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Abstract

Fast and frugal heuristics are well studied models of bounded ratio-
nality. Psychological research has proposed the take-the-best heuristic as
a successful strategy in decision making with limited resources. Take-
the-best searches for a sufficiently good ordering of cues (or features) in
a task where objects are to be compared lexicographically. We investi-
gate the computational complexity of finding optimal cue permutations
for lexicographic strategies and prove that the problem is NP-complete.
It follows that no efficient (that is, polynomial-time) algorithm computes
optimal solutions, unless P = NP. We further analyze the complexity of
approximating optimal cue permutations for lexicographic strategies. We
show that there is no efficient algorithm that approximates the optimum
to within any constant factor, unless P = NP.

The results have implications for the complexity of learning lexico-
graphic strategies from examples. They show that learning them in poly-
nomial time within the model of agnostic probably approximately correct
(PAC) learning is impossible, unless RP = NP. We further consider greedy
approaches for building lexicographic strategies and determine upper and
lower bounds for the performance ratio of simple algorithms. Moreover, we
present a greedy algorithm that performs provably better than take-the-
best. Tight bounds on the sample complexity for learning lexicographic
strategies are also given in this article.

Keywords: bounded rationality, fast and frugal heuristic, PAC learning,
NP-completeness, hardness of approximation, greedy method
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1 Introduction

In many circumstances the human mind has to make decisions when time is
scarce and knowledge is limited. Extensive reflections backed by deep reason-
ing are impossible in these situations. Cognitive psychology categorizes human
judgments made under such constraints as being boundedly rational if they are
“satisficing” (Simon, 1982) or, more generally, if they do not fall too far behind
the rational standards. The modeling of bounded rationality has been considered
essential for artificial intelligence. Russell and Wefald (1991), defining artificial
intelligence as the problem of designing systems that “do the right thing”, argue
that intelligence seems linked with doing as well as possible given what resources
one has.

A principal family of models for human reasoning that are studied within the
context of bounded rationality are the probabilistic mental models proposed by
Gigerenzer et al. (1991). To these belongs a kind of simple algorithms termed
“fast and frugal heuristics” that were the topic of major research projects in psy-
chology (Gigerenzer and Goldstein, 1996; Gigerenzer et al., 1999). Great efforts
have been put into testing these heuristics by empirical means in experiments
with human subjects on the one hand (Bröder, 2000; Bröder and Schiffer, 2003;
Lee and Cummins, 2004; Newell and Shanks, 2003; Newell et al., 2003; Slegers
et al., 2000) or in simulations on computers on the other (Bröder, 2002; Bullock
and Todd, 1999; Hogarth and Karelaia, 2003; Nellen, 2003; Todd and Dieckmann,
2005). (See also the discussion and controversies documented in the open peer
commentaries on Todd and Gigerenzer, 2000.) To a lesser extent, theoretical
studies have been undertaken with analytical methods (Bröder, 2002; Martignon
and Hoffrage, 1999, 2002; Martignon and Schmitt, 1999).

1.1 Take The Best

Among the fast and frugal heuristics there is an algorithm called “take-the-best”1

(TTB) that during recent years has become one of the workhorses of research
into models of bounded rationality. This algorithm is considered a process model
for human judgments based on one-reason decision making. Which of the two
cities has a larger population: (a) Düsseldorf, (b) Hamburg? This is the task
originally studied by Gigerenzer and Goldstein (1996) where German cities with a
population of more than 100,000 inhabitants have to be compared. The available
information on each city consists of the values of nine binary cues, or attributes,
indicating presence or absence of a feature. The cues being used are, for instance,
whether the city is a state capital, whether it is indicated on car license plates
by a single letter, or whether it has a soccer team in the national league.

1“Take-the-best” is a shortening of “take the best, ignore the rest” (Gigerenzer and Gold-
stein, 1996).
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Soccer Team State Capital License Plate

Hamburg 1 1 0

Essen 0 0 1

Düsseldorf 0 1 1

Validity 1 1/2 0

Table 1: Part of the German cities task of Gigerenzer and Goldstein (1996).
Shown are cue profiles and validities. Validities are computed from the cues of
the three cities as given here. The original data has different validities but yields
the same ranking for the cues. The meaning of the cues and the way how to
calculate validities are explained in the text.

The judgment which city is larger is made on the basis of the two binary
vectors, or cue profiles, representing the two cities. TTB compares the cues one
after the other and uses the first cue that discriminates as the one reason to
yield the final decision. In other words, TTB performs a lexicographic strategy
of comparison. For instance, if one city has a university and the other does not
it would infer that the first city is larger than the second. If the cue values of
both cities are equal, the algorithm passes on to the next cue.

TTB examines the cues in a certain order. Gigerenzer and Goldstein (1996)
introduced ecological validity as a numerical measure for ranking the cues. (See
Martignon and Hoffrage, 2002, for further criteria to order cues.) The validity
of a cue is a real number in the interval [0, 1] that is computed in terms of the
known outcomes of paired comparisons. It is defined as the number of pairs
the cue discriminates correctly (i.e., where it makes a correct inference) divided
by the number of pairs it discriminates (i.e., where it makes an inference, be it
right or wrong). TTB always chooses a cue with the highest validity, that is, it
“takes the best” among those cues not yet considered. Table 1 gives an example
showing cue profiles and validities for three cities. The data are extracted from
the appendix of Gigerenzer and Goldstein (1996). The ordering defined by the
population size of the cities is given by

{〈 Düsseldorf , Essen 〉, 〈 Düsseldorf , Hamburg 〉, 〈 Essen , Hamburg 〉},

where a pair 〈a, b〉 indicates that a has less inhabitants than b. As an example
for calculating the validity, the state-capital cue distinguishes the first and the
third pair but is correct only on the latter. Hence, its validity has value 1/2.

The order in which the cues are ranked is crucial for success or failure of
TTB. In the example of Düsseldorf and Hamburg, the car-license-plate cue would
yield that Düsseldorf (represented by the letter “D”) is larger than Hamburg
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(represented by the two letters “HH”), whereas the soccer-team cue would favor
Hamburg, which is correct. Thus, how successful a lexicographic strategy is in a
comparison task consisting of a partial ordering of cue profiles depends on how
well the cue ranking minimizes the number of incorrect comparisons. Specifically,
the accuracy of TTB relies on the degree of optimality achieved by the ranking
according to decreasing cue validities. For TTB and the German cities task,
computer simulations have shown that TTB discriminates at least as accurate as
other models (Gigerenzer and Goldstein, 1996; Gigerenzer et al., 1999; Todd and
Dieckmann, 2005). TTB made as many correct inferences as standard algorithms
proposed by cognitive psychology and even outperformed some of them.2

1.2 Accuracy and Complexity

Partial results concerning the accuracy of TTB compared to the accuracy of other
strategies have been obtained analytically by Martignon and Hoffrage (2002).
The intention of this article is to subject the problem of finding optimal cue
orderings to a rigorous theoretical analysis. A conceivable approach would be
to reveal conditions under which TTB performs better or worse. However, the
analysis of TTB per se is not a major topic of this work. Instead, we take
a different and more general road by employing methods from the theory of
computational complexity (Garey and Johnson, 1979).

Obviously, TTB is an algorithm that runs in polynomial time. Given a list
of ordered pairs, it computes all cue validities in a number of computing steps
that is linear in the size of the list, assuming random access to the values of
the cues. This observation directs our attention to studying the computational
complexity of the problem of finding optimal cue permutations. Is there really
an efficient algorithm that solves this problem? We define the decision problem
Lexicographic Strategy as the task of determining whether for a given par-
tial ordering, represented as a list of pairs of cue profiles, and a given threshold
there exists a cue permutation such that the number of incorrect comparisons
made by the lexicographic strategy does not exceed this threshold. As a fun-
damental result we prove that Lexicographic Strategy is NP-complete. It
follows that TTB is not an algorithm for computing optimal cue permutations
and, even more, that no polynomial-time algorithm exists for solving this task,
unless the complexity classes P and NP are equal.

The fact that finding optimal cue permutations turns out to be practically
intractable, however, does not exclude the possibility that the optimum can be ef-
ficiently approximated. The second main topic of this article is an optimization

2Gigerenzer and Goldstein (1996) introduced TTB with an additional feature, the recogni-
tion principle. The recognition cue indicates whether the city is recognized or not. A city that
is recognized is preferred to an unrecognized one. The recognition cue is always queried first
and, hence, not relevant for the problem of finding optimal cue permutations considered here.
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problem called Minimum Incorrect Lexicographic Strategy denoting
the task of minimizing the number of incorrect inferences for the lexicographic
strategy on a given list of pairs. Many computational problems are known to be
NP-complete but have efficient approximation algorithms that are good in the
sense that their solutions are never more than some constant factor away from
the optimum. Problems in this class, which is denoted APX, are generally consid-
ered to be approximable well and efficiently (Ausiello et al., 1999). As the second
major result of this article we show that, unless P = NP, no polynomial-time
approximation algorithm exists that computes solutions for Minimum Incor-
rect Lexicographic Strategy that are only a constant factor worse than
the optimum, unless P = NP. In other words, the approximating factor, also
called performance ratio, must grow with the size of the problem.

As an extension of the class of fast and frugal heuristics we introduce an
algorithm for finding cue permutations that has not been considered within the
context of bounded rationality. This algorithm is based on the greedy method,
a principle widely used in algorithm design. The greedy algorithm runs in poly-
nomial time and we derive tight bounds for it, showing that it approximates the
optimum with a performance ratio proportional to the number of cues. An im-
portant consequence of this result is a guarantee that for those instances which
have a solution that discriminates all pairs correctly, the greedy algorithm always
finds a permutation attaining this minimum. We are not aware that this qual-
ity has been established for any of the previously studied heuristics for paired
comparison. Moreover, we show that TTB does not have this property, conclud-
ing that the greedy method of constructing cue permutations performs provably
better than TTB.

While the results mentioned so far deal with lexicographic strategies based
on cue permutations, we further consider the possibility to build them by also
inverting cues. We present an algorithm that greedily constructs cue inversions
that are always correct on a number of pairs that is at least half the optimum.
In other words, this algorithm is a constant factor approximation algorithm for
the problem of maximizing the number of correct inferences. Interestingly, this
algorithm does not even need to permute any cues to approximate to within a
constant factor the optimum taken even over all inversions and permutations.

1.3 Learning

Lexicographic Strategy is a decision problem that requires to minimize a
disagreement. Given a set of pairs, the question is whether a cue permutation
can be found that keeps the number of incorrect comparisons, or disagreements,
of the lexicographic strategy below some prescribed value. Minimizing disagree-
ment problems play a major role in the context of a computational model of
learning known as agnostic probably approximately correct (PAC) learning (see,
e.g., Anthony and Bartlett, 1999). This model assumes that a learner receives a
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set of examples, the sample, drawn according to some unknown probability distri-
bution. The learner is required to output a function from a so-called hypothesis
class on the condition that, with high probability, the computed hypothesis is,
with respect to the distribution, close to an optimal hypothesis within the class.
A fundamental result is concerned with the question whether agnostic PAC learn-
ing with a given hypothesis class can be done efficiently, in particular, if there
exists an algorithm that needs only a polynomial number of computation steps
to find good hypotheses. The result states that no such learner can exist if the
minimizing disagreement problem for the hypothesis class is NP-complete, given
that the complexity classes RP and NP are different (see, e.g., Höffgen et al.,
1995; Kearns et al., 1994).

The results in this paper have immediate consequences for the question
whether lexicographic strategies can be learned. Adopting the framework of
agnostic PAC learning, we assume that pairs of cue profiles are drawn randomly
according to some unknown distribution. The task of the learner is to find a
cue permutation that, with high probability, is close to an optimal one, where
closeness means that the probability of differing inferences is small. This setting
seems slightly different from the original PAC model as in the latter the sample
consists of labeled examples, whereas the lexicographic strategy has to be learned
from pairs. However, relevant in both cases is that a hypothesis can be correct
or incorrect on a given example. Therefore, applying the above-mentioned result
about agnostic PAC learning and assuming that RP 6= NP, by showing that Lex-
icographic Strategy is NP-complete we may conclude that efficient learning
of lexicographic strategies is impossible. Moreover, this evidence of impossibility
is reinforced by our proving that the optimization problem Minimum Incor-
rect Lexicographic Strategy cannot be approximated in polynomial time
to within any constant factor.

A further question that models of learning are involved in is the characteri-
zation of the ability to generalize, that is, to find a good hypothesis from only a
small number of examples. A principal result in agnostic PAC learning has estab-
lished a combinatorial parameter of a hypothesis class, its Vapnik-Chervonenkis
(VC) dimension, as the relevant measure for this sample complexity (Vapnik and
Chervonenkis, 1971). In particular, to come close to the minimal generalization
error it is necessary and sufficient to draw a number of examples that is pro-
portional to the VC dimension of the hypothesis class (see, e.g., Anthony and
Bartlett, 1999). In this article we determine the VC dimension of the class of
lexicographic strategies exactly. In detail, we show that the class of lexicographic
strategies obtained by cue permutations and inversions has a VC dimension equal
to the number of cues. As a consequence, the number of cues provides a tight
bound on the sample complexity for learning lexicographic strategies.
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1.4 Related Work

Research that approaches the investigation of simple heuristics for intelligent
systems via the analysis of computational complexity traces back to Simon and
Kadane (1975, 1976). They provided sufficient conditions under which so-called
satisficing search strategies can be proved to be optimal. Their line of study
was resumed by Greiner and Orponen (1996) who obtained estimates for the
sample complexity of such strategies. Regarding the issue of ordering, Greiner
(1999) raised a question relevant for inductive logic programming that is similar
to the problems studied here. He asked whether it is possible to efficiently revise
rule-based programs by rearranging the ordering of the rules. His results include
NP-completeness and nonapproximability statements for various types of logical
theories.

Rivest (1987) introduced decision lists as a formalism for the representation of
Boolean functions. The procedure for computing the output value of a decision
list is similar to a lexicographic strategy in that both mechanisms are based
on one-reason decision making. In fact, we shall show below that lexicographic
strategies are a special case of so-called 2-decision lists. It will also follow from
this result that the two function classes do not coincide. Thus, an algorithm that
learns 2-decision lists does not necessarily learn lexicographic strategies. On the
other hand, an algorithm that finds optimal cue permutations might not be good
in constructing 2-decision lists.

Ordering problems have also been studied by Cohen et al. (1999). They
considered the problem of putting a set of objects in a total order that max-
imally agrees with a specified preference function. They proved this problem
to be NP-complete. We shall show later that the problem of finding cue per-
mutations for the lexicographic strategy can be formulated as such an ordering
problem. However, we shall also argue that the two problems are different, since
the cue permutation problem requires the total order to be implemented as a
lexicographic strategy and not every total order can be represented this way.

1.5 Outline

We introduce lexicographic strategies in Section 2 and provide there further
definitions and properties. We then draw comparisons with decision lists and
discuss the relationship of the problem of finding optimal cue permutations with
the ordering problem studied by Cohen et al. (1999).

Section 3 establishes the NP-completeness of the problem Lexicographic
Strategy. Additionally, we consider the complexity of this problem when the
instances meet certain conditions. We obtain that the problem remains NP-
complete under constraints that require the cue profiles to be sparse, impose
a bound on the number of pairs, or suppose the pairs to satisfy some simple
properties of orderings. In particular, we show NP-completeness to hold when
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each cue profile contains no more than one 0. In contrast, if the latter condition
is met and the pairs are from some partial order, the problem can be solved in
linear time.

The optimization problem Minimum Incorrect Lexicographic Strat-
egy is considered in Section 4. As the main result we show that this problem
cannot be approximated in polynomial time to within any constant factor, un-
less P = NP. It further emerges, that this result holds even when the instances
satisfy some, albeit not all, of the restrictions considered in Section 3.

Section 5 introduces the greedy algorithm for constructing cue permutations.
We tightly determine the performance ratio of this algorithm, showing that it is
proportional to the number of cues. The result implies that the greedy method
always finds a correct cue permutation if one exists. In contrast, we show that
this does not hold for TTB. Restrictions under which the lower bound for the
greedy method is still valid are also determined in this section.

In Section 6 we introduce the operation of inverting cues as a means for con-
structing lexicographic strategies. We show that a greedy method approximates
the maximum number of correct inferences to within a constant factor.

The sample complexity for learning is studied in Section 7. We determine
the number of cues as the exact value for the VC dimension of the class of
lexicographic strategies obtained from cue permutations and inversions. Section 8
summarizes seven major open questions arising from this article and Section 9
concludes with final remarks.

We assume that the reader is acquainted with the theory of NP-completeness
as propounded, for instance, by Garey and Johnson (1979). Familiarity with the
theory of computational complexity for approximation problems is not required
as we shall explicate the necessary details.

Bibliographic Note. The main result of Section 3 (Theorem 3) was mentioned
by Martignon and Schmitt (1999), but its proof has been available only in an
unpublished manuscript (Schmitt and Martignon, 1999). Parts of Sections 4 and
5 appear in a contribution to a conference (Schmitt and Martignon, 2006).

2 Lexicographic Strategies

In the following, we introduce lexicographic strategies and the computational
problem that we study in this article. After giving formal definitions in Sec-
tion 2.1, we compare in Section 2.2 lexicographic strategies with a related for-
malism known as decision lists. The optimization problem for lexicographic
strategies bears some resemblance to ranking problems that have been studied
earlier. In Section 2.3, we discuss the relationship between them and demonstrate
that they are different problems.
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2.1 Definitions

A lexicographic strategy is a method for comparing elements of a set B ⊆ {0, 1}n
of Boolean vectors. Each component 1, . . . , n of these vectors is referred to as a
cue. Given two elements a, b ∈ B, where a = (a1, . . . , an) and b = (b1, . . . , bn),
the lexicographic strategy searches for the smallest cue index i ∈ {1, . . . , n} such
that ai and bi are different. The strategy then outputs one of “ < ” or “ > ”
according to whether ai < bi or ai > bi assuming the usual order 0 < 1 of the
truth values. If no such cue exists, the strategy returns “ = ”. Formally, let
diff : B ×B → {1, . . . , n+ 1} be the function where diff(a, b) is the smallest cue
index on which a and b are different, or n+ 1 if they are equal, that is,

diff(a, b) = min{{i : ai 6= bi} ∪ {n+ 1}}.

Then, the function S : B × B → {“ < ”, “ = ”, “ > ”} computed by the
lexicographic strategy is

S(a, b) =





“ < ” if diff(a, b) ≤ n and adiff(a,b) < bdiff(a,b),
“ > ” if diff(a, b) ≤ n and adiff(a,b) > bdiff(a,b),
“ = ” otherwise.

Considering a and b as binary encodings of natural numbers, S(a, b) is nothing
else than the result of the comparison of these two numbers.

Lexicographic strategies may take into account that the cues come in an order
that is different from 1, . . . , n. Let π : {1, . . . , n} → {1, . . . , n} be a permuta-
tion of the cues. It gives rise to a mapping π : {0, 1}n → {0, 1}n that per-
mutes the components of Boolean vectors by π(a1, . . . , an) = (aπ(1), . . . , aπ(n)).
As π is uniquely defined given π, we simplify the notation and write also π for
π. The lexicographic strategy under cue permutation π passes through the cues
in the order π(1), . . . , π(n), that is, it computes the function Sπ : B × B →
{“ < ”, “ = ”, “ > ”} defined as

Sπ(a, b) = S(π(a), π(b)).

The problem we study is that of finding a cue permutation that minimizes the
number of incorrect comparisons in a given list of element pairs using the lexico-
graphic strategy. An instance of this problem consists of a set B of elements and
a set of pairs L ⊆ B × B. Each pair 〈a, b〉 ∈ L represents an inequality a ≤ b.
Given a cue permutation π, we say that the lexicographic strategy under π infers
the pair 〈a, b〉 correctly if Sπ(a, b) ∈ {“ < ”, “ = ”}, otherwise the inference is
incorrect. The task is to find a permutation π such that the number of incorrect
inferences in L using Sπ is minimal, that is, a permutation π that minimizes

INCORRECT(π, L) = |{〈a, b〉 ∈ L : Sπ(a, b) = “ > ”}|.
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We recall some definitions about orders on sets. A set L ⊆ B × B is a partial
order if it is reflexive (that is, 〈a, a〉 ∈ L for every a ∈ B), antisymmetric (that
is, 〈a, b〉 ∈ L and 〈b, a〉 ∈ L implies a = b), and transitive (that is, 〈a, b〉 ∈ L and
〈b, c〉 ∈ L implies 〈a, c〉 ∈ L). Further, L is a total order if it is a partial order
and satisfies 〈a, b〉 ∈ L or 〈b, a〉 ∈ L for every a, b ∈ B. Finally, L is irreflexive if
〈a, a〉 6∈ L for every a ∈ B.

Given some cue permutation π, consider a relation that is satisfied by a pair
〈a, b〉 if and only if Sπ(a, b) ∈ {“ < ”, “ = ”}. Clearly, this relation defines a total
order on any set B ⊆ {0, 1}n. A question that arises immediately is whether
every total order has some cue permutation that represents this order using the
lexicographic strategy. It is easy to see that this is not the case.

Proposition 1. For every set B ⊆ {0, 1}n and every cue permutation π, the
lexicographic strategy under cue permutation π defines a total order on B. On
the other hand, there are sets B ⊆ {0, 1}n with a total order that cannot be
represented by any cue permutation.

Proof. It is evident that the relation {(a, b) : Sπ(a, b) ∈ {“ < ”, “ = ”}} is a total
order. As a counterexample, consider a set B with {(0, . . . , 0), (1, . . . , 1)} ⊆ B.
Clearly, under every cue permutation, (0, . . . , 0) is less than (1, . . . , 1). Thus, the
reverse ordering of these two elements cannot be represented by the lexicographic
strategy.

Obviously, the lexicographic strategy applied to a pair 〈a, a〉 is always correct,
independently of the cue permutation. Therefore, the identical pairs of L pose
no obstacle for the minimization problem. Also possible were an alternative
setting where 〈a, b〉 is interpreted as a strict inequality. We admit identical pairs,
however, to keep the definition more general and allow L to represent some
“natural” relations such as partial or total orders or arbitrary subsets thereof.
Nevertheless, all results presented in the following remain valid if the pairs are
assumed to represent strict inequalities.

2.2 Lexicographic Strategies and Decision Lists

Decision lists are computing formalisms that operate quite similar to lexico-
graphic strategies. A decision list represents a Boolean function f : {0, 1}n →
{0, 1} and is given by a list of pairs

(m1, r1), . . . , (m`, r`),

where each mi is a Boolean monomial, that is, a conjunction of Boolean variables
with or without negations (Rivest, 1987). Further, each ri is 0 or 1, and m` is
the constant function 1. The Boolean function computed by the decision list is
defined as follows: Given some a ∈ {0, 1}n, the output value is ri where i is the
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smallest index such that mi evaluates to 1 on a. A k-decision list is a decision
list where every monomial has size at most k.

In the problem of minimizing the number of incorrect comparisons the rele-
vant question is whether the output of the lexicographic strategy is correct, and
not whether it is particularly one of “ < ”, “ = ”, or “ > ”. In other words, we
are interested in a binary and not a ternary classification. Thus, we may consider
the lexicographic strategy S as a Boolean function f mapping a set L of pairs to
{0, 1}, where for every 〈a, b〉 ∈ L we have

f(a, b) = 1 if and only if S(a, b) ∈ {“ < ”, “ = ”}.

Seen in this light, lexicographic strategies exhibit a similarity to decision lists.
The following statement, which is easy to derive, makes this relationship precise.

Proposition 2. Let f : {0, 1}2n → {0, 1} be a Boolean function with variables
x1, . . . , xn and y1, . . . , yn. Then f is computed by the lexicographic strategy if and
only if f is computed by the 2-decision list

(x1y1, 0), (x1y1, 1), . . . , (xnyn, 0), (xnyn, 1), (1, 1).

Proof. Let a, b ∈ {0, 1}n. Clearly, if a = b, all monomials of the decision list
evaluate to 0, except for the constant function 1. If a 6= b, let i = diff(a, b). In
the case that ai < bi, the monomial xiyi is the first one that evaluates to 1, and
the output of the decision list is 1. Similarly, if ai > bi, this is first detected by
the monomial xiyi, and the decision list yields 0.

The proposition shows that the lexicographic strategy has a unique charac-
terization as a 2-decision list. Thus, finding a cue permutation for the lexico-
graphic strategy amounts to constructing a 2-decision list with some restrictions
concerning the structure of the monomials, the pattern of the output values,
and the length of the list. It is also obvious from Proposition 2, however, that
2-decision lists compute a much richer class of Boolean functions than lexico-
graphic strategies do. We conclude that cue permutations are not necessarily
found using algorithms for constructing 2-decision lists. Further, an optimal cue
permutation might not be an optimal 2-decision list.

2.3 Ranking Problems

The problem of minimizing the number of incorrect comparisons in a list of
pairs exhibits some similarity with an optimization problem that occurs in the
context of ordering problems and was studied by Cohen et al. (1999). In this
problem, which we here call ranking problem, one receives a set X, a collection
of functions R1, . . . , RN mapping X ×X to the real interval [0, 1], and rational
numbers w1, . . . , wN ∈ [0, 1] whose sum is equal to 1. A solution of the problem is
a total order ρ of X that maximally agrees with the so-called preference function
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PREF : X ×X → [0, 1]. The closer the value of PREF(a, b) is to 1, the more a
is to be ranked above b. The preference function is defined as

PREF(a, b) =
N∑

i=1

wiRi(a, b)

The agreement of the total order ρ with the preference function PREF is quan-
tified by the value of

∑

{(a,b):ρ(a)>ρ(b)}
PREF(a, b) (1)

and a desired total order ρ is one that maximizes this value.
It is not hard to see that the instances of the cue permutation problem are

particular instances of the above problem. Specifically, introduce for each pair
〈a, b〉 a function R〈a,b〉 : B×B → {0, 1} that outputs 1 on (b, a), and 0 otherwise.
Further, let w〈a,b〉 = 1/|L|. Then, a total order ρ that maximizes the value of the
expression (1) is one that minimizes the number of incorrect inferences in L.

Cohen et al. (1999) have shown that the ranking problem is NP-complete.
The question is, therefore, whether this hardness result has any implications
on the complexity of finding a cue permutation that minimizes the number of
incorrect inferences. However, the ranking problem is different from the cue
permutation problem not only in that its instances are more general. The two
problems also disagree in the type of solutions that are sought. While the ranking
problem accepts any total order that maximizes the agreement with the prefer-
ence function, the cue permutation problem requires that the total order can be
implemented by a lexicographic strategy. Proposition 1 demonstrates, though,
that not every total order can be represented as a cue permutation. Thus, the
space taken by the solutions of the cue permutation problem is narrower than the
solution space for the ranking problem described above. Moreover, we show in
Section 3 that the cue permutation problem remains NP-complete even when the
instances are known to have a total order. In contrast, imposing this restriction
on the ranking problem results in a problem that is trivially solvable.

A further difference emerges if one considers the problem of approximating
optimal solutions as we do in Section 4. Then the cue permutation problem is
a minimization problem while the ranking problem is a maximization problem.
Among the complexity classes of approximation problems several examples are
known where the minimization and the maximization problem have different de-
grees of approximability (see, e.g., Amaldi and Kann, 1995, 1998). Consequently,
despite the apparent similarity of the cue permutation problem and the ranking
problem, the complexities of the two problems are obviously not related.
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3 Complexity of Finding Optimal Cue Permu-

tations

We consider the complexity of the problem to minimize the number of incorrect
inferences under the lexicographic strategy. To show that it is computationally
intractable, we formulate this search problem as a decision problem. The decision
problem has as input a set of binary vectors, an ordering defined on this set in
terms of a list of vector pairs, and a bound given as a natural number. The
question is to decide whether the cues can be permuted such that the number of
incorrect inferences made by the lexicographic strategy when applied with this
cue permutation to the list of pairs is not larger than the given bound. We call
this decision problem Lexicographic Strategy.

Lexicographic Strategy
Instance: A set B ⊆ {0, 1}n, a set L ⊆ B × B, and a natural number k.

Question: Is there a permutation of the cues of B such that the number of
incorrect inferences in L under the lexicographic strategy is at
most k?

Clearly, any polynomial-time algorithm for finding a permutation with a minimal
number of incorrect inferences can be turned into a polynomial-time algorithm
that solves Lexicographic Strategy. However, we show that this problem
is NP-hard. Hence, if P 6= NP, no polynomial-time algorithm for the decision
problem and, a fortiori, for the search problem exists. The NP-hardness proof
provides a polynomial-time reduction from a problem dealing with graphs and
known as Vertex Cover (Garey and Johnson, 1979).

Vertex Cover
Instance: An undirected graph G = (V,E), where V is the set of vertices

and E ⊆ V × V is the set of edges, and a natural number k.

Question: Is there a vertex cover of cardinality k or less for G, that is, a
subset V ′ ⊆ V with |V ′| ≤ k such that for each edge {u, v} ∈ E
at least one of u and v belongs to V ′?

Theorem 3. Lexicographic Strategy is NP-complete.

Proof. Obviously, a nondeterministic algorithm can generate a permutation of
the cues and verify in polynomial time whether the number of incorrect inferences
is at most k. Thus, the problem is a member of NP. To establish its NP-hardness,
we construct a reduction from Vertex Cover. Let 1i (1i,j) denote the n-bit
vector with a 1 in every position except for position i (positions i and j) where
it has a 0. Further, 1 is the n-bit vector with a 1 everywhere. Given the graph
G = (V,E), where the set of vertices is V = {v1, . . . , vn}, we define a set B of
Boolean vectors with n+ 1 cues, that is B ⊆ {0, 1}n+1, in three steps:
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1. Let (1, 0) ∈ B.

2. For i = 1, . . . , n, let (1i, 1) ∈ B.

3. For every {vi, vj} ∈ E, let (1i,j, 1) ∈ B.

The set L ⊆ B ×B of pairs that represents the element ordering is defined such
that the element from step 1 is less than each element constructed in step 2, and
each element arising from step 3 is less than the element from step 1. Formally,

L = {〈(1, 0), (1i, 1)〉 : i = 1, . . . , n} ∪ {〈(1i,j, 1), (1, 0)〉 : {vi, vj} ∈ E}. (2)

Finally, we let the number k in the instance of Lexicographic Strategy
be the same as in the instance of Vertex Cover. Clearly, the reduction is
computable in polynomial time.

We establish the correctness of the reduction by proving that the graph G
has a vertex cover of cardinality at most k if and only if the associated instance
of Lexicographic Strategy has a cue permutation that results in no more
than k incorrect inferences. For simplicity, let us call a pair from the first and
second set on the right-hand side of equation (2) a vertex pair and an edge pair,
respectively.

(⇒) Assume that G has a vertex cover V ′ of cardinality at most k and, with-
out loss of generality, let its cardinality be exactly k, so that V ′ = {vi1 , . . . , vik}.
Further, let V \ V ′ = {vik+1

, . . . , vin}. Define the permutation of the cues as

i1, . . . , ik, n + 1, ik+1, . . . , in.

We claim that this cue ranking causes no more than k incorrect inferences in
L. Consider an arbitrary edge pair 〈(1i,j, 1), (1, 0)〉. As V ′ is a vertex cover,
at least one of i and j occurs in i1, . . . , ik. This implies that the first cue that
distinguishes this pair will have value 0 in (1i,j, 1) and value 1 in (1, 0). Thus,
the result of the lexicographic comparison is correct. Next, let 〈(1, 0), (1i, 1)〉 be
a vertex pair with vi 6∈ V ′. In this case, cue n + 1 distinguishes this pair with
the correct outcome. Finally, each vertex pair 〈(1, 0), (1i, 1)〉 with vi ∈ V ′ is
distinguished by cue i with a result different from the ordering given by L. In
summary, the only incorrect comparisons arise from vertex pairs with vi ∈ V ′.
As V ′ has cardinality k, we thus have no more than k incorrect inferences.

(⇐) Now, let π be a permutation of the cues that produces at most k incorrect
inferences in L. Define the set V ′ of vertices as follows:

1. For every incorrect vertex pair 〈(1, 0), (1i, 1)〉, let vi ∈ V ′.

2. For every incorrect edge pair 〈(1i,j, 1), (1, 0)〉, let one of vi, vj ∈ V ′.

14



Clearly, V ′ has cardinality at most k. It remains to show that V ′ is a vertex
cover. For the sake of a contradiction, assume that there is an edge in E, say
{vi, vj}, not covered. This means that neither of vi, vj is in V ′, implying that we
have correct comparisons for the vertex pairs corresponding to vi and vj and for
the edge pair corresponding to {vi, vj}. The fact that the edge pair is inferred
correctly implies that π must rank cue i or j before cue n + 1. But then we
have that at least one of the vertex pairs for vi and vj results in an incorrect
comparison. This contradicts the assertion made above that both vertex pairs
have correct comparisons. We conclude that V ′ is a vertex cover.

The reduction constructed in the previous proof has some properties that we
exploit in the following statement to establish the NP-completeness of restricted
versions of Lexicographic Strategy. First, it shows that the set B can be
sparse in a certain sense, that is, has elements that exhibit only very constrained
bit patterns. Moreover, the NP-completeness holds even when L is not much
larger than B. Finally, the problem remains intractable even if L does not
contain identical pairs or has some properties of a partial or total order.

Corollary 4. Lexicographic Strategy is NP-complete even when the in-
stances satisfy any (or all) of the following constraints:

1. Each element of B contains at most two 0s.

2. The cardinality of L is linearly bounded from above by the cardinality of B,
that is, |L| is O(|B|).

3. L is irreflexive.

4. L is a subset of some partial order.

5. L is a subset of some total order.

Proof. We show that all constraints are satisfied by the instances defined in the
reduction for the proof of Theorem 3. That the first condition holds is obvious
from the definition of B. Further, the instances of Lexicographic Strategy
in this reduction all satisfy |B| = |E|+n+1 and |L| = n+|E|. Thus, |B| = |L|−1
and the second constraint is met. Moreover, L does not contain any pair 〈a, a〉
which implies that the third constraint holds. We establish the fourth condition
by checking that L does not violate any of the requirements for a partial order:
Clearly, each a 6= b does not have both 〈a, b〉 and 〈b, a〉 in L, and there are no
three pairs 〈a, b〉, 〈b, c〉, 〈c, a〉 in L. Finally, it is easy to see that L is consistent
with the total order resulting from the following ascending arrangement of B:
We begin with the elements (1i,j, 1), where {vi, vj} ∈ E, in lexicographic order,
followed by the element (1, 0), and complete this sequence at the end by the
elements (1i, 1), for i = 1, . . . , n, again in lexicographic order. Thus, we have an
ordering where any two elements of B are comparable, implying that also the
last constraint is satisfied.
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The first constraint of Corollary 4 gives rise to the question whether the
problem is still NP-complete if each element of B has no more than one 0.
The following two results treat this issue. First, we show that the problem in
general remains NP-complete under this restriction. To establish this we provide
a reduction from the NP-complete problem Feedback Arc Set (Garey and
Johnson, 1979).

Feedback Arc Set
Instance: A directed graph G = (V,E), where V is the set of vertices and

A ⊆ V × V is the set of arcs, and a natural number k.

Question: Is there a subset A′ ⊆ A with |A′| ≤ k such that A′ contains at
least one arc from every directed cycle in G?

Theorem 5. Lexicographic Strategy is NP-complete even when restricted
to instances where each element of B contains at most one 0.

Proof. Clearly, as Lexicographic Strategy is in NP, any subproblem of it is
in NP as well. We establish the NP-hardness of the problem by giving a reduction
that is a simple rewriting of Feedback Arc Set. Given the graph G = (V,A)
with V = {v1, . . . , vn} and using the notation from the proof of Theorem 3, we
let

B = {1i : i = 1, . . . , n},
L = {〈1i, 1j〉 : (vi, vj) ∈ A},

and define k to have the same value as in the instance of Feedback Arc Set.
Obviously, A′ ⊆ A contains at least one arc from every directed cycle in G

if and only if the graph G′ = (V,A \ A′) is acyclic. Further, G′ is acyclic if and
only if V has a total ordering in which vi is less than vj for each (vi, vj) ∈ A \A′.
Finally, the existence of such a total ordering is equivalent to the assertion that B
has a cue permutation with no incorrect comparisons in L′ = {〈1i, 1j〉 : (vi, vj) ∈
A \A′}. With this chain of equivalences, the correctness of the reduction follows
from the fact that |L′| = |L| − |A′|.

We may also add to the assumption of Theorem 5 the restriction that |L|
is linearly bounded in |B|, so that the problem is still NP-complete. In this
case, the NP-hardness follows from the fact that Feedback Arc Set remains
NP-hard for directed graphs in which the degree of the vertices is bounded by
some constant (Garey and Johnson, 1979). However, if we include the constraint
that L is a subset of some partial order, the complexity of the problem changes
drastically, as we see in the following statement.

Corollary 6. The problem of finding a cue permutation with a minimal number
of incorrect comparisons under the lexicographic strategy is solvable in linear time
for instances where B contains at most one 0 and L is a subset of some partial
order.
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Proof. As was argued in the proof of Theorem 5, the problem is the same as
the problem of finding a total order that is consistent with the partial order
given by L (which is always possible). Such a total order can be constructed by
topological sorting. Algorithms for this sorting problem exist that run in linear
time (see, e.g., Skiena, 1997).

It is not difficult—and we leave it to the reader—to establish dual formula-
tions of Theorem 5 and Corollary 6 where it is assumed that each element of B
contains at most one 1.

4 Approximability of Optimal Cue Permutati-

ons

In the previous section, we have shown that there is no polynomial-time algo-
rithm that computes optimal cue permutations for the lexicographic strategy,
unless P = NP. While it follows that this problem is as difficult as all other
optimization problems that have an NP-complete decision problem, we cannot
draw any conclusions for the case where we are interested in solutions that are
not equal to the optimum but somehow close to it. In fact, there is a large class
of optimization problems that have NP-complete decision problems, but can be
solved efficiently if the solution is required to be only a constant factor worse
than the optimal solution. This class of problems is denoted APX (Ausiello
et al., 1999).

In this section, we show that the problem of approximating the optimal cue
permutation is harder than any problem in the class APX. In particular, we
prove that, if P 6= NP, there is no polynomial-time algorithm whose solutions
yield a number of incorrect comparisons that is by at most a constant factor
larger than the minimal number possible. First, however, we state the problem
as an optimization problem and introduce some definitions from the complexity
theory of approximation problems (Ausiello et al., 1999).

Minimum Incorrect Lexicographic Strategy
Instance: A set B ⊆ {0, 1}n and a set L ⊆ B × B.
Solution: A permutation π of the cues of B.
Measure: The number of incorrect inferences in L for the lexicographic

strategy under cue permutation π, that is, INCORRECT(π, L).

Given a real number r > 0, an algorithm is said to approximate Minimum
Incorrect Lexicographic Strategy to within a factor of r if for every
instance (B,L) the algorithm returns a permutation π such that

INCORRECT(π, L) ≤ r · opt(L),
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where opt(L) is the minimal number of incorrect comparisons achievable on L
by any permutation. The factor r is also known as the performance ratio of
the algorithm. The following optimization problem plays a crucial role in the
derivation of the lower bound for the approximability of Minimum Incorrect
Lexicographic Strategy.

Minimum Hitting Set
Instance: A collection C of subsets of a finite set U .
Solution: A hitting set for C, that is, a subset U ′ ⊆ U such that U ′ contains

at least one element from each subset in C.
Measure: The cardinality of the hitting set, that is, |U ′|.

Similarly as above, we say that an algorithm approximates Minimum Hit-
ting Set to within a factor of r if for every instance C the algorithm outputs a
hitting set U ′ that satisfies

|U ′| ≤ r · opt(C),

where opt(C) denotes the minimal cardinality of a hitting set for C. (For simplic-
ity, we use opt(·) to represent the value of an optimal solution in both problems.
It shall be clear from the context to which problem it refers.)

Minimum Hitting Set is equivalent to a problem called Minimum Set
Cover in the sense that every polynomial-time algorithm that approximates
Minimum Hitting Set to within a certain factor can be turned into a polynom-
ial-time algorithm that approximates Minimum Set Cover to within the same
factor, and vice versa (Ausiello et al., 1980). Bellare et al. (1993) have shown that
Minimum Set Cover cannot be approximated in polynomial time to within
any constant factor, unless P = NP. Thus, if P 6= NP, Minimum Hitting
Set cannot be approximated in polynomial time to within any constant factor
as well. We make use of this fact when we establish the lower bound for the
approximability of the optimal cue permutation.

Theorem 7. For every r, there is no polynomial-time algorithm that approxi-
mates Minimum Incorrect Lexicographic Strategy to within a factor of
r, unless P = NP.

Proof. We use the main ideas from the proof of Theorem 3 to establish an ap-
proximation preserving reduction, or AP-reduction, from Minimum Hitting
Set to Minimum Incorrect Lexicographic Strategy.3 (See Ausiello

3A proof of Theorem 3 can be obtained by employing this reduction as a reduction between
decision problems, from the NP-complete Hitting Set to Lexicographic Strategy. How-
ever, the reduction used in the proof of Theorem 3 is more powerful since Corollary 4 cannot
be inferred when reducing from Hitting Set.
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et al., 1999, for a definition of the AP-reduction.) This reduction entails that ev-
ery polynomial-time algorithm that approximates Minimum Incorrect Lex-
icographic Strategy to within some constant factor can be turned into a
polynomial-time algorithm that approximates Minimum Hitting Set to within
the same constant factor. Then the statement follows from the equivalence of
Minimum Hitting Set to Minimum Set Cover and the lower bound on the
approximability of the latter (Bellare et al., 1993).

We first define a function f that is computable in polynomial time and maps
each instance of Minimum Hitting Set to an instance of Minimum Incor-
rect Lexicographic Strategy. Let 1 denote the n-bit vector with a 1
everywhere and 1i1,...,i` the vector with 0 in positions i1, . . . , i` and 1 elsewhere.
Given the collection C of subsets of the set U = {u1, . . . , un}, the function f
maps C to (B,L), where B ⊆ {0, 1}n+1 is defined as follows:

1. Let (1, 0) ∈ B.

2. For i = 1, . . . , n, let (1i, 1) ∈ B.

3. For every {ui1 , . . . , ui`} ∈ C, let (1i1,...,i`, 1) ∈ B.

Further, the set L is constructed as

L = {〈(1, 0), (1i, 1)〉 : i = 1, . . . , n} ∪ {〈(1i1,...,i`, 1), (1, 0)〉 : {ui1, . . . , ui`} ∈ C}.(3)

In the following, a pair from the first and second set on the right-hand side of
equation (3) is referred to as an element pair and a subset pair, respectively.
Obviously, the function f is computable in polynomial time. It has the following
property.

Claim 1. Let f(C) = (B,L). If C has a hitting set of cardinality k or less then
f(C) has a cue permutation π where INCORRECT(π, L) ≤ k.

To prove this, assume without loss of generality that C has a hitting set U ′ of
cardinality exactly k, say U ′ = {uj1, . . . , ujk}, and let U \ U ′ = {ujk+1

, . . . , ujn}.
Then the cue permutation

j1, . . . , jk, n + 1, jk+1, . . . , jn.

results in no more than k incorrect inferences in L. Indeed, consider an arbitrary
subset pair 〈(1i1,...,i`, 1), (1, 0)〉. To not be an error, one of i1, . . . , i` must occur in
the hitting set j1, . . . , jk. Hence, the first cue that distinguishes this pair has value
0 in (1i1,...,i`, 1) and value 1 in (1, 0), resulting in a correct comparison. Further,
let 〈(1, 0), (1i, 1)〉 be an element pair with ui 6∈ U ′. This pair is distinguished
correctly by cue n + 1. Finally, each element pair 〈(1, 0), (1i, 1)〉 with ui ∈ U ′
is distinguished by cue i with a result that disagrees with the ordering given
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by L. Thus, only element pairs with ui ∈ U ′ yield incorrect comparisons and
subset pairs are inferred correctly. Hence, the number of incorrect inferences is
not larger than |U ′|.

Next, we define a polynomial-time computable function g that maps each
collection C of subsets of a finite set U and each cue permutation π for f(C)
to a subset of U . Given that f(C) = (B,L), the set g(C, π) ⊆ U is defined as
follows:

1. For every element pair 〈(1, 0), (1i, 1)〉 ∈ L that is compared incorrectly by
π, let ui ∈ g(C, π).

2. For every subset pair 〈(1i1,...,i`, 1), (1, 0)〉 ∈ L that is compared incorrectly
by π, let one of the elements ui1, . . . , ui` ∈ g(C, π).

Clearly, the function g is computable in polynomial time. It satisfies the following
condition.

Claim 2. Let f(C) = (B,L). If INCORRECT(π, L) ≤ k then g(C, π) is a
hitting set of cardinality k or less for C.

Obviously, if INCORRECT(π, L) ≤ k then g(C, π) has cardinality at most k.
To show that it is a hitting set, assume the subset {ui1, . . . , ui`} ∈ C is not
hit by g(C, π). Then neither of ui1 , . . . , ui` is in g(C, π). Hence, we have correct
comparisons for the element pairs corresponding to ui1 , . . . , ui` and for the subset
pair corresponding to {ui1, . . . , ui`}. As the subset pair is distinguished correctly,
one of the cues i1, . . . , i` must be ranked before cue n+1. But then at least one of
the element pairs for ui1 , . . . , ui` yields an incorrect comparison. This contradicts
the assertion that the comparisons for these element pairs are all correct. Thus,
g(C, π) is a hitting set and the claim is established.

Assume now that there exists a polynomial-time algorithm A that approxi-
mates Minimum Incorrect Lexicographic Strategy to within a factor of
r. Consider the algorithm that, for a given instance C of Minimum Hitting
Set as input, calls algorithm A with input (B,L) = f(C), and returns g(C, π)
where π is the output provided by A. Clearly, this new algorithm runs in poly-
nomial time. We show that it approximates Minimum Hitting Set to within
a factor of r. By the assumed approximation property of algorithm A, we have

INCORRECT(π, L) ≤ r · opt(L).

Together with Claim 2, this implies that g(π, C) is a hitting set for C satisfying

|g(C, π)| ≤ r · opt(L).

From Claim 1 we obtain opt(L) ≤ opt(C) and, thus,

|g(C, π)| ≤ r · opt(C).
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Thus, the proposed algorithm for Minimum Hitting Set violates the approxi-
mation lower bound that holds for this problem under the assumption P 6= NP.
This proves the statement of the theorem.

Similarly as in Corollary 4 we can state a stronger version of Theorem 7
that takes restrictions into account that may hold for the instances of Minimum
Incorrect Lexicographic Strategy. The proof is obtained in the same
way as the proof of Corollary 4 and not given here.

Corollary 8. If P 6= NP, then for every r there is no polynomial-time algo-
rithm that approximates Minimum Incorrect Lexicographic Strategy to
within a factor of r, even when the instances satisfy any (or all) of the following
constraints:

1. The cardinality of L is linearly bounded from above by the cardinality of B,
that is, |L| is O(|B|).

2. L is irreflexive.

3. L is a subset of some partial order.

4. L is a subset of some total order.

The reader may have noticed that the constraint of Corollary 4 that imposes
a bound on the number of 0s in the elements of B is missing here. In fact, there is
some evidence, that the construction of an approximation preserving reduction
from Minimum Hitting Set to this subproblem of Minimum Incorrect
Lexicographic Strategy is difficult or even impossible. The case where
the number of 0s is bounded by some constant corresponds to the subproblem
of Minimum Hitting Set where the cardinality of each subset is not larger
than a constant. This restricted version of Minimum Hitting Set is known to
be approximable to within some constant factor (Bar-Yehuda and Even, 1981;
Hochbaum, 1982). Of course, this apparent relationship does not prove anything
about the complexity of approximating the subproblem of Minimum Incorrect
Lexicographic Strategy. However, it gives reason to the conjecture that this
subproblem might have a constant-factor approximation algorithm.

5 Greedy Approximation of Optimal Cue Per-

mutations

The so-called greedy approach to the solution of a computation or approximation
problem is helpful when it is not known which algorithm performs best. This sim-
ple heuristic often provides satisfactory solutions in many situations in practice.
The algorithm Greedy Cue Permutation that we introduce here is based on
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Algorithm 1 Greedy Cue Permutation

Input: a set B ⊆ {0, 1}n and a set L ⊆ B × B
Output: a cue permutation π for n cues
I := {1, . . . , n};
for i = 1, . . . , n do

let j ∈ I be a cue where INCORRECT(j, L) = minj′∈I INCORRECT(j ′, L);
π(i) := j;
I := I \ {j};
L := L \ {〈a, b〉 : aj 6= bj}

end for.

the greedy method. The idea is to select the first cue according to which single
cue makes a minimum number of incorrect inferences (choosing one arbitrarily
if there are two or more). After that the algorithm removes those pairs that are
distinguished by the selected cue, which is reasonable as the distinctions drawn
by this cue cannot be undone by later cues. This procedure is then repeated on
the set of pairs left. The description of Greedy Cue Permutation is given as
Algorithm 1. It employs an extension of the function INCORRECT, first defined
in Section 2.1, applicable also to single cues, such that for a cue i we say

INCORRECT(i, L) = |{〈a, b〉 ∈ L : ai > bi}|.

It is evident that Algorithm 1 runs in polynomial time, but how good is
it? The least one should demand from a good heuristic is that, whenever a
minimum of zero is attainable, it finds such a solution. This is indeed the case
with Greedy Cue Permutation as we show in the following result. Moreover,
a general performance ratio for the approximation of the optimum is asserted
here.

Theorem 9. The algorithm Greedy Cue Permutation approximates Mini-
mum Incorrect Lexicographic Strategy to within a factor of n, where n
is the number of cues. In particular, it always finds a cue permutation with no
incorrect inferences if one exists.

Proof. We show by induction on n that the permutation returned by the algo-
rithm makes a number of incorrect inferences no larger than n · opt(L). If n = 1,
the optimal cue permutation is definitely found.

Let n > 1. Clearly, as the incorrect inferences of a cue cannot be reversed by
other cues, there is a cue j with

INCORRECT(j, L) ≤ opt(L).

The algorithm selects such a cue in the first round of the loop. During the rest
of the rounds, a permutation of n−1 cues is constructed for the set of remaining
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〈 001 , 010 〉
〈 010 , 100 〉
〈 010 , 101 〉
〈 100 , 111 〉

Figure 1: A set of lexicographically ordered pairs with nondecreasing cue va-
lidities (1, 1/2, and 2/3). The cue ordering of TTB (1, 3, 2) causes an incorrect
inference on the first pair. By Theorem 9, Greedy Cue Permutation finds
the lexicographic ordering.

pairs. Let j be the cue that is chosen in the first round, I ′ = {1, . . . , j − 1, j +
1, . . . , n}, and L′ = L \ {〈a, b〉 : aj 6= bj}. Further, let optI′(L

′) denote the
minimum number of incorrect inferences taken over the permutations of I ′ on
the set L′. Then, we observe that

opt(L) ≥ opt(L′) = optI′(L
′).

The inequality is valid because of L ⊇ L′. (Note that opt(L′) refers to the
minimum taken over the permutations of all cues.) The equality holds as cue j
does not distinguish any pair in L′. By the induction hypothesis, rounds 2 to n
of the loop determine a cue permutation π′ with INCORRECT(π′, L′) ≤ (n −
1) · optI′(L

′). Thus, the number of incorrect inferences made by the permutation
π finally returned by the algorithm satisfies

INCORRECT(π, L) ≤ INCORRECT(j, L) + (n− 1) · optI′(L
′),

which is, by the inequalities derived above, not larger than opt(L)+(n−1)·opt(L)
as stated.

The special property of Greedy Cue Permutation that it always finds
the minimum if this has value zero is not owned by TTB as demonstrated by the
following result.

Corollary 10. On inputs that have a cue ordering without incorrect comparisons
under the lexicographic strategy, Greedy Cue Permutation can be better than
TTB.

Proof. Figure 1 shows a set of four lexicographically ordered pairs. According to
Theorem 9, Greedy Cue Permutation comes up with the given permutation
of the cues. The validities are 1, 1/2, and 2/3. Thus, TTB ranks the cues as
1, 3, 2 whereupon the first pair is inferred incorrectly.

Next, we consider lower bounds on the performance ratio of Greedy Cue
Permutation. We obtain bounds in terms of n and |L|. It emerges in particular
that the upper bound obtained in Theorem 9 is optimal up to the factor 2.
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〈 000001 , 000000 〉
〈 100001 , 100000 〉
〈 010000 , 000001 〉
〈 001000 , 000001 〉
〈 000100 , 000001 〉
〈 000010 , 000001 〉

Figure 2: A set of pairs providing a lower bound on the performance ratio of
Greedy Cue Permutation (Theorem 11).

Theorem 11. The performance ratio of Greedy Cue Permutation is at
least

max{n/2, |L|/2}.

Proof. We show how to construct for every n an instance on which Greedy Cue
Permutation has the claimed performance ratio. Let B = {a(0), . . . , a(n), b} ⊆
{0, 1}n be the set where a(0) = (0, . . . , 0), b = (1, 0, . . . , 0, 1), and a(i), for i =
1, . . . , n, is the vector with a 1 in position i and 0 elsewhere. The set L ⊆ B×B
is defined as

L = {〈a(n), a(0)〉, 〈b, a(1)〉} ∪ {〈a(i), a(n)〉 : i = 2, . . . , n− 1}.
Figure 2 shows the set L for the case n = 6. As can be seen, cue 1 is correct on
all pairs, cue n is incorrect on two pairs, and every cue j ∈ {2, . . . , n−1} satisfies
INCORRECT(j, L) = 1. Hence, Greedy Cue Permutation selects cue 1 as
the first cue. As this cue does not distinguish any pair, L is left unchanged. Then,
one of the cues 2, . . . , n−1 is selected as the second cue. After removal of the pair
distinguished by this cue, the remaining cues make the same incorrect inferences
as before. Thus, the algorithm keeps on choosing cues from {2, . . . , n−1} during
rounds 2, . . . , n − 1 of the loop until cue n is selected in the last round. The
resulting permutation π has cue 1 in its first position, cues from {2, . . . , n −
1} in positions 2, . . . , n − 1, and cue n in the last position. This implies that
INCORRECT(π, L) = |L|.

On the other hand, the optimal value is 2, which is attained by any permuta-
tion that has cue n as the first cue. This yields a performance ratio for Greedy
Cue Permutation of at least |L|/2. The lower bound n/2 is obtained by
observing that |L| = n.

We conclude this section by examining the performance of Greedy Cue
Permutation on subproblems, that is, when the instances are not arbitrary
but meet certain constraints. It plainly arises from the proof of Theorem 11
that the lower bound holds under restrictions of the instances similar to those
considered in Sections 3 and 4.
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Corollary 12. The lower bound max{n/2, |L|/2} for the performance ratio of
Greedy Cue Permutation holds even when the instances satisfy any (or all)
of the following constraints:

1. Each element of B contains at most two 1s.

2. The set L is smaller than the set B.

3. L is irreflexive.

4. L is a subset of some partial order.

5. L is a subset of some total order.

6 Lexicographic Strategies With Cue Inversion

While in the previous sections the problem was to optimize lexicographic strate-
gies by permuting the cues, we now introduce an additional degree of freedom
for building lexicographic strategies. Here, the method of construction is al-
lowed not only to permute but also to invert cues. A cue inversion is a mapping
q : {1, . . . , n} → {0, 1}, where n is the number of cues. It uniquely defines a
function q : {0, 1}n → {0, 1}n such that for every a ∈ {0, 1}n,

q(ai) =

{
ai if q(i) = 0,
1− ai otherwise.

In other words, a value of q(i) = 1 indicates that the i-th position of every
Boolean vector a is to be inverted, whereas the cues with q(i) = 0 are left
unchanged by q. As the meaning is clear, we shall use q also to denote q. Given
a set B ⊆ {0, 1}n, the lexicographic strategy under cue inversion q is the function
Sq : B × B → {“ < ”, “ = ”, “ > ”} with

Sq(a, b) = S(q(a), q(b)).

Combining permutation and inversion, we obtain the lexicographic strategy under
cue permutation π and cue inversion q denoted by Sqπ and defined as

Sqπ(a, b) = S(π(q(a)), π(q(b))).

In particular, we require that the cue inversion is applied before the permutation.
A simple greedy method for inverting the cues is described as Algorithm 2.

The idea is to pass through the cues and to select either the cue or its inverse,
depending on which makes a larger number of correct inferences. The pairs that
are distinguished by this cue are then removed. It is evident that Greedy Cue
Inversion runs in polynomial time. We show that the cue inversion returned
by this algorithm yields a number of correct inferences that is at least half the
maximum over all cue inversions and permutations.
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Algorithm 2 Greedy Cue Inversion

Input: a set B ⊆ {0, 1}n and a set L ⊆ B × B
Output: a cue inversion q for n cues

for i = 1, . . . , n do
if |{〈a, b〉 ∈ L : ai < bi}| ≥ |{〈a, b〉 ∈ L : ai > bi}| then
q(i) := 0

else
q(i) := 1

end if
L := L \ {〈a, b〉 : ai 6= bi}

end for.

Theorem 13. The algorithm Greedy Cue Inversion always returns a cue
inversion q such that Sq is correct on at least opt(L)/2 pairs, where opt(L) is the
maximum number of correct inferences achievable by the lexicographic strategy
under any cue permutation and any cue inversion.

Proof. Let Li be the set of pairs that the algorithm removes from L in round
i of the for-loop and let Ln+1 be the set of pairs that remains after completion
of the last round. Clearly, L1, . . . , Ln+1 is a partition of L. Obviously, by the
construction of q, Sq is correct on at least half of each Li, for i = 1, . . . , n.
Further, it is correct on all of Ln+1, as this set consists solely of identical pairs.
Thus, Sq correctly distinguishes at least half of all pairs in L. Since opt(L) ≤ |L|,
it follows that Sq is correct on at least opt(L)/2 pairs.

One remarkable aspect of this algorithm is the fact that it retains the order of
the cues, while its performance guarantee is valid even over all cue permutations.
It seems, at first glance, that the method of cue inversion leads much easier
to a good performance guarantee than the permutation of the cues. However,
the result of Theorem 13 cannot directly compared with those of the previous
sections, as these apply to the problem of minimizing the number of incorrect
inferences, whereas here we are concerned with the maximization of the number
of correct inferences. A constant performance ratio for the one problem does
not necessarily imply a constant performance ratio for the other, as can easily
be seen. Assume, for instance, that the maximum number of correct inferences
is |L| − 1. Then the algorithm that is correct on exactly d|L|/2e pairs has a
constant performance ratio for the maximization problem, while with regard to
the minimization problem its performance ratio grows linearly in |L|.
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7 Sample Complexity for Learning Lexicogra-

phic Strategies

A central notion for characterizing the sample complexity of a learning problem is
the VC dimension (Vapnik and Chervonenkis, 1971; Anthony and Bartlett, 1999).
In the following, we calculate the VC dimension of lexicographic strategies. The
definition of the VC dimension relies on the notion of shattering. A class F of
Boolean functions is said to shatter a set L ⊆ {0, 1}n if F induces every dichotomy
of L, that is, if for every (L0, L1) such that L0 ∩ L1 = ∅ and L0 ∪ L1 = L, there
is some function f ∈ F satisfying f(L0) ⊆ {0} and f(L1) ⊆ {1}. The Vapnik-
Chervonenkis (VC) dimension of a class F of Boolean functions is the cardinality
of the largest set that is shattered by F .

We recall from Section 2.2 that we identify the lexicographic strategy S with
a Boolean function f : {0, 1}2n → {0, 1} such that for every 〈a, b〉 ∈ {0, 1}2n,

f(a, b) = 1 if and only if S(a, b) ∈ {“ < ”, “ = ”}.

In this sense, we can investigate the VC dimension of the function class

Sn = {Sqπ : π is a permutation and q an inversion of n cues},

that is, we ask what is the largest cardinality of a set L of pairs that is shattered
by the lexicographic strategy under all possible cue permutations and inversions.

It is evident from the definition that the VC dimension of a finite function
class F cannot be larger than log |F|. Since the number of permutations is equal
to n! and the number of inversions is equal to 2n, it follows that the VC dimension
of Sn is not larger than n + n log n. We show, however, that this VC dimension
is linear. Moreover, we provide the exact value.

Theorem 14. The VC dimension of the class Sn of lexicographic strategies is
equal to n.

Proof. We first establish n as upper bound. Given a cue inversion q, consider the
lexicographic strategy Sq ∈ Sn (that is, the strategy Sqπ where π is the identity
function). We claim that every a, b ∈ {0, 1}n satisfies

Sq(a, b) ∈ {“ < ”, “ = ”}

if and only if

n∑

i=1

(−1)q(i)2n+1−i(bi − ai) ≥ −1. (4)

To show this, we consider the absolute value of first term on the left-hand side
of the inequality, where i = 1, that is,

|2n(b1 − a1)|. (5)
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If a1 6= b1, the value of (5) is 2n, whereas the absolute value of the remaining
sum is not larger than 2n− 2. Then, the inequality in (4) is satisfied if and only
if q(a1) < q(b1). On the other hand, if a1 = b1, the term (5) is equal to 0, and
the validity of the equivalence (4) follows by induction.

Obviously, by permuting the coefficients, every lexicographic strategy Sqπ ∈ Sn
can be written as an inequality such as in (4). Such inequalities are evaluated
by Boolean linear threshold functions. A Boolean linear threshold function f :
{0, 1}n → {0, 1} is a function for which there exist real numbers w1, . . . , wn and
t (the parameters of this function class ) such that for every z ∈ {0, 1}n,

f(z) = 1 if and only if w1z1 + · · ·+ wnzn ≥ t.

It follows that every Sqπ ∈ Sn can be expressed as a Boolean linear threshold
function with input variables (y1 − x1), . . . , (yn − xn) and a fixed parameter
t = −1.

Therefore, every set L ⊆ {0, 1}2n that can be shattered by Sn is also shattered
by this class of linear threshold functions. The class of linear threshold functions
in n variables with n parameters (that is, where t is fixed) is known to have
VC dimension equal to n (see, e.g., Anthony and Bartlett, 1999). Thus, the VC
dimension of Sn does not exceed n.

For deriving the lower bound, we show that the set L ⊆ {0, 1}2n defined as

L = {〈1i, 1〉 : i = 1, . . . , n},
where 1 is the vector with a 1 in every position and 1i has a 0 in position i and
1 elsewhere, is shattered by Sn.

Let (L0, L1) be an arbitrary dichotomy of L. Define the cue inversion q :
{1, . . . , n} → {0, 1} such that q(i) = 0 if and only if 〈1i, 1〉 ∈ L1. Obviously
then, the lexicographic strategy Sq (without permuting the cues) yields a correct
comparison for every pair in L1, while the pairs from L0 are inferred incorrectly.
Thus, the dichotomy (L0, L1) is induced by Sq.

The lower bound in the previous result was obtained by choosing a suitable
cue inversion and leaving the order of the cues unchanged. We can also obtain
an almost optimal lower bound when the cues are not allowed to be inverted but
only permuted. In fact, the (n− 1)-element set

L = {〈11, 1i〉 : i = 2, . . . , n}
can be shattered as follows. Given the dichotomy (L0, L1), we define the per-
mutation π such that for i = 2, . . . , n, π(1) < π(i) if and only if 〈11, 1i〉 ∈ L1.
Obviously, the dichotomy (L0, L1) is induced by Sπ.

It is easy to see that there are values of n for which this lower bound of
n − 1 cannot be improved. For n = 1, 2, and 3, the number of permutations
of n elements is 1, 2, and 6, respectively; to shatter sets of these cardinalities,
however, requires 2, 4, and 8 functions.
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8 Open Questions

In the following we summarize the major open questions that arise from this work
hoping that they might provide fertile soil for future research. The main result
of Section 3 is the NP-completeness of the decision problem Lexicographic
Strategy. In that section, we have established further that the problem re-
mains NP-complete under several restrictions. Moreover, one of the subproblems
originating from such restrictions was shown to be efficiently solvable. Probably,
the restrictions considered there may not be those that are “natural”, that is,
met in practice. It is therefore reasonable to study more subproblems and to
delineate the intractable ones from those that can be solved efficiently.

• What are natural restrictions for Lexicographic Strategy under which
the problem is NP-complete or efficiently solvable?

Of course, similar considerations are appropriate for Minimum Incorrect
Lexicographic Strategy. In Section 4 we obtained a lower bound for the
performance ratio that is still valid for various subproblems. A promising task
is, therefore, to find restrictions relevant in practice under which the problem
has a constant performance ratio.

• What are natural restrictions for Minimum Incorrect Lexicographic
Strategy under which the problem belongs to APX?

Work by Raz and Safra (1997) implies that Minimum Hitting Set cannot
be approximated in polynomial time to within some factor that grows logarith-
mically in |C|, the number of subsets. The reduction defined in the proof of
Theorem 7 does not seem to allow to exploit this fact.

• Does Minimum Incorrect Lexicographic Strategy have a lower
bound on the performance ratio for polynomial-time algorithms that is not
bounded by some constant?

The results in Sections 4 and 5 have left a gap. While we have shown that
there cannot be a polynomial-time algorithm for Minimum Incorrect Lex-
icographic Strategy with a performance ratio bounded by some constant
(if P 6= NP), the algorithm Greedy Cue Permutation has a lower bound of
max{n/2, |L|/2}.

• Are there polynomial-time algorithms for Minimum Incorrect Lexico-
graphic Strategy that have a better performance ratio than Greedy
Cue Permutation?

The algorithm Greedy Cue Permutation is a simple and obvious heuristic
that has not been studied before in the context of lexicographic strategies. In
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Section 5 we have derived tight bounds on the performance ratio of this algo-
rithm. Various other procedures have been studied in the literature and become
known as fast and frugal heuristics, but nothing seems to have been proven about
their performance ratio.

• Which are the performance ratios of other (fast and frugal) heuristics for
lexicographic strategies?

In Section 6 we have introduced cue inversion as an additional feature to build
lexicographic strategies. The algorithm Greedy Cue Inversion was shown
to approximate the maximum number of correct inferences to within a constant
factor. While the problems of minimizing the number of incorrect inferences
and maximizing the number of correct inferences give rise to equivalent decision
problems, there might well be a difference with regard to the approximation
problem. There seems to be no immediate way to derive a lower bound for the
maximization problem from a lower bound for the minimization problem. Thus,
similar questions as considered here can be raised for the problem Maximum
Correct Lexicographic Strategy which is defined analogously.

• Which is the performance ratio of polynomial-time algorithms for approx-
imating Maximum Correct Lexicographic Strategy?

While this question is meant to consider only cue permutations and not inver-
sions for constructing lexicographic strategies, the objective of minimization is
combined with both these features in a second approximation problem emerging
from Section 6.

• Which is the performance ratio of polynomial-time algorithms for approx-
imating Minimum Incorrect Lexicographic Strategy under cue
permutations and cue inversions?

We can ask further what happens if the problems studied here are generalized in
a certain way. One obvious possibility of generalizing is to allow cues that have
more than two values. It is evident that the reductions provided in Sections 3 and
4 remain valid also in this multiple-valued case. In other words, the problem with
binary cues is a subproblem of the problem with multiple-valued cues. Hence,
NP-completeness and the lower bound for the approximability hold for learning
lexicographic strategies on multiple-valued cues, too. Moreover, we observe that
the algorithm Greedy Cue Permutation and the proof of the upper bound on
its performance ratio (Theorem 9) do not make use of the two-valuedness of the
cues. Thus, this algorithm has the claimed approximation property for multiple-
valued cues as well. One could also generalize lexicographic strategies to the effect
that more than two outcomes, correct or incorrect, of a lexicographic comparison
are possible. The results of this article do not seem to yield a statement for such
cases in general.
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9 Conclusions

Computational problems that arise in learning lexicographic strategies from ex-
amples are the topic of this article. In particular, we considered the model of
agnostic PAC learning. We have introduced the minimizing disagreement prob-
lem Lexicographic Strategy and shown that it is NP-complete. Thus, it
has become very unlikely that lexicographic strategies can be efficiently learned.
This statement was strengthened by our proving that the optimization problem
Minimum Incorrect Lexicographic Strategy cannot be approximated in
polynomial time to within any constant factor.

These results answer a question raised by psychological research into models
of bounded rationality: How accurate are fast and frugal heuristics? We have
shown that no fast, that is, polynomial-time, algorithm can compute the opti-
mum and, moreover, not even approximate it well, under the widely accepted
assumption that P 6= NP.

This answers also a second question concerning a specific fast and frugal
heuristic: How accurate is TTB? We have introduced a greedy algorithm that
provably performs better than TTB. In particular, we have shown that the greedy
method always finds accurate solutions when they exist, whereas this is not
the case with TTB. Tight bounds for the factor with which the greedy method
approximates the optimum have also been obtained.

The lower bounds derived in this article have mostly been shown to hold even
for subproblems obtained from various restrictions. We interpret this as revealing
to a high degree that lexicographic strategies cannot be learned efficiently and
that it might be very difficult to find satisfactory algorithms.

For the learning of lexicographic strategies using cue inversions we have pro-
vided a simple and efficient algorithm that approximates the maximum number
of correct inferences to within a constant factor. Thus, it seems that cue in-
versions lead much easier to good performance bounds than cue permutations.
However, one cannot directly compare a bound for the maximization problem
with a bound for the minimization problem. This result should more be consid-
ered as a stimulating impetus for further research.

We have calculated the exact values of the VC dimension of lexicographic
strategies. This result is one of the few examples where the VC dimension of a
function class has been determined precisely.

While we have already presented in the previous section a couple of formal
open questions for theoretical investigation, a challenge to experimental research
is also given by this article: to study the relevance of the greedy method as a
model for bounded rationality in psychology.
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