2. Data sets
We are solving binary classification problems where the weight of any in-

stance is either −1 or +1. We use three different data sets:

• One artificially generated data set, which is given by a mixture of two two-
dimensional Gaussian distributions—one distribution for each weight—
with identical covariance matrices.

• The “Glass” data set from [16], which consists of nine-dimensional in-
stances from forensic examinations of glass samples. While the origi-
nal data set contains seven classes and 214 instances, we obtained a bi-
nary classification problem with 163 instances by following the procedure
from [6] (which consists of merging classes one and three and removing all
instances from class four to seven).

• The “MAGIC” data set from [17, 18], which is composed of 19020 ten-
dimensional instances of (simulated) observations of a “Cherenkov gamma
telescope”. The task is to discern gamma ray events from background
noise.

The latter two data sets are freely available on the UC Irvine Machine Learning
Repository.

25



0 500 1,000 1,500 2,000 2,500 3,000
10−1

100

101

102

103

104

sample size

ru
nn

in
g
ti
m
e
in

m
s

Figure 4: Scatter plot of the running time of RECT (in red), RECT2 (in orange) and TRANS (in
blue) versus the sample size on the artificial Gaussian distribution. The solid lines depict
the asymptotic running times according to theoretical analysis. Leading constants, hidden by
Landau’s O, were determined empirically.

6.3. Experimental results and discussion
Note that—as in the theoretical analysis—we measured all running times

without taking the time for pre-sorting the training data into account. This is
justified as all considered algorithms rely on pre-sorted data.

All experiments were performed on a AMD Opteron 6234 processor, running
at 2400 MHz, with Oracle Java 1.8.0_31 under CentOS 6.6.

Results on the Gaussian mixture. Fig. 4 depicts the measured running times
of all three algorithms on the Gaussian mixture data set. We also added plots
of the theoretically derived asymptotic worst-case time bounds, which nicely
match the empirical results. As expected, TRANS is orders of magnitude faster
than both RECT and RECT2.

Despite the fact that O(n2) is clearly better than O(n2 log(n)), observe that
in the range of sample sizes used in the experiment the algorithm RECT is ac-
tually slightly faster than RECT2 (this effect could also depend on details of
our implementation). Since both algorithms solve the same problem—finding a
rectangle with Minimal Disagreement to the sample set—we will ignore RECT2
in the following and focus on comparing TRANS with RECT8.

8There is another complication concerning RECT2, which makes its application rather cum-
bersome: every x- and y-coordinate may only contain one sample point. This property is
violated by both the Glass and MAGIC data set. We chose not to implement possible solu-

26



0 500 1,000 1,500 2,000 2,500 3,000

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

ε ≈ 0.024

sample size

er
ro
r
ra
te

100 101 102 103 104
0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

ε ≈ 0.024

ε ≈ 0.008

running time in ms

er
ro
r
ra
te

Figure 5: Error rates of RECT (in red) and TRANS (in blue) as a function of the sample size
(upper figure) and of the running time (lower figure) on the artificial Gaussian distribution.
The x-axis on the lower figure is logarithmic to accommodate the vast range of running times.
The solid lines depict the error rates on the test set, while the dashed lines show the error rate
on the training set. Note that the accuracy parameter ε in the model of agnostic learning is
proportional to the difference between these two error rates. All values were measured on an
independent test set of size 1000 and averaged over 50 runs.

27



Table 1: Experimental results for the best instance pair using TRANS and RECT on the Glass
and MAGIC data sets. Data sets were randomly split 2:1 into a training and test set. All
values are averages over 50 runs, except for RECT on the MAGIC data set, which was run only
10 times.

error rate error rate
data set algorithm on training set on test set time
Glass TRANS 0.081 0.233 14 ms

RECT 0.160 0.252 393 ms
MAGIC TRANS 0.178 0.189 6 s

RECT 0.214 0.219 17256 s

Let us now examine empirical error rates: as a function of the sample size,
shown in the upper part of Fig. 5, the error rates behave as expected. RECT,
whose hypothesis class has the smaller VC-dimension, achieves a smaller error
on the test set for small sample sizes and its error rates converge faster (as
a function of the sample size). Note that TRANS’ error rate outperforms RECT
already at n ≈ 500 because its higher estimation error is getting more than
compensated by its lower approximation error.

When computation time is the resource of consideration, as depicted in the
lower part of Fig. 5, the contrast between the two algorithms becomes more
drastic: TRANS consistently outperforms the much slower RECT-algorithm. Fur-
thermore, as predicted by our discussion in Section 5.2, TRANS’ error rates indeed
converge much faster.

Results on the Glass and MAGIC data sets. The dimensions of the instances
in both the Glass and MAGIC data sets are larger than two, so we cannot
directly apply RECT and TRANS. We followed [6] and trained one hypothesis on
every pair of coordinates9, choosing the hypothesis with the smallest error on
the training set.10 The results are given in Table 1 and show that—for both
the smaller Glass data set with 108 training instances and the larger MAGIC
data set with 12680 training instances—TRANS’ error rates are smaller than the
ones from RECT. As expected, TRANS is considerably faster than RECT: notice the
giant gap between six seconds and almost six hours on the MAGIC data set.

The mean error rate of 0.233 on the Glass data set is in fact smaller than the
rates reported in [6], which were 0.271 for a simple one-dimensional hypothesis
and 0.257 for a (more complex) decision tree.

Our mean error rate of 0.189 on the MAGIC data set is considerably larger
than the ones reported in [18], which were in the range of 0.16 to 0.138 (on the

tions to this problem after observing the superior performance of RECT.
9We also tried all orders of coordinates (i.e., (xi, xj) and (xj , xi)) for TRANS, since the

resulting hypotheses are not equivalent.
10Another approach would be to iteratively transform the MinDis algorithm until we arrive

at the desired dimension. However, this method introduces too much overhead using our
implementation for nine resp. ten dimensions.

28



Table 2: Experimental results for AdaBoost using TRANS as the base learner on the MAGIC
data set with different numbers of iterations T . Data sets were randomly split 2:1 into a
training and test set. All values are averages over 50 runs.

error rate error rate
algorithm T on training set on test set time
AdaBoost 1 0.178 0.189 6 s
on TRANS 5 0.153 0.167 29 s

10 0.138 0.156 59 s
20 0.124 0.151 117 s
40 0.107 0.149 235 s
60 0.094 0.147 350 s

test set) for different variants of decision trees.

TRANS as a base learner for AdaBoost. We try to close the gap between our
approach and the algorithms from [18] in the following by using the well-known
AdaBoost [19] scheme with TRANS as the base learner. We would like to remind
the reader that AdaBoost iteratively runs the base learner while adjusting the
weights of the sample points in each iteration. The resulting hypothesis of
AdaBoost is a weighted sum of the base learner’s hypotheses from all iterations.

The results for AdaBoost on the MAGIC data set are given in Table 2. Ob-
viously, one round of boosting is equivalent to the previous approach of choosing
the hypothesis with the smallest empirical error. Note that already twenty it-
erations provide an error rate on the test set that is comparable with the rates
from [18], and that TRANS is obviously fast enough for boosting to be practical
on 12680 instances.

Furthermore, our boosted classifier surpasses all methods considered in [17]
in five of the six measures of merit considered in that paper. To give an example,
we will now determine two of these measures, called loacc and quality factor Q0.5.
Both are based on the ROC curve [20], which plots the true positive rate (i.e.
the probability to give a positive label to a positive test point) versus the false
positive rate (i.e. the probability to give a positive label to a negative test point)
for varying threshold values used in the combined hypothesis of AdaBoost11.
The remaining four measures of merit are defined in a similar way. The ROC
curve of our classifier after T = 60 iterations of boosting is depicted in Fig. 6.

The first measure of merit, loacc, is determined by calculating the average
of the true positive rates for false positive rates of 0.01, 0.02 and 0.05. The
corresponding points are marked red in Fig. 6. Our boosted algorithm achieves
a loacc value of 0.565, which is better than 0.472, the best value reported in [17].

For the second measure of merit, the quality factor Q0.5, we have to find

11The user of AdaBoost may choose their favorite threshold after inspecting the ROC curve.
Plain AdaBoost uses a threshold value of zero, which was also used to determine error rates
in Table 2.

29



0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

false positive rate

tr
ue

po
si
ti
ve

ra
te

Figure 6: The ROC curve for one run of AdaBoost based on TRANS with T = 60 iterations on
the MAGIC data set. The black point marks the performance of AdaBoost’s own threshold
value of zero, while the red and orange points are used to calculate the measures ‘loacc’ and
‘Q0.5’ from [17]. The data set was randomly split 2:1 into a training and test set.

the point with a true positive rate of 0.5 on the ROC curve and measure the
corresponding false positive rate εF . The quality factor is now given by Q0.5 =
0.5/
√
εF . The relevant point on the ROC curve is marked orange in Fig. 6. Our

boosted algorithm achieves a quality factor of 4.45, which is better than 3.5, the
best value reported in [17].

Admittedly, we suspect that the good performance of our boosted algorithm
is mostly due to boosting itself and independent from the choice of the base
learner, as experiments with AdaBoost using decision stumps, i.e. simple one-
dimensional threshold functions, yield similar error rates (while AdaBoost based
on decision stumps needs roughly ten times the number of iterations to reach
similar test error rates as boosted RECT, the over-all running time is almost 300
times smaller). Nevertheless, we have successfully demonstrated that TRANS is
indeed fast enough to be used as a base learner for AdaBoost, while boosting
RECT and RECT2—the best known proper algorithms solving the Minimum Dis-
agreement Problem for rectangles—seems like an almost ridiculous idea due to
their impracticable running times.

References

[1] M. J. Kearns, R. E. Schapire, L. M. Sellie, Toward efficient agnostic learn-
ing, Machine Learning 17 (2) (1994) 115–141.

30



[2] L. Pitt, L. G. Valiant, Computational limitations on learning from exam-
ples, Journal of the Association on Computing Machinery 35 (4) (1988)
965–984.

[3] S. M. Weiss, I. Kapouleas, An empirical comparison of pattern recognition,
neural nets, and machine learning classification methods, in: IJCAI ’89,
1989, pp. 781–787.

[4] S. M. Weiss, C. A. Kulikowski, Computer Systems That Learn: Classifica-
tion and Prediction Methods from Statistics, Neural Nets, Machine Learn-
ing and Expert Systems, Morgan Kaufmann, 1990.

[5] S. M. Weiss, R. S. Galen, P. Tadepalli, Maximizing the predictive value of
production rules, Artificial Intelligence 45 (1-2) (1990) 47–71.

[6] R. C. Holte, Very simple classification rules perform well on most commonly
used datasets, Machine Learning 11 (1) (1993) 63–91.

[7] P. Auer, R. C. Holte, W. Maass, Theory and applications of agnostic PAC-
learning with small decision trees, in: ICML ’95, 1995, pp. 21–29.

[8] W. Maass, Efficient agnostic PAC-learning with simple hypothesis, in:
COLT ’94, 1994, pp. 67–75.

[9] C. Cortés, J. M. Díaz-Báñez, P. Pérez-Lantero, C. Seara, J. Urrutia, I. Ven-
tura, Bichromatic separability with two boxes: A general approach, Journal
of Algorithms 64 (2-3) (2009) 79–88.

[10] J. Barbay, T. M. Chan, G. Navarro, P. Pérez-Lantero, Maximum-weight
planar boxes in O(n2) time (and better), Information Processing Letters
114 (8) (2014) 437–445.

[11] V. Vapnik, Statistical learning theory, Wiley & Sons, 1998.

[12] S. Shalev-Shwartz, S. Ben-David, Understanding Machine Learning: From
Theory to Algorithms, Cambridge University Press, 2014.

[13] M. d. Berg, O. Cheong, M. v. Kreveld, M. Overmars, Computational Ge-
ometry: Algorithms and Applications, Springer-Verlag, Santa Clara, CA,
USA, 2008.

[14] V. N. Vapnik, A. Y. Chervonenkis, On the uniform convergence of relative
frequencies of events to their probabilities, Theory of Probability and its
Applications XVI (2) (1971) 264–280.

[15] M. Talagrand, Sharper bounds for gaussian and empirical processes, The
Annals of Probability 22 (1) (1994) 28–76.

[16] I. W. Evett, E. J. Spiehler, Rule induction in forensic science, in: P. H.
Duffin (Ed.), Knowledge Based Systems, Halsted Press, 1988, pp. 152–160.

31



[17] R. Bock, A. Chilingarian, M. Gaug, F. Hakl, T. Hengstebeck, M. Jiřina,
J. Klaschka, E. Kotrč, P. Savický, S. Towers, A. Vaiciulis, W. Wittek, Meth-
ods for multidimensional event classification: a case study using images
from a cherenkov gamma-ray telescope, Nuclear Instruments and Methods
in Physics Research A 516 (2–3) (2004) 511 – 528.

[18] J. Dvorák, P. Savický, Softening splits in decision trees using simulated
annealing, in: ICANNGA ’07, Part I, 2007, pp. 721–729.

[19] Y. Freund, R. E. Schapire, A decision-theoretic generalization of on-line
learning and an application to boosting, Journal of Computer and System
Sciences 55 (1) (1997) 119 – 139.

[20] J. P. Egan, Signal detection theory and ROC analysis, Academic Press,
1975

32


