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Abstract

Bayesian networks have become one of the major models used for sta-
tistical inference. We study the question whether the decisions computed
by a Bayesian network can be represented within a low-dimensional in-
ner product space. We focus on two-label classification tasks over the
Boolean domain. As main results we establish upper and lower bounds
on the dimension of the inner product space for Bayesian networks with
an explicitly given (full or reduced) parameter collection. In particular,
these bounds are tight up to a factor of 2. For some nontrivial cases of
Bayesian networks we even determine the exact values of this dimension.
We further consider logistic autoregressive Bayesian networks and show
that every sufficiently expressive inner product space must have dimen-
sion at least Ω(n2), where n is the number of network nodes. We also
derive the bound 2Ω(n) for an artificial variant of this network, thereby
demonstrating the limits of our approach and raising an interesting open
question. As a major technical contribution, this work reveals combina-
torial and algebraic structures within Bayesian networks such that known
methods for the derivation of lower bounds on the dimension of inner
product spaces can be brought into play.

Keywords: Bayesian network, inner product space, embedding, linear
arrangement, Euclidean dimension

1 Introduction

During the last decade, there has been remarkable interest in learning systems
based on hypotheses that can be written as inner products in an appropriate
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feature space and learned by algorithms that perform a kind of empirical or
structural risk minimization. Often in such systems the inner product operation
is not carried out explicitly, but reduced to the evaluation of a so-called kernel
function that operates on instances of the original data space. A major advan-
tage of this technique is that it allows to handle high-dimensional feature spaces
efficiently. The learning strategy proposed by Boser et al. (1992) in connection
with the so-called support vector machine is a theoretically well founded and
very powerful method that, in the years since its introduction, has already out-
performed most other systems in a wide variety of applications (see also Vapnik,
1998).

Bayesian networks have a long history in statistics. In the first half of the
1980s they were introduced to the field of expert systems through work by Pearl
(1982) and Spiegelhalter and Knill-Jones (1984). Bayesian networks are much
different from kernel-based learning systems and offer some complementary ad-
vantages. They graphically model conditional independence relationships be-
tween random variables. Like other probabilistic models, Bayesian networks
can be used to represent inhomogeneous data with possibly overlapping features
and missing values in a uniform manner. Quite elaborate methods dealing with
Bayesian networks have been developed for solving problems in pattern classifi-
cation.

One of the motivations for the work this article is about was that recently
several research groups considered the possibility of combining the key advan-
tages of probabilistic models and kernel-based learning systems. Various kernels
were suggested and extensively studied, for instance, by Jaakkola and Haussler
(1999a,b), Oliver et al. (2000), Saunders et al. (2003), Tsuda and Kawanabe
(2002), and Tsuda et al. (2002, 2004). Altun et al. (2003) proposed a kernel
for the Hidden Markov Model, which is a special case of a Bayesian network.
Another approach for combining kernel methods and probabilistic models has
been made by Taskar et al. (2004).

In this article, we consider Bayesian networks as computational models that
perform two-label classification tasks over the Boolean domain. We aim at find-
ing the simplest inner product space that is able to express the concept class,
that is, the class of decision functions, induced by a given Bayesian network.
Hereby, “simplest” refers to a space which has as few dimensions as possible.
We focus on Euclidean spaces equipped with the standard dot product. For the
finite-dimensional case, this is no loss of generality since any finite-dimensional
reproducing kernel Hilbert space is isometric with R

d for some d. Furthermore,
we use the Euclidean dimension of the space as the measure of complexity. This
is well motivated by the fact that most generalization error bounds for linear
classifiers are given in terms of either the Euclidean dimension or in terms of
the geometrical margin between the data points and the separating hyperplanes.
Applying random projection techniques from Johnson and Lindenstrauss (1984),
Frankl and Maehara (1988), or Arriaga and Vempala (1999), it can be shown that
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any arrangement with a large margin can be converted into a low-dimensional
arrangement. A recent result of Balcan et al. (2004) in this direction even takes
into account low-dimensional arrangements that allow a certain amount of er-
ror. Thus, a large lower bound on the smallest possible dimension rules out
the possibility that a classifier with a large margin exists. Given a Bayesian
network N , we introduce Edim(N ) for denoting the smallest dimension d such
that the decisions represented by N can be implemented as inner products in
the d-dimensional Euclidean space. Our results are provided as upper and lower
bounds for Edim(N ).

We first consider Bayesian networks with an explicitly given parameter col-
lection. The parameters can be arbitrary, where we speak of an unconstrained
network, or they may be required to satisfy certain restrictions, in which case we
have a network with a reduced parameter collection. For both network types,
we show that the “natural” inner product space, which can obtained from the
probabilistic model by straightforward algebraic manipulations, has a dimension
that is the smallest possible up to a factor of 2, and even up to an additive term
of 1 in some cases. Furthermore, we determine the exact values of Edim(N )
for some nontrivial instances of these networks. The lower bounds in all these
cases are obtained by analyzing the Vapnik-Chervonenkis (VC) dimension of the
concept class associated with the Bayesian network. Interestingly, the VC di-
mension plays also a major role when estimating the sample complexity of a
learning system. In particular, it can be used to derive bounds on the number
of training examples that are required for selecting hypotheses that generalize
well on new data. Thus, the tight bounds on Edim(N ) reveal that the smallest
possible Euclidean dimension for a Bayesian network with an explicitly given
parameter collection is closely tied to its sample complexity.

As a second topic, we investigate a class of probabilistic models known as
logistic autoregressive Bayesian networks or sigmoid belief networks. These net-
works were originally proposed by McCullagh and Nelder (1983) and studied
systematically, for instance, by Neal (1992), and Saul et al. (1996). (See also
Frey, 1998). Using the VC dimension, we show that Edim(N ) for theses net-
works must grow at least as Ω(n2), where n is the number of nodes.

Finally, we get interested in the question whether it is possible to establish
an exponential lower bound on Edim(N ) for the logistic autoregressive Bayesian
network. This investigation is motivated by the fact we also derive here that
these networks have their VC dimension bounded by O(n6). Consequently, VC
dimension considerations are not sufficient to yield an exponential lower bound
for Edim(N ). We succeed in giving a positive answer for an unnatural variant
of this network that we introduce and call the modified logistic autoregressive
Bayesian network. This variant is also shown to have VC dimension O(n6). We
obtain that for a network with n +2 nodes, Edim(N ) is at least as large as 2n/4.
The proof for this lower bound is based on the idea of embedding one concept
class into another. In particular, we show that a certain class of Boolean parity
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functions can be embedded into such a network.
While, as mentioned above, the connection between probabilistic models and

inner product spaces has already been investigated, this work seems to be the
first one that explicitly addresses the question of finding a smallest-dimensional
sufficiently expressive inner product space. In addition, there has been related re-
search considering the question of representing a given concept class by a system
of halfspaces, but not concerned with probabilistic models (see, e.g., Ben-David
et al., 2002; Forster et al., 2001; Forster, 2002; Forster and Simon, 2002; Forster
et al., 2003; Kiltz, 2003; Kiltz and Simon, 2003; Srebro and Shraibman, 2005;
Warmuth and Vishwanathan, 2005). A further contribution of our work can be
seen in the uncovering of combinatorial and algebraic structures within Bayesian
networks such that techniques known from this literature can be brought into
play.

We start by introducing the basic concepts in Section 2. The upper bounds
are presented in Section 3. Section 4 deals with lower bounds that are obtained
using the VC dimension as the core tool. The exponential lower bound for the
modified logistic autoregressive network is derived in Section 5. In Section 6 we
draw the major conclusions and mention some open problems.

Bibliographic Note. Results in this article have been presented at the 17th
Annual Conference on Learning Theory, COLT 2004, in Banff, Canada (Naka-
mura et al., 2004).

2 Preliminaries

In the following, we give formal definitions for the basic notions in this article.
Section 2.1 introduces terminology from learning theory. In Section 2.2, we define
Bayesian networks and the distributions and concept classes they induce. The
idea of a linear arrangement for a concept class is presented in Section 2.3.

2.1 Concept Classes, VC Dimension, and Embeddings

A concept class C over domain X is a family of functions of the form f : X →
{−1, 1}. Each f ∈ C is called a concept. A finite set S = {s1, . . . , sm} ⊆ X is
said to be shattered by C if for every binary vector b ∈ {−1, 1}m there exists some
concept f ∈ C such that f(si) = bi for i = 1, . . . , m. The Vapnik-Chervonenkis
(VC) dimension of C is given by

VCdim(C) = sup{m | there is some S ⊆ X shattered by C and |S| = m}.

For every z ∈ R, let sign(z) = 1 if z ≥ 0, and sign(z) = −1 otherwise. We use
the sign function for mapping a real-valued function g to a ±1-valued concept
sign ◦ g.
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Given a concept class C over domain X and a concept class C ′ over domain
X ′, we write C ≤ C ′ if there exist mappings

C 3 f 7→ f ′ ∈ C ′ and X 3 x 7→ x′ ∈ X ′

satisfying
f(x) = f ′(x′) for every f ∈ C and x ∈ X .

These mappings are said to provide an embedding of C into C ′. Obviously, if
S ⊆ X is an m-element set that is shattered by C then S ′ = {s′ | s ∈ S} ⊆
X ′ is an m-element set that is shattered by C ′. Consequently, C ≤ C ′ implies
VCdim(C) ≤ VCdim(C ′).

2.2 Bayesian Networks

Definition 1. A Bayesian network N has the following components:

1. A directed acyclic graph G = (V, E), where V is a finite set of nodes and
E ⊆ V × V a set of edges,

2. a collection (pi,α)i∈V,α∈{0,1}mi of programmable parameters with values in the
open interval ]0, 1[, where mi denotes the number of predecessors of node i,
that is, mi = |{j ∈ V | (j, i) ∈ E}|,

3. constraints that describe which assignments of values from ]0, 1[ to the pa-
rameters of the collection are allowed.

If the constraints are empty, we speak of an unconstrained network. Otherwise,
the network is constrained.

We identify the n = |V | nodes of N with the numbers 1, . . . , n and assume
that every edge (j, i) ∈ E satisfies j < i, that is, E induces a topological ordering
on {1, . . . , n}. Given (j, i) ∈ E, j is called a parent of i. We use Pi to denote the
set of parents of node i, and let mi = |Pi| be the number of parents. A network
N is said to be fully connected if Pi = {1, . . . , i − 1} holds for every node i.

Example 1 (kth-order Markov chain). For k ≥ 0, let Nk denote the un-
constrained Bayesian network with Pi = {i − 1, . . . , i − k} for i = 1, . . . , n (with
the convention that numbers smaller than 1 are ignored such that mi = |Pi| =
min{i − 1, k}). The total number of parameters is equal to 2k(n − k) + 2k−1 +
· · · + 2 + 1 = 2k(n − k + 1) − 1.

We associate with every node i a Boolean variable xi with values in {0, 1}.
We say xj is a parent-variable of xi if j is a parent of i. Each α ∈ {0, 1}mi is
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called a possible bit-pattern for the parent-variables of xi. We use Mi,α to denote
the polynomial

Mi,α(x) =
∏

j∈Pi

x
αj

j , where x0
j = 1 − xj and x1

j = xj,

that is, Mi,α(x) is 1 if the parent variables of xi exhibit bit-pattern α, otherwise
it is 0.

Bayesian networks are graphical models of conditional independence relation-
ships. This general idea is made concrete by the following notion.

Definition 2. Let N be a Bayesian network with nodes 1, . . . , n. The class of
distributions induced by N , denoted as DN , consists of all distributions on {0, 1}n

of the form

P (x) =

n∏

i=1

∏

α∈{0,1}mi

p
xiMi,α(x)
i,α (1 − pi,α)(1−xi)Mi,α(x). (1)

Thus, for every assignment of values from ]0, 1[ to the parameters of N , we
obtain a specific distribution from DN . Recall that not every possible assignment
is allowed if N is constrained.

The polynomial representation of log(P (x)) resulting from equation (1) is
known as “Chow expansion” in the pattern classification literature (see, e.g.,
Duda and Hart, 1973). The parameter pi,α represents the conditional probability
for the event xi = 1 given that the parent variables of xi exhibit bit-pattern α.
Equation (1) is a chain expansion for P (x) that expresses P (x) as a product of
conditional probabilities.

An unconstrained network that is highly connected may have a number of
parameters that grows exponentially in the number of nodes. The idea of a
constrained network is to keep the number of parameters reasonably small even
in case of a dense topology. We consider two types of constraints giving rise
to the definitions of networks with a reduced parameter collection and logistic
autoregressive networks.

Definition 3. A Bayesian network with a reduced parameter collection is a
Bayesian network with the following constraints: For every i ∈ {1, . . . , n} there
exists a surjective function Ri : {0, 1}mi → {1, . . . , di} such that the parameters
of N satisfy

∀i = 1, . . . , n, ∀α, α′ ∈ {0, 1}mi : Ri(α) = Ri(α
′) =⇒ pi,α = pi,α′ .

We denote the network as N R for R = (R1, . . . , Rn). Obviously, NR is completely
described by the reduced parameter collection (pi,c)1≤i≤n,1≤c≤di

.

A special case of these networks uses decision trees or graphs to represent the
parameters.

6



Example 2. Chickering et al. (1997) proposed Bayesian networks “with local
structure”. These networks contain a decision tree Ti (or, alternatively, a deci-
sion graph Gi) over the parent-variables of xi for every node i. The conditional
probability for xi = 1, given the bit-pattern of the variables from Pi, is attached
to the corresponding leaf in Ti (or sink in Gi, respectively). This fits nicely into
our framework of networks with a reduced parameter collection. Here, di denotes
the number of leaves in Ti (or sinks of Gi, respectively), and Ri(α) is equal to
c ∈ {1, . . . , di} if α is routed to leaf c in Ti (or to sink c in Gi, respectively).

For a Bayesian network with reduced parameter collection, the distribution
P (x) from Definition 2 can be written in a simpler way. Let Ri,c(x) denote the
{0, 1}-valued function that indicates for every x ∈ {0, 1}n whether the projection
of x to the parent-variables of xi is mapped by Ri to the value c. Then, we have

P (x) =
n∏

i=1

di∏

c=1

p
xiRi,c(x)
i,c (1 − pi,c)

(1−xi)Ri,c(x). (2)

We finally introduce the so-called logistic autoregressive Bayesian networks,
originally proposed by McCullagh and Nelder (1983), that have been shown to
perform surprisingly well on certain problems (see also Neal, 1992, Saul et al.,
1996, and Frey, 1998).

Definition 4. The logistic autoregressive Bayesian network Nσ is the fully con-
nected Bayesian network with constraints on the parameter collection given as

∀i = 1, . . . , n, ∃(wi,j)1≤j≤i−1 ∈ R
i−1, ∀α ∈ {0, 1}i−1 : pi,α = σ

(
i−1∑

j=1

wi,jαj

)

,

where σ(y) = 1/(1 + e−y) is the standard sigmoid function. Obviously, Nσ is
completely described by the parameter collection (wi,j)1≤i≤n,1≤j≤i−1.

In a two-label classification task, functions P (x), Q(x) ∈ DN are used as
discriminant functions, where P (x) and Q(x) represent the distributions of x
conditioned to label 1 and −1, respectively. The corresponding decision function
assigns label 1 to x if P (x) ≥ Q(x), and −1 otherwise. The obvious connection
to concept classes in learning theory is made explicit in the following definition.

Definition 5. Let N be a Bayesian network with nodes 1, . . . , n and let DN

be the corresponding class of distributions. The class of concepts induced by
N , denoted as CN , consists of all ±1-valued functions on {0, 1}n of the form
sign(log(P (x)/Q(x))) for P, Q ∈ DN .

Note that the function sign(log(P (x)/Q(x))) attains the value 1 if P (x) ≥
Q(x), and the value −1 otherwise. We use VCdim(N ) to denote the VC dimen-
sion of CN .
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2.3 Linear Arrangements in Inner Product Spaces

We are interested in embedding concept classes into finite-dimensional Euclidean
spaces equipped with the standard dot product u>v =

∑d
i=1 uivi, where u> de-

notes the transpose of u. Such an embedding is provided by a linear arrangement.
Given a concept class C, we aim at determining the smallest Euclidean dimension,
denoted Edim(C), that such a space can have.

Definition 6. A d-dimensional linear arrangement for a concept class C over
domain X is given by collections (uf)f∈C and (vx)x∈X of vectors in R

d such that

∀f ∈ C, x ∈ X : f(x) = sign(u>
f vx).

The smallest d such that there exists a d-dimensional linear arrangement for C
is denoted as Edim(C). If there is no finite-dimensional linear arrangement for
C, Edim(C) is defined to be infinite.

If CN is the concept class induced by a Bayesian network N , we write Edim(N )
instead of Edim(CN ). It is evident that Edim(C) ≤ Edim(C ′) if C ≤ C ′.

It is easy to see that Edim(C) ≤ min{|C|, |X |} for finite concept classes.
Nontrivial upper bounds on Edim(C) are usually obtained constructively by pre-
senting an appropriate arrangement. As for lower bounds, the following result is
immediate from a result by Dudley (1978) which states that VCdim({sign ◦ f |
f ∈ F}) = d for every d-dimensional vector space F consisting of real-valued
functions (see also Anthony and Bartlett, 1999, Theorem 3.5).

Lemma 1. Every concept class C satisfies Edim(C) ≥ VCdim(C).

Let PARITYn be the concept class {ha | a ∈ {0, 1}n} of parity functions
on the Boolean domain given by ha(x) = (−1)a>x, that is, ha(x) is the parity
of those xi where ai = 1. The following lower bound, which will be useful in
Section 5, is due to Forster (2002).

Corollary 1. Edim(PARITYn) ≥ 2n/2.

3 Upper Bounds on the Dimension of Inner Prod-

uct Spaces for Bayesian Networks

This section is concerned with the derivation of upper bounds on Edim(N ).
We obtain bounds for unconstrained networks and for networks with a reduced
parameter collection by providing concrete linear arrangements. Given a set M ,
let 2M denote its power set.

Theorem 1. Every unconstrained Bayesian network N satisfies

Edim(N ) ≤

∣
∣
∣
∣
∣

n⋃

i=1

2Pi∪{i}

∣
∣
∣
∣
∣
≤ 2 ·

n∑

i=1

2mi.
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Proof. From the expansion of P in equation (1) and the corresponding expansion
of Q (with parameters qi,α in the role of pi,α), we obtain

log
P (x)

Q(x)
=

n∑

i=1

∑

α∈{0,1}mi

(

xiMi,α(x) log
pi,α

qi,α

+ (1 − xi)Mi,α(x) log
1 − pi,α

1 − qi,α

)

.

(3)
On the right-hand side of equation (3), we find the polynomials Mi,α(x) and
xiMi,α(x). Note that | ∪n

i=1 2Pi∪{i}| equals the number of monomials that occur
when we express these polynomials as sums of monomials by successive applica-
tions of the distributive law. A linear arrangement of the claimed dimensionality
is now obtained in the obvious fashion by introducing one coordinate per mono-
mial.

This result immediately yields an upper bound for Markov chains of order k.

Corollary 2. Let Nk be the kth-order Markov chain given in Example 1. Then,

Edim(Nk) ≤ (n − k + 1)2k.

Proof. Apply Theorem 1 and observe that

n⋃

i=1

2Pi∪{i} =

n⋃

i=k+1

{Ji ∪ {i} | Ji ⊆ {i − 1, . . . , i − k}} ∪ {J | J ⊆ {1, . . . , k}}.

Similar techniques as used in the proof of Theorem 1 lead to an upper bound
for networks with a reduced parameter collection.

Theorem 2. Let NR denote the Bayesian network that has a reduced parameter
collection (pi,c)1≤i≤n,1≤c≤di

in the sense of Definition 3. Then,

Edim(NR) ≤ 2 ·
n∑

i=1

di.

Proof. Recall that the distributions from DNR can be written as in equation (2).
We make use of the obvious relationship

log
P (x)

Q(x)
=

n∑

i=1

di∑

c=1

(

xiRi,c(x) log
pi,c

qi,c
+ (1 − xi)Ri,c(x) log

1 − pi,c

1 − qi,c

)

. (4)

A linear arrangement of the appropriate dimension is now obtained by intro-
ducing two coordinates per pair (i, c): If x is mapped to vx in this arrange-
ment, then the projection of vx to the two coordinates corresponding to (i, c) is
(Ri,c(x), xiRi,c(x)); the appropriate mapping (P, Q) 7→ uP,Q in this arrangement
is easily derived from (4).
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In Section 4 we shall show that the bounds established by Theorem 1 and
Theorem 2 are tight up to a factor of 2 and, in some cases, even up to an additive
constant of 1.

The linear arrangements for unconstrained Bayesian networks or for Bayesian
networks with a reduced parameter collection were easy to find. This is no
accident as this holds for every class of distributions (or densities) from the so-
called exponential family because (as pointed out, for instance, in Devroye et al.,
1996) the corresponding Bayes rule takes a form known as generalized linear rule.
From this representation a linear arrangement is evident. Note, however, that
the bound given in Theorem 1 is slightly stronger than the bound obtained from
the general approach for members of the exponential family.

4 Lower Bounds Based on VC Dimension Con-

siderations

In this section, we derive lower bounds on Edim(N ) that come close to the upper
bounds obtained in the previous section. Before presenting the main results in
Section 4.2 as Corollaries 3, 5, and Theorem 7, we focus on some specific Bayesian
networks for which we determine the exact values of Edim(N ).

4.1 Optimal Bounds for Specific Networks

In the following we calculate exact values of Edim(N ) by establishing lower
bounds of VCdim(N ) and applying Lemma 1. This gives us also the exact
value of the VC dimension for the respective networks. We recall that Nk is the
kth-order Markov chain defined in Example 1. The concept class arising from
network N0, which we consider first, is the well-known Näıve Bayes classifier.

Theorem 3.

Edim(N0) =

{
n + 1 if n ≥ 2,
1 if n = 1.

The proof of this theorem relies on the following result.

Lemma 2. For every p, q ∈]0, 1[ there exist w ∈ R and b ∈]0, 1[ such that

∀x ∈ R : x log
p

q
+ (1 − x) log

1 − p

1 − q
= w(x − b) (5)

holds. Conversely, for every w ∈ R and b ∈]0, 1[ there exist p, q ∈]0, 1[ such that
(5) is satisfied.
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Proof. Rewriting the left-hand side of the equation as x log w′ + log c′, where

w′ =
p(1 − q)

q(1 − p)
and c′ =

1 − p

1 − q
,

it follows that p = q is equivalent to w′ = c′ = 1. By definition of c′, p < q
is equivalent to c′ > 1 and, as w′c′ = p/q, this is also equivalent to c′ < 1/w′.
Analogously, it follows that p > q is equivalent to 0 < 1/w′ < c′ < 1. By
defining w = log w′ and c = log c′ and taking logarithms in the equalities and
inequalities, we conclude that p, q ∈]0, 1[ is equivalent to w ∈ R and c = −bw
with b ∈]0, 1[.

Proof. (Theorem 3) Clearly, the theorem holds for n = 1. Suppose, therefore,
that n ≥ 2. According to Corollary 2, Edim(N0) ≤ n + 1. Thus, by Lemma 1 it
suffices to show that VCdim(N0) ≥ n + 1. Let ei denote the vector with a one
in the ith position and zeros elsewhere. Further, let 1̄ be the vector with a 1 in
each position. We show that the set of n + 1 vectors e1, . . . , en, 1̄ is shattered by
the class CN0

of concepts induced by N0, consisting of the functions of the form

sign

(

log
P (x)

Q(x)

)

= sign

(
n∑

i=1

xi log
pi

qi
+ (1 − xi) log

1 − pi

1 − qi

)

,

where pi, qi ∈]0, 1[, for i ∈ {1, . . . , n}. By Lemma 2, the functions in CN0
can be

written as
sign(w>(x − b)),

where w ∈ R
n and b ∈]0, 1[n.

It is not difficult to see that homogeneous halfspaces, that is, where b =
(0, . . . , 0), can dichotomize the set {e1, . . . , en, 1̄} in all possible ways, except for
the two cases to separate 1̄ from e1, . . . , en. To accomplish these two dichotomies
we define b = (3/4) · 1̄ and w = ±1̄. Then, by the assumption that n ≥ 2, we
have for i = 1, . . . , n,

w>(ei − b) = ±(1 − 3n/4) ≶ 0 and w>(1̄ − b) = ±(n − 3n/4) ≷ 0.

A further type of Bayesian network for which we derive the exact dimension
has some kind of bipartite graph underlying where one set of nodes serves as the
set of parents for all nodes in the other set.

Theorem 4. For k ≥ 0, let N ′
k denote the unconstrained network with Pi = ∅

for i = 1, . . . , k and Pi = {1, . . . , k} for i = k + 1, . . . , n. Then,

Edim(N ′
k) = 2k(n − k + 1).
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Proof. For the upper bound, we apply Lemma 1 and Theorem 1 using the fact
that

n⋃

i=1

2Pi∪{xi} =
n⋃

i=k+1

{Ji ∪ {i} | Ji ⊆ {1, . . . , k}} ∪ {J | J ⊆ {1, . . . , k}}.

To obtain the lower bound, let M ⊆ {0, 1}n−k denote the set from the proof of
Theorem 3 for the corresponding network N0 with n − k nodes. We show that
the set S = {0, 1}k × M ⊆ {0, 1}n is shattered by N ′

k. Note that S has the
claimed cardinality since |M | = n − k + 1.

Let (S−, S+) be a dichotomy of S (that is, where S−∪S+ = S and S−∩S+ =
∅). Given a natural number j ∈ {0, . . . , 2k−1}, we use bin(j) to denote the binary
representation of j using k bits. Then, let (M−

j , M+
j ) be the dichotomy of M

defined by

M+
j = {v ∈ M | bin(j)v ∈ S+}.

Here, bin(j)v refers to the concatenation of the k bits of bin(j) and the n − k
bits of v. According to Theorem 3, for each dichotomy (M−

j , M+
j ) there exist

parameter values pj
i , q

j
i , where 1 ≤ i ≤ n − k, such that N0 with these param-

eter settings induces this dichotomy on M . In the network N ′
k, we specify the

parameters as follows. For i = 1, . . . , k, let

pi = qi = 1/2,

and for i = k + 1, . . . , n and each j ∈ {0, . . . , 2k − 1} define

pi,bin(j) = pj
i−k,

qi,bin(j) = qj
i−k.

Obviously, the concept thus defined by N ′
k outputs −1 for elements of S− and 1

for elements of S+. Since every dichotomy of S can be implemented in this way,
S is shattered by N ′

k.

4.2 General Lower Bounds

In Section 4.2.1 we shall establish lower bounds on Edim(N ) for unconstrained
Bayesian networks and in Section 4.2.2 for networks with a reduced parameter
collection. These results are obtained by providing embeddings of concept classes,
as introduced in Section 2.1, into these networks. Since VCdim(C) ≤ VCdim(C ′)
if C ≤ C ′, a lower bound on VCdim(C ′) follows immediately from classes satisfying
C ≤ C ′ if the VC dimension of C is known or easy to determine. We first define
concept classes that will suit this purpose.

12



Definition 7. Let N be an arbitrary Bayesian network. For every i ∈ {1, . . . , n},
let Fi be a family of ±1-valued functions on the domain {0, 1}mi and let F =
F1×· · ·×Fn. Then CN ,F is the concept class over the domain {0, 1}n\{(0, . . . , 0)}
consisting of all functions of the form

LN ,f = [(xn, fn), . . . , (x1, f1)],

where f = (f1, . . . , fn) ∈ F . The right-hand side of this equation is to be un-
derstood as a decision list, where LN ,f(x) for x 6= (0, . . . , 0) is determined as
follows:

1. Find the largest i such that xi = 1.

2. Apply fi to the projection of x to the parent-variables of xi and output the
result.

The VC dimension of CN ,F can be directly obtained from the VC dimensions
of the classes Fi.

Lemma 3. Let N be an arbitrary Bayesian network. Then,

VCdim(CN ,F) =

n∑

i=1

VCdim(Fi).

Proof. We show that VCdim(CN ,F) ≥
∑n

i=1 VCdim(Fi); the proof for the other
direction is similar. For every i, we embed the vectors from {0, 1}mi into {0, 1}n

according to τi(a) = (a′, 1, 0, . . . , 0), where a′ ∈ {0, 1}i−1 is chosen such that its
projection to the parent-variables of xi is equal to a and the remaining compo-
nents are set to 0. Note that τi(a) is absorbed by item (xi, fi) of the decision
list LN ,f . It is easy to see that the following holds: If, for i = 1, . . . , n, Si

is a set that is shattered by Fi, then ∪n
i=1τi(Si) is shattered by CN ,F . Thus,

VCdim(CN ,F) ≥
∑n

i=1 VCdim(Fi).

The preceding definition and lemma are valid for unconstrained as well as
constrained networks as they make use only of the graph underlying the network
and do not refer to the values of the parameters. This will be important in the
applications that follow.

4.2.1 Lower Bounds for Unconstrained Bayesian Networks

The next theorem is the main step in deriving for an arbitrary unconstrained
network N a lower bound on Edim(N ). It is based on the idea of embedding
one of the concept classes CN ,F defined above into CN .

Theorem 5. Let N be an unconstrained Bayesian network and let F ∗
i denote

the set of all ±1-valued functions on domain {0, 1}mi. Further, let F ∗ = F∗
1 ×

· · · × F∗
n. Then, CN ,F∗ ≤ CN .

13



Proof. We have to show that, for every f = (f1, . . . , fn), we can find a pair
(P, Q) of distributions from DN such that, for every x ∈ {0, 1}n, LN ,f(x) =
sign(log(P (x)/Q(x))). To this end, we define the parameters for the distributions
P and Q as

pi,α =

{

2−2i−1n/2 if fi(α) = −1,
1/2 if fi(α) = +1,

and qi,α =

{
1/2 if fi(α) = −1,

2−2i−1n/2 if fi(α) = +1.

An easy calculation now shows that

log

(
pi,α

qi,α

)

= fi(α)2i−1n and

∣
∣
∣
∣
log

1 − pi,α

1 − qi,α

∣
∣
∣
∣
< 1. (6)

Fix some arbitrary x ∈ {0, 1}n \ {(0, . . . , 0)}. Choose i∗ maximal such that
xi∗ = 1 and let α∗ denote the projection of x to the parent-variables of xi∗ .
Then, LN ,f(x) = fi∗(α∗). Thus, LN ,f(x) = sign(log(P (x)/Q(x))) would follow
immediately from

sign

(

log
P (x)

Q(x)

)

= sign

(

log
pi∗,α∗

qi∗,α∗

)

= fi∗(α∗). (7)

The second equation in (7) is evident from the equality established in (6). As for
the first equation in (7), we argue as follows. By the choice of i∗, we have xi = 0
for every i > i∗. Expanding P and Q as given in (3), we obtain

log
P (x)

Q(x)
= log

pi∗,α∗

qi∗,α∗

+

i∗−1∑

i=1




∑

α∈{0,1}mi

xiMi,α(x) log
pi,α

qi,α





+
∑

i∈I




∑

α∈{0,1}mi

(1 − xi)Mi,α(x) log
1 − pi,α

1 − qi,α



 ,

where I = {1, . . . , n} \ {i∗}. Employing the inequality from (6), it follows that
the sign of the right-hand side of this equation is determined by log(pi∗,α∗

/qi∗,α∗
)

since this term is of absolute value 2i∗−1n and

2i∗−1n −
i∗−1∑

j=1

(2j−1n) − (n − 1) ≥ 1. (8)

This concludes the proof.

Using the lower bound obtained from Theorem 5 combined with Lemma 3
and the upper bound provided by Theorem 1, we have a result that is tight up
to a factor of 2.
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Corollary 3. Every unconstrained Bayesian network N satisfies

n∑

i=1

2mi ≤ Edim(N ) ≤

∣
∣
∣
∣
∣

n⋃

i=1

2Pi∪{i}

∣
∣
∣
∣
∣
≤ 2 ·

n∑

i=1

2mi.

Bounds for the kth-order Markov chain that are optimal up to an additive
constant of 1 emerge from the lower bound due to Theorem 5 with Lemma 3 and
the upper bound stated in Corollary 2.

Corollary 4. Let Nk denote the Bayesian network from Example 1. Then,

(n − k + 1)2k − 1 ≤ Edim(Nk) ≤ (n − k + 1)2k.

4.2.2 Lower Bounds for Bayesian Networks with a Reduced Param-
eter Collection

We now show how to obtain bounds for networks with a reduced parameter
collection. Similarly as in Section 4.2.1, the major step consists in providing em-
beddings into these networks. The main result is based on techniques developed
for Theorem 5.

Theorem 6. Let NR denote the Bayesian network that has a reduced parameter
collection (pi,c)1≤i≤n,1≤c≤di

in the sense of Definition 3. Let FRi

i denote the set
of all ±1-valued functions on the domain {0, 1}mi that depend on α ∈ {0, 1}mi

only through Ri(α). In other words, f ∈ FRi

i holds if and only if there exists a
±1-valued function g on domain {1, . . . , di} such that f(α) = g(Ri(α)) for every
α ∈ {0, 1}mi. Finally, let FR = FR1

1 × · · · × FRn
n . Then, CNR,FR ≤ CNR .

Proof. We focus on the differences to the proof of Theorem 5. First, the decision
list LNR,f uses a function f = (f1, . . . , fn) of the form fi(x) = gi(Ri(x)) for some
function gi : {1, . . . , di} → {−1, 1}. Second, the distributions P, Q that satisfy
LN ,f(x) = sign(log(P (x)/Q(x))) for every x ∈ {0, 1}n have to be defined over
the reduced parameter collection as given in equation (4). An appropriate choice
is

pi,c =

{

2−2i−1n/2 if gi(c) = −1,
1/2 if gi(c) = 1,

and qi,c =

{
1/2 if gi(c) = −1,

2−2i−1n/2 if gi(c) = 1.

The rest of the proof is completely analogous to the proof of Theorem 5.

Theorem 5 can be viewed as a special case of Theorem 6 since every un-
constrained network can be considered as a network with a reduced parameter
collection where the functions Ri are 1-1. However, there are differences arising
from the notation of the network parameters that have been taken into account
by the above proof.

Applying the lower bound of Theorem 6 in combination with Lemma 3 and
the upper bound of Theorem 2, we once more have bounds that are optimal up
to the factor 2.
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Corollary 5. Let NR denote the Bayesian network with a reduced parameter
collection (pi,c)1≤i≤n,1≤c≤di

in the sense of Definition 3. Then,

n∑

i=1

di ≤ Edim(NR) ≤ 2 ·
n∑

i=1

di.

4.2.3 Lower Bounds for Logistic Autoregressive Networks

The following result is not obtained by embedding a concept class into a logis-
tic autoregressive Bayesian network. However, we apply a similar technique as
developed in Sections 4.2.1 and 4.2.2 to derive a bound using the VC dimension
by directly showing that these networks can shatter sets of the claimed size.

Theorem 7. Let Nσ denote the logistic autoregressive Bayesian network from
Definition 4. Then,

Edim(Nσ) ≥ n(n − 1)/2.

Proof. We show that the following set S is shattered by the concept class CNσ
.

Then the statement follows from Lemma 1.
For i = 2, . . . , n and c = 1, . . . , i − 1, let αi,c ∈ {0, 1}i−1 be the pattern

with bit 1 in position c and zeros elsewhere. Then, for every pair (i, c), where
i ∈ {2, . . . , n} and c ∈ {1, . . . , i − 1}, let s(i,c) ∈ {0, 1}n be the vector that has
bit 1 in coordinate i, bit-pattern αi,c in the coordinates 1, . . . , i− 1, and zeros in
the remaining positions. The set

S = {s(i,c) | i = 2, . . . , n and c = 1, . . . , i − 1}

has n(n − 1)/2 elements.
To show that S is shattered, let (S−, S+) be some arbitrary dichotomy of S.

We claim that there exists a pair (P, Q) of distributions from DNσ
such that for

every s(i,c), sign(log(P (s(i,c))/Q(s(i,c)))) = 1 if and only if s(i,c) ∈ S+. Assume
that the parameters pi,α and qi,α for the distributions P and Q, respectively,
satisfy

pi,α =

{
1/2 if α = αi,c and s(i,c) ∈ S+,

2−2i−1n/2 otherwise,

and

qi,α =

{

2−2i−1n/2 if α = αi,c and s(i,c) ∈ S+,
1/2 otherwise.

Similarly as in the proof of Theorem 5, we have
∣
∣
∣
∣
log

(
pi,α

qi,α

)∣
∣
∣
∣
= 2i−1n and

∣
∣
∣
∣
log

1 − pi,α

1 − qi,α

∣
∣
∣
∣
< 1. (9)

16



The expansion of P and Q yields for every s(i,c) ∈ S,

log
P (s(i,c))

Q(s(i,c))
= log

pi,αi,c

qi,αi,c

+
i−1∑

j=1




∑

α∈{0,1}j−1

s
(i,c)
j Mj,α(s(i,c)) log

pj,α

qj,α





+
∑

j∈I




∑

α∈{0,1}j−1

(1 − s
(i,c)
j )Mj,α(s(i,c)) log

1 − pj,α

1 − qj,α



 ,

where I = {1, . . . , n}\{i}. In analogy to inequality (8) in the proof of Theorem 5,
it follows from (9) that the sign of log(P (s(i,c))/Q(s(i,c))) is equal to the sign of
log(pi,αi,c

/qi,αi,c
). By the definition of pi,αi,c

and qi,αi,c
, the sign of log(pi,αi,c

/qi,αi,c
)

is positive if and only if s(i,c) ∈ S+.
It remains to show that the parameters of the distributions P and Q can be

given as required by Definition 4, that is, in the form pi,α = σ(
∑i−1

j=1 wi,jαj) with
wi,j ∈ R, and similarly for qi,α. This now immediately follows from the fact that
σ(R) =]0, 1[.

5 Lower Bounds via Embeddings of Parity Func-

tions

The lower bounds obtained in Section 4 rely on arguments based on the VC
dimension of the respective concept class. In particular, a quadratic lower bound
for the logistic autoregressive network has been established. In the following, we
introduce a different technique leading to the lower bound 2Ω(n) for a variant
of this network. For the time being, it seems possible to obtain an exponential
bound for these slightly modified networks only, which are given by the following
definition.

Definition 8. The modified logistic autoregressive Bayesian network N ′
σ is the

fully connected Bayesian network with nodes 0, 1, . . . , n + 1 and the constraints
on the parameter collection defined as

∀i = 0, . . . , n, ∃(wi,j)0≤j≤i−1 ∈ R
i, ∀α ∈ {0, 1}i : pi,α = σ

(
i−1∑

j=0

wi,jαj

)

and

∃(wi)0≤i≤n, ∀α ∈ {0, 1}n+1 : pn+1,α = σ

(
n∑

i=0

wiσ

(
i−1∑

j=0

wi,jαj

))

.

Obviously, N ′
σ is completely described by the parameter collections (wi,j)0≤i≤n,0≤j≤i−1

and (wi)0≤i≤n.
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The crucial difference between N ′
σ and Nσ is the node n + 1 whose sigmoidal

function receives the outputs of the other sigmoidal functions as input. Roughly
speaking, Nσ is a single-layer network whereas N ′

σ has an extra node at a second
layer.

To obtain the bound, we provide an embedding of the concept class of par-
ity functions. The following theorem motivates this construction by showing
that it is impossible to obtain an exponential lower bound for Edim(Nσ) nor
for Edim(N ′

σ) using the VC dimension argument, as these networks have VC
dimensions that are polynomial in n.

Theorem 8. The logistic autoregressive Bayesian network Nσ from Definition 4
and the modified logistic autoregressive Bayesian network N ′

σ from Definition 8
have a VC dimension that is bounded by O(n6).

Proof. Consider first the logistic autoregressive Bayesian network. We show that
the concept class induced by Nσ can be computed by a specific type of feedfor-
ward neural network. Then, we apply a known bound on the VC dimension of
these networks.

The neural networks for the concepts in CNσ
consist of sigmoidal units, prod-

uct units, and units computing second-order polynomials. A sigmoidal unit
computes functions of the form σ(w>x − t), where x ∈ R

k is the input vector
and w ∈ R

k, t ∈ R are parameters. A product unit computes Πk
i=1x

wi

i .
The value of pi,α can be calculated by a sigmoidal unit as pi,α = σ(

∑i−1
j=1 wi,jαj)

with α as input and parameters wi,1, . . . , wi,i−1. Regarding the factors pxi

i,α(1 −

pi,α)(1−xi), we observe that

pxi

i,α(1 − pi,α)(1−xi) = pi,αxi + (1 − pi,α)(1 − xi)

= 2pi,αxi − xi − pi,α + 1,

where the first equation is valid because xi ∈ {0, 1}. Thus, the value of pxi

i,α(1 −

pi,α)(1−xi) is given by a second-order polynomial. Similarly, the value of qxi

i,α(1 −

qi,α)(1−xi) can also be determined using sigmoidal units and polynomial units
of order 2. Finally, the output value of the network is obtained by compar-
ing P (x)/Q(x) with the constant threshold 1. We calculate P (x)/Q(x) using a
product unit

y1 · · · ynz
−1
1 · · · z−1

n ,

with input variables yi and zi that receive the value of pxi

i,α(1 − pi,α)(1−xi) and

qxi

i,α(1 − qi,α)(1−xi) computed by the second-order units, respectively.
This network has O(n2) parameters and O(n) computation nodes, each of

which is a sigmoidal unit, a second-order unit, or a product unit. Theorem 2
of Schmitt (2002) shows that every such network with W parameters and k
computation nodes, which are sigmoidal and product units, has VC dimension
O(W 2k2). A close inspection of the proof of this result reveals that it also includes
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polynomials of degree 2 as computational units (see also Lemma 4 in Schmitt,
2002). Thus, we obtain the claimed bound O(n6) for the logistic autoregressive
Bayesian network Nσ.

For the modified logistic autoregressive network we have only to take one
additional sigmoidal unit into account. Thus, the bound for this network follows
now immediately.

In the previous result we were interested in the asymptotic behavior of the VC
dimension, showing that it is not exponential. Using the techniques provided in
Schmitt (2002) mentioned in the above proof, it is also possible to obtain constant
factors for these bounds.

We now provide the main result of this section. Its proof employs the concept
class PARITYn defined in Section 2.3.

Theorem 9. Let N ′
σ denote the modified logistic autoregressive Bayesian network

with n+2 nodes and assume that n is a multiple of 4. Then, PARITYn/2 ≤ N ′
σ.

Proof. The mapping

{0, 1}n/2 3 x = (x1, . . . , xn/2) 7→ (

α
︷ ︸︸ ︷

1, x1, . . . , xn/2, 1, . . . , 1, 1) = x′ ∈ {0, 1}n+2

(10)
assigns to every element of {0, 1}n/2 uniquely some element in {0, 1}n+2. Note
that α, as indicated in (10), equals the bit-pattern of the parent-variables of x′

n+2

(which are actually all other variables). We claim that the following holds. For
every a ∈ {0, 1}n/2, there exists a pair (P, Q) of distributions from DN ′

σ
such that

for every x ∈ {0, 1}n/2,

(−1)a>x = sign

(

log
P (x′)

Q(x′)

)

. (11)

Clearly, the theorem follows once the claim is settled. The proof of the claim
makes use of the following facts:

Fact 1 For every a ∈ {0, 1}n/2, function (−1)a>x can be computed by a two-
layer threshold circuit with n/2 threshold units at the first layer and one
threshold unit as output node at the second layer.

Fact 2 Each two-layer threshold circuit C can be simulated by a two-layer sig-
moidal circuit C ′ with the same number of units and the following output
convention: C(x) = 1 =⇒ C ′(x) ≥ 2/3 and C(x) = 0 =⇒ C ′(x) ≤ 1/3.

Fact 3 Network N ′
σ contains as a sub-network a two-layer sigmoidal circuit C ′

with n/2 input nodes, n/2 sigmoidal units at the first layer, and one sig-
moidal unit at the second layer.
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The parity function is a symmetric Boolean function, that is, a function
f : {0, 1}k → {0, 1} that is described by a set M ⊆ {0, . . . , k} such that f(x) = 1
if and only if

∑k
i=1 xi ∈ M . Thus, Fact 1 is implied by Proposition 2.1 of

Hajnal et al. (1993) which shows that every symmetric Boolean function can be
computed by a circuit of this kind.

Fact 2 follows from the capability of the sigmoidal function σ to approximate
any Boolean threshold function arbitrarily close. This can be done by multiplying
all weights and the threshold with a sufficiently large number.

To establish Fact 3, we refer to Definition 8 and proceed as follows: We
would like the term pn+1,α to satisfy pn+1,α = C ′(α1, . . . , αn/2), where C ′ denotes
an arbitrary two-layer sigmoidal circuit as described in Fact 3. To this end, we
set wi,j = 0 if 1 ≤ i ≤ n/2 or if i, j ≥ n/2 + 1. Further, we let wi = 0 if 1 ≤ i ≤
n/2. The parameters that have been set to zero are referred to as “redundant”
parameters in what follows. Recall from (10) that α0 = αn/2+1 = · · · = αn = 1.
From these settings and from σ(0) = 1/2, we obtain

pn+1,α = σ




1

2
w0 +

n∑

i=n/2+1

wiσ



wi,0 +

n/2
∑

j=1

wi,jαj







 .

Indeed, this is the output of a two-layer sigmoidal circuit C ′ on the input
(α1, . . . , αn/2).

We are now in the position to describe the choice of distributions P and Q.
Let C ′ be the sigmoidal circuit that computes (−1)a>x for some fixed a ∈ {0, 1}n/2

according to Facts 1 and 2. Let P be the distribution obtained by setting the
redundant parameters to zero (as described above) and the remaining parameters
as in C ′. Thus, pn+1,α = C ′(α1, . . . , αn/2). Let Q be the distribution with the
same parameters as P except for replacing wi by −wi. Thus, by symmetry of
σ, qn+1,α = 1 − C ′(α1, . . . , αn/2). Since x′

n+1 = 1 and since all but one factor in
P (x′)/Q(x′) cancel each other, we arrive at

P (x′)

Q(x′)
=

pn+1,α

qn+1,α
=

C ′(α1, . . . , αn/2)

1 − C ′(α1, . . . , αn/2)
.

As C ′ computes (−1)a>x, the output convention from Fact 2 yields P (x′)/Q(x′) ≥
2 if (−1)a>x = 1, and P (x′)/Q(x′) ≤ 1/2 otherwise. This implies claim (11) and
concludes the proof.

Combining Theorem 9 with Corollary 1, we obtain the exponential lower
bound for the modified logistic autoregressive Bayesian network.

Corollary 6. Let N ′
σ denote the modified logistic autoregressive Bayesian net-

work. Then, Edim(N ′
σ) ≥ 2n/4.
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By a more detailed analysis it can be shown that Theorem 9 holds even if we
restrict the values in the parameter collection of N ′

σ to integers that can be repre-
sented using O(log n) bits. We mentioned in the introduction that a large lower
bound on Edim(C) rules out the possibility of a large margin classifier. Forster
and Simon (2002) have shown that every linear arrangement for PARITYn has
an average geometric margin of at most 2−n/2. Thus there can be no linear ar-
rangement with an average margin exceeding 2−n/4 for CN ′

σ
even if we restrict

the weight parameters in N ′
σ to logarithmically bounded integers.

6 Conclusions and Open Problems

Bayesian networks have become one of the heavily studied and widely used prob-
abilistic techniques for pattern recognition and statistical inference. One line of
inquiry into Bayesian networks pursues the idea of combining them with kernel
methods so that one can take advantage of both. Kernel methods employ the
principle of mapping the input vectors to some higher-dimensional space where
then inner product operations are performed implicitly. The major motivation
for our work was to reveal more about such inner product spaces. In particular,
we asked whether Bayesian networks can be considered as linear classifiers and,
thus, whether kernel operations can be implemented as standard dot products.
With this work we have gained insight into the nature of the inner product space
in terms of bounds on its dimensionality. As the main results, we have estab-
lished tight bounds on the Euclidean dimension of spaces in which two-label
classifications of Bayesian networks with binary nodes can be implemented.

We have employed the VC dimension as one of the tools for deriving lower
bounds. Bounds on the VC dimension of concept classes abound. Exact values
are known only for a few classes. Surprisingly, our investigation of the dimension-
ality of embeddings lead to some exact values of the VC dimension for nontrivial
Bayesian networks. The VC dimension can be employed to obtain tight bounds
on the complexity of model selection, that is, on the amount of information re-
quired for choosing a Bayesian network that performs well on unseen data. In
frameworks where this amount can be expressed in terms of the VC dimension,
the tight bounds for the embeddings of Bayesian networks established here show
that the sizes of the training samples required for learning can also be estimated
using the Euclidean dimension. Another consequence of this close relationship
between VC dimension and Euclidean dimension is that these networks can be
replaced by linear classifiers without a significant increase in the required sample
sizes. Whether these conclusions can be drawn also for the logistic autoregres-
sive network is an open issue. It remains to be shown if the VC dimension is
also useful in tightly bounding the Euclidean dimension of these networks. For
the modified version of this model, our results suggest that different approaches
might be more successful.
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The results raise some further open questions. First, since we considered only
networks with binary nodes, analogous questions regarding Bayesian networks
with multiple-valued or even continuous-valued nodes are certainly of interest.
Another generalization of Bayesian networks are those with hidden variables
which have also been out of the scope of this work. Further, with regard to
logistic autoregressive Bayesian networks, we were able to obtain an exponential
lower bound only for a variant of them. For the unmodified network such a bound
has yet to be found. Finally, the questions we studied here are certainly relevant
not only for Bayesian networks but also for other popular classes of distributions
or densities. Those from the exponential family look like a good thing to start
with.
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