
On the Accuracy of Bounded Rationality:
How Far from Optimal Is Fast and Frugal?

Michael Schmitt
Ludwig-Marum-Gymnasium

Schlossgartenstraße 11
76327 Pfinztal, Germany

mschmittm@googlemail.com

Laura Martignon
Institut für Mathematik und Informatik
Pädagogische Hochschule Ludwigsburg

Reuteallee 46, 71634 Ludwigsburg, Germany
martignon@ph-ludwigsburg.de

Abstract

Fast and frugal heuristics are well studied models of bounded rational-
ity. Psychological research has proposed the take-the-best heuristic as a
successful strategy in decision making with limited resources. Take-the-
best searches for a sufficiently good ordering of cues (features) in a task
where objects are to be compared lexicographically. We investigate the
complexity of the problem of approximating optimal cue permutations
for lexicographic strategies. We show that no efficient algorithm can ap-
proximate the optimum to within any constant factor, if P 6= NP. We
further consider a greedy approach for building lexicographic strategies
and derive tight bounds for the performance ratio of a new and simple
algorithm. This algorithm is proven to perform better than take-the-best.

1 Introduction

In many circumstances the human mind has to make decisions when time and knowledge
are limited. Cognitive psychology categorizes human judgments made under such con-
straints as being boundedly rational if they are “satisficing” (Simon, 1982) or, more gener-
ally, if they do not fall too far behind the rational standards. A class of models for human
reasoning studied in the context of bounded rationality consists of simple algorithms termed
“fast and frugal heuristics”. These were the topic of major psychological research (Gigeren-
zer and Goldstein, 1996; Gigerenzer et al., 1999). Great efforts have been put into testing
these heuristics by empirical means in experiments with human subjects (Bröder, 2000;
Bröder and Schiffer, 2003; Lee and Cummins, 2004; Newell and Shanks, 2003; Newell
et al., 2003; Slegers et al., 2000) or in simulations on computers (Bröder, 2002; Hogarth
and Karelaia, 2003; Nellen, 2003; Todd and Dieckmann, 2005). (See also the discussion
and controversies documented in the open peer commentaries on Todd and Gigerenzer,
2000.)

Among the fast and frugal heuristics there is an algorithm called “take-the-best” (TTB)
that is considered a process model for human judgments based on one-reason decision
making. Which of the two cities has a larger population: (a) Düsseldorf (b) Hamburg?
This is the task originally studied by Gigerenzer and Goldstein (1996) where German cities
with a population of more than 100,000 inhabitants had to be compared. The available
information on each city consists of the values of nine binary cues, or attributes, indicating
presence or absence of a feature. The cues being used are, for instance, whether the city is
a state capital, whether it is indicated on car license plates by a single letter, or whether it
has a soccer team in the national league. The judgment which city is larger is made on the
basis of the two binary vectors, or cue profiles, representing the two cities. TTB performs

Soccer Team State Capital License Plate
Hamburg 1 1 0
Essen 0 0 1
Düsseldorf 0 1 1
Validity 1 1/2 0

Table 1: Part of the German cities task of Gigerenzer and Goldstein (1996). Shown are
profiles and validities of three cues for three cities. Cue validities are computed from the
data as given here. The original data has different validities but the same cue ranking.

a lexicographic strategy, comparing the cues one after the other and using the first cue that
discriminates as the one reason to yield the final decision. For instance, if one city has
a university and the other does not, TTB would infer that the first city is larger than the
second. If the cue values of both cities are equal, the algorithm passes on to the next cue.

TTB examines the cues in a certain order. Gigerenzer and Goldstein (1996) introduced
ecological validity as a numerical measure for ranking the cues. The validity of a cue is
a real number in the interval [0, 1] that is computed in terms of the known outcomes of
paired comparisons. It is defined as the number of pairs the cue discriminates correctly
(i.e., where it makes a correct inference) divided by the number of pairs it discriminates
(i.e., where it makes an inference, be it right or wrong). TTB always chooses a cue with
the highest validity, that is, it “takes the best” among those cues not yet considered. Table 1
shows cue profiles and validities for three cities. The ordering defined by the size of their
population is given by

{〈 Düsseldorf , Essen 〉, 〈 Düsseldorf , Hamburg 〉, 〈 Essen , Hamburg 〉},

where a pair 〈a, b〉 indicates that a has less inhabitants than b. As an example for calculating
the validity, the state-capital cue distinguishes the first and the third pair but is correct only
on the latter. Hence, its validity has value 1/2.

The order in which the cues are ranked is crucial for success or failure of TTB. In the exam-
ple of Düsseldorf and Hamburg, the car-license-plate cue would yield that Düsseldorf (D)
is larger than Hamburg (HH), whereas the soccer-team cue would correctly favor Hamburg.
Thus, how successful a lexicographic strategy is in a comparison task consisting of a par-
tial ordering of cue profiles depends on how well the cue ranking minimizes the number of
incorrect comparisons. Specifically, the accuracy of TTB relies on the degree of optimality
achieved by the ranking according to decreasing cue validities. For TTB and the German
cities task, computer simulations have shown that TTB discriminates at least as accurate as
other models (Gigerenzer and Goldstein, 1996; Gigerenzer et al., 1999; Todd and Dieck-
mann, 2005). TTB made as many correct inferences as standard algorithms proposed by
cognitive psychology and even outperformed some of them.

Partial results concerning the accuracy of TTB compared to the accuracy of other strate-
gies have been obtained analytically by Martignon and Hoffrage (2002). Here we subject
the problem of finding optimal cue orderings to a rigorous theoretical analysis employing
methods from the theory of computational complexity (Ausiello et al., 1999). Obviously,
TTB runs in polynomial time. Given a list of ordered pairs, it computes all cue validities
in polynomially many computing steps in terms of the size of the list. We define the op-
timization problem MINIMUM INCORRECT LEXICOGRAPHIC STRATEGY as the task of
minimizing the number of incorrect inferences for the lexicographic strategy on a given list
of pairs. We show that, unless P = NP, there is no polynomial-time approximation algo-
rithm that computes solutions for MINIMUM INCORRECT LEXICOGRAPHIC STRATEGY
that are only a constant factor worse than the optimum, unless P = NP. This means that
the approximating factor, or performance ratio, must grow with the size of the problem.

As an extension of TTB we consider an algorithm for finding cue orderings that was called
“TTB by Conditional Validity” in the context of bounded rationality. It is based on the
greedy method, a principle widely used in algorithm design. This greedy algorithm runs
in polynomial time and we derive tight bounds for it, showing that it approximates the
optimum with a performance ratio proportional to the number of cues. An important con-

sequence of this result is a guarantee that for those instances that have a solution that dis-
criminates all pairs correctly, the greedy algorithm always finds a permutation attaining this
minimum. We are not aware that this quality has been established for any of the previously
studied heuristics for paired comparison. In addition, we show that TTB does not have this
property, concluding that the greedy method of constructing cue permutations performs
provably better than TTB. For a more detailed account and further results we refer to the
complete version of this work (Schmitt and Martignon, 2006).

2 Lexicographic Strategies

A lexicographic strategy is a method for comparing elements of a set B ⊆ {0, 1}n. Each
component 1, . . . , n of these vectors is referred to as a cue. Given a, b ∈ B, where a =
(a1, . . . , an) and b = (b1, . . . , bn), the lexicographic strategy searches for the smallest
cue index i ∈ {1, . . . , n} such that ai and bi are different. The strategy then outputs one
of “ < ” or “ > ” according to whether ai < bi or ai > bi assuming the usual order
0 < 1 of the truth values. If no such cue exists, the strategy returns “ = ”. Formally, let
diff : B × B → {1, . . . , n + 1} be the function where diff(a, b) is the smallest cue index
on which a and b are different, or n + 1 if they are equal, that is,

diff(a, b) = min{{i : ai 6= bi} ∪ {n + 1}}.

Then, the function S : B × B → {“ < ”, “ = ”, “ > ”} computed by the lexicographic
strategy is

S(a, b) =

“ < ” if diff(a, b) ≤ n and adiff(a,b) < bdiff(a,b),
“ > ” if diff(a, b) ≤ n and adiff(a,b) > bdiff(a,b),
“ = ” otherwise.

Lexicographic strategies may take into account that the cues come in an order that is dif-
ferent from 1, . . . , n. Let π : {1, . . . , n} → {1, . . . , n} be a permutation of the cues. It
gives rise to a mapping π : {0, 1}n → {0, 1}n that permutes the components of Boolean
vectors by π(a1, . . . , an) = (aπ(1), . . . , aπ(n)). As π is uniquely defined given π, we sim-
plify the notation and write also π for π. The lexicographic strategy under cue permutation
π passes through the cues in the order π(1), . . . , π(n), that is, it computes the function
Sπ : B × B → {“ < ”, “ = ”, “ > ”} defined as

Sπ(a, b) = S(π(a), π(b)).

The problem we study is that of finding a cue permutation that minimizes the number of
incorrect comparisons in a given list of element pairs using the lexicographic strategy. An
instance of this problem consists of a set B of elements and a set of pairs L ⊆ B×B. Each
pair 〈a, b〉 ∈ L represents an inequality a ≤ b. Given a cue permutation π, we say that the
lexicographic strategy under π infers the pair 〈a, b〉 correctly if Sπ(a, b) ∈ {“ < ”, “ = ”},
otherwise the inference is incorrect. The task is to find a permutation π such that the number
of incorrect inferences in L using Sπ is minimal, that is, a permutation π that minimizes

INCORRECT(π, L) = |{〈a, b〉 ∈ L : Sπ(a, b) = “ > ”}|.

3 Approximability of Optimal Cue Permutations

A large class of optimization problems, denoted APX, can be solved efficiently if the so-
lution is required to be only a constant factor worse than the optimum (see, e.g., Ausiello
et al., 1999). Here, we prove that, if P 6= NP, there is no polynomial-time algorithm whose
solutions yield a number of incorrect comparisons that is by at most a constant factor larger
than the minimal number possible. It follows that the problem of approximating the opti-
mal cue permutation is even harder than any problem in APX. The optimization problem
is formally stated as follows.

MINIMUM INCORRECT LEXICOGRAPHIC STRATEGY
Instance: A set B ⊆ {0, 1}n and a set L ⊆ B × B.

Solution: A permutation π of the cues of B.
Measure: The number of incorrect inferences in L for the lexicographic strat-

egy under cue permutation π, that is, INCORRECT(π, L).

Given a real number r > 0, an algorithm is said to approximate MINIMUM INCORRECT
LEXICOGRAPHIC STRATEGY to within a factor of r if for every instance (B,L) the algo-
rithm returns a permutation π such that

INCORRECT(π, L) ≤ r · opt(L),

where opt(L) is the minimal number of incorrect comparisons achievable on L by any
permutation. The factor r is also known as the performance ratio of the algorithm. The
following optimization problem plays a crucial role in the derivation of the lower bound
for the approximability of MINIMUM INCORRECT LEXICOGRAPHIC STRATEGY.

MINIMUM HITTING SET
Instance: A collection C of subsets of a finite set U .
Solution: A hitting set for C, that is, a subset U ′ ⊆ U such that U ′ contains at

least one element from each subset in C.
Measure: The cardinality of the hitting set, that is, |U ′|.

MINIMUM HITTING SET is equivalent to MINIMUM SET COVER. Bellare et al. (1993)
have shown that MINIMUM SET COVER cannot be approximated in polynomial time to
within any constant factor, unless P = NP. Thus, if P 6= NP, MINIMUM HITTING SET
cannot be approximated in polynomial time to within any constant factor as well.

Theorem 1. For every r, there is no polynomial-time algorithm that approximates MINI-
MUM INCORRECT LEXICOGRAPHIC STRATEGY to within a factor of r, unless P = NP.
Proof. We show that the existence of a polynomial-time algorithm that approximates MIN-
IMUM INCORRECT LEXICOGRAPHIC STRATEGY to within some constant factor implies
the existence of a polynomial-time algorithm that approximates MINIMUM HITTING SET
to within the same factor. Then the statement follows from the equivalence of MINIMUM
HITTING SET with MINIMUM SET COVER and the nonapproximability of the latter (Bel-
lare et al., 1993). The main part of the proof consists in establishing a specific approxima-
tion preserving reduction, or AP-reduction, from MINIMUM HITTING SET to MINIMUM
INCORRECT LEXICOGRAPHIC STRATEGY. (See Ausiello et al., 1999, for a definition of
the AP-reduction.).

We first define a function f that is computable in polynomial time and maps each instance
of MINIMUM HITTING SET to an instance of MINIMUM INCORRECT LEXICOGRAPHIC
STRATEGY. Let 1 denote the n-bit vector with a 1 everywhere and 1i1,...,i`

the vector
with 0 in positions i1, . . . , i` and 1 elsewhere. Given the collection C of subsets of the set
U = {u1, . . . , un}, the function f maps C to (B,L), where B ⊆ {0, 1}n+1 is defined as
follows:

1. Let (1, 0) ∈ B.

2. For i = 1, . . . , n, let (1i, 1) ∈ B.

3. For every {ui1 , . . . , ui`
} ∈ C, let (1i1,...,i`

, 1) ∈ B.

Further, the set L is constructed as

L = {〈(1, 0), (1i, 1)〉 : i = 1, . . . , n}∪{〈(1i1,...,i`
, 1), (1, 0)〉 : {ui1 , . . . , ui`

} ∈ C}. (1)

In the following, a pair from the first and second set on the right-hand side of equation (1)
is referred to as an element pair and a subset pair, respectively. Obviously, the function f
is computable in polynomial time. It has the following property.
Claim 1. Let f(C) = (B,L). If C has a hitting set of cardinality k or less then f(C) has
a cue permutation π where INCORRECT(π, L) ≤ k.
To prove this, assume without loss of generality that C has a hitting set U ′ of cardinality
exactly k, say U ′ = {uj1 , . . . , ujk

}, and let U \ U ′ = {ujk+1
, . . . , ujn

}. Then the cue
permutation

j1, . . . , jk, n + 1, jk+1, . . . , jn.

results in no more than k incorrect inferences in L. Indeed, consider an arbitrary subset
pair 〈(1i1,...,i`

, 1), (1, 0)〉. To not be an error, one of i1, . . . , i` must occur in the hitting
set j1, . . . , jk. Hence, the first cue that distinguishes this pair has value 0 in (1i1,...,i`

, 1)
and value 1 in (1, 0), resulting in a correct comparison. Further, let 〈(1, 0), (1i, 1)〉 be an
element pair with ui 6∈ U ′. This pair is distinguished correctly by cue n + 1. Finally,
each element pair 〈(1, 0), (1i, 1)〉 with ui ∈ U ′ is distinguished by cue i with a result
that disagrees with the ordering given by L. Thus, only element pairs with ui ∈ U ′ yield
incorrect comparisons and no subset pair. Hence, the number of incorrect inferences is not
larger than |U ′|.

Next, we define a polynomial-time computable function g that maps each collection C of
subsets of a finite set U and each cue permutation π for f(C) to a subset of U . Given that
f(C) = (B,L), the set g(C, π) ⊆ U is defined as follows:

1. For every element pair 〈(1, 0), (1i, 1)〉 ∈ L that is compared incorrectly by π, let
ui ∈ g(C, π).

2. For every subset pair 〈(1i1,...,i`
, 1), (1, 0)〉 ∈ L that is compared incorrectly by π,

let one of the elements ui1 , . . . , ui`
∈ g(C, π).

Clearly, the function g is computable in polynomial time. It satisfies the following condi-
tion.

Claim 2. Let f(C) = (B,L). If INCORRECT(π, L) ≤ k then g(C, π) is a hitting set of
cardinality k or less for C.

Obviously, if INCORRECT(π, L) ≤ k then g(C, π) has cardinality at most k. To show that
it is a hitting set, assume the subset {ui1 , . . . , ui`

} ∈ C is not hit by g(C, π). Then neither
of ui1 , . . . , ui`

is in g(C, π). Hence, we have correct comparisons for the element pairs
corresponding to ui1 , . . . , ui`

and for the subset pair corresponding to {ui1 , . . . , ui`
}. As

the subset pair is distinguished correctly, one of the cues i1, . . . , i` must be ranked before
cue n + 1. But then at least one of the element pairs for ui1 , . . . , ui`

yields an incorrect
comparison. This contradicts the assertion that the comparisons for these element pairs are
all correct. Thus, g(C, π) is a hitting set and the claim is established.

Assume now that there exists a polynomial-time algorithm A that approximates MINIMUM
INCORRECT LEXICOGRAPHIC STRATEGY to within a factor of r. Consider the algorithm
that, for a given instance C of MINIMUM HITTING SET as input, calls algorithm A with
input (B,L) = f(C), and returns g(C, π) where π is the output provided by A. Clearly,
this new algorithm runs in polynomial time. We show that it approximates MINIMUM
HITTING SET to within a factor of r. By the assumed approximation property of algorithm
A, we have

INCORRECT(π, L) ≤ r · opt(L).

Together with Claim 2, this implies that g(π,C) is a hitting set for C satisfying

|g(C, π)| ≤ r · opt(L).

From Claim 1 we obtain opt(L) ≤ opt(C) and, thus,

|g(C, π)| ≤ r · opt(C).

Thus, the proposed algorithm for MINIMUM HITTING SET violates the approximation
lower bound that holds for this problem under the assumption P 6= NP. This proves the
statement of the theorem.

4 Greedy Approximation of Optimal Cue Permutations

The so-called greedy approach to the solution of an approximation problem is helpful when
it is not known which algorithm performs best. It is a simple heuristic that in practice often
provides satisfactory solutions in many situations. The algorithm GREEDY CUE PERMU-
TATION that we introduce here is based on the greedy method. The idea is to select the

Algorithm 1 GREEDY CUE PERMUTATION

Input: a set B ⊆ {0, 1}n and a set L ⊆ B × B
Output: a cue permutation π for n cues

I := {1, . . . , n};
for i = 1, . . . , n do

let j ∈ I be a cue where INCORRECT(j, L) = minj′∈I INCORRECT(j′, L);
π(i) := j;
I := I \ {j};
L := L \ {〈a, b〉 : aj 6= bj}

end for.

first cue according to which single cue makes a minimum number of incorrect inferences
(choosing one arbitrarily if there are two or more). After that the algorithm removes those
pairs that are distinguished by the selected cue, which is reasonable as the distinctions
drawn by this cue cannot be undone by later cues. This procedure is then repeated on the
set of pairs left. The description of GREEDY CUE PERMUTATION is given as Algorithm 1.
It employs an extension of the function INCORRECT applicable to single cues, such that
for a cue i we have

INCORRECT(i, L) = |{〈a, b〉 ∈ L : ai > bi}|.

It is evident that Algorithm 1 runs in polynomial time, but how good is it? The least one
should demand from a good heuristic is that, whenever a minimum of zero is attainable,
it finds such a solution. This is indeed the case with GREEDY CUE PERMUTATION as
we show in the following result. Moreover, it asserts a general performance ratio for the
approximation of the optimum.

Theorem 2. The algorithm GREEDY CUE PERMUTATION approximates MINIMUM IN-
CORRECT LEXICOGRAPHIC STRATEGY to within a factor of n, where n is the number of
cues. In particular, it always finds a cue permutation with no incorrect inferences if one
exists.

Proof. We show by induction on n that the permutation returned by the algorithm makes
a number of incorrect inferences no larger than n · opt(L). If n = 1, the optimal cue
permutation is definitely found. Let n > 1. Clearly, as the incorrect inferences of a cue
cannot be reversed by other cues, there is a cue j with

INCORRECT(j, L) ≤ opt(L).

The algorithm selects such a cue in the first round of the loop. During the rest of the
rounds, a permutation of n − 1 cues is constructed for the set of remaining pairs. Let
j be the cue that is chosen in the first round, I ′ = {1, . . . , j − 1, j + 1, . . . , n}, and
L′ = L \ {〈a, b〉 : aj 6= bj}. Further, let optI′(L′) denote the minimum number of
incorrect inferences taken over the permutations of I ′ on the set L′. Then, we observe that

opt(L) ≥ opt(L′) = optI′(L′).

The inequality is valid because of L ⊇ L′. (Note that opt(L′) refers to the minimum taken
over the permutations of all cues.) The equality holds as cue j does not distinguish any pair
in L′. By the induction hypothesis, rounds 2 to n of the loop determine a cue permutation π ′

with INCORRECT(π′, L′) ≤ (n− 1) · optI′(L′). Thus, the number of incorrect inferences
made by the permutation π finally returned by the algorithm satisfies

INCORRECT(π, L) ≤ INCORRECT(j, L) + (n − 1) · optI′(L′),

which is, by the inequalities derived above, not larger than opt(L) + (n − 1) · opt(L) as
stated.

The special property of GREEDY CUE PERMUTATION that it always finds the minimum if
this has value zero is not owned by TTB as demonstrated by the following result.

Corollary 3. On inputs that have a cue ordering without incorrect comparisons under the
lexicographic strategy, GREEDY CUE PERMUTATION can be better than TTB.

〈 001 , 010 〉
〈 010 , 100 〉
〈 010 , 101 〉
〈 100 , 111 〉

Figure 1: A set of lexicographically ordered pairs with nondecreasing cue validities (1, 1/2,
and 2/3). The cue ordering of TTB (1, 3, 2) causes an incorrect inference on the first pair.
By Theorem 2, GREEDY CUE PERMUTATION finds the lexicographic ordering.

〈 000001 , 000000 〉
〈 100001 , 100000 〉
〈 010000 , 000001 〉
〈 001000 , 000001 〉
〈 000100 , 000001 〉
〈 000010 , 000001 〉

Figure 2: A set of pairs providing a lower bound on the performance ratio of GREEDY CUE
PERMUTATION (Theorem 4).

Proof. Figure 1 shows a set of four lexicographically ordered pairs. According to Theo-
rem 2, GREEDY CUE PERMUTATION comes up with the given permutation of the cues.
The validities are 1, 1/2, and 2/3. Thus, TTB ranks the cues as 1, 3, 2 whereupon the first
pair is inferred incorrectly.

Finally, we consider lower bounds on the performance ratio of GREEDY CUE PERMUTA-
TION. We obtain bounds in terms of n and |L|. It emerges in particular that the upper
bound obtained in Theorem 2 is optimal up to the factor 2.

Theorem 4. The performance ratio of GREEDY CUE PERMUTATION is at least
max{n/2, |L|/2}.

Proof. We show how to construct for every n an instance on which GREEDY CUE PERMU-
TATION has the claimed performance ratio. Let B = {a(0), . . . , a(n), b} ⊆ {0, 1}n be the
set where a(0) = (0, . . . , 0), b = (1, 0, . . . , 0, 1), and a(i), for i = 1, . . . , n, is the vector
with a 1 in position i and 0 elsewhere. The set L ⊆ B × B is defined as

L = {〈a(n), a(0)〉, 〈b, a(1)〉} ∪ {〈a(i), a(n)〉 : i = 2, . . . , n − 1}.

Figure 2 shows the set L for the case n = 6. As can be seen, cue 1 is correct on all pairs, cue
n is incorrect on two pairs, and every cue j ∈ {2, . . . , n−1} satisfies INCORRECT(j, L) =
1. Hence, GREEDY CUE PERMUTATION selects cue 1 as the first cue. As this cue does not
distinguish any pair, L is left unchanged. Then, one of the cues 2, . . . , n − 1 is selected
as the second cue. After removal of the pair distinguished by this cue, the remaining cues
make the same incorrect inferences as before. Thus, the algorithm keeps on choosing
cues from {2, . . . , n − 1} during rounds 2, . . . , n − 1 of the loop until cue n is selected
in the last round. The resulting permutation π has cue 1 in its first position, cues from
{2, . . . , n − 1} in positions 2, . . . , n − 1, and cue n in the last position. This implies that
INCORRECT(π, L) = |L|.

On the other hand, the optimal value is 2, which is attained by any permutation that has cue
n as the first cue. This yields a performance ratio for GREEDY CUE PERMUTATION of at
least |L|/2. The lower bound n/2 is obtained by observing that |L| = n.

5 Conclusions

The result that the optimization problem MINIMUM INCORRECT LEXICOGRAPHIC
STRATEGY cannot be approximated in polynomial time to within any constant factor an-

swers a long-standing question of psychological research into models of bounded rational-
ity: How accurate are fast and frugal heuristics? It follows that no fast, that is, polynomial-
time, algorithm can approximate the optimum well, under the widely accepted assumption
that P 6= NP. A further question is concerned with a specific fast and frugal heuristic: How
accurate is TTB? The new algorithm GREEDY CUE PERMUTATION has been shown to per-
form provably better than TTB. In detail, it always finds accurate solutions when they exist,
in contrast to TTB. With this contribution we pose a challenge to cognitive psychology: to
study the relevance of the greedy method as a model for bounded rationality.

Acknowledgment. The first author has been supported in part by the Deutsche
Forschungsgemeinschaft (DFG).

References

Ausiello, G., Crescenzi, P., Gambosi, G., Kann, V., Marchetti-Spaccamela, A., and Protasi, M.
(1999). Complexity and Approximation: Combinatorial Problems and Their Approximability
Properties. Springer-Verlag, Berlin.

Bellare, M., Goldwasser, S., Lund, C., and Russell, A. (1993). Efficient probabilistically checkable
proofs and applications to approximation. In Proceedings of the 25th Annual ACM Symposium on
Theory of Computing, pages 294–304. ACM Press, New York, NY.

Bröder, A. (2000). Assessing the empirical validity of the “take-the-best” heuristic as a model of
human probabilistic inference. Journal of Experimental Psychology: Learning, Memory, and
Cognition, 26:1332–1346.

Bröder, A. (2002). Take the best, Dawes’ rule, and compensatory decision strategies: A regression-
based classification method. Quality & Quantity, 36:219–238.

Bröder, A. and Schiffer, S. (2003). Take the best versus simultaneous feature matching: Probabilistic
inferences from memory and effects of representation format. Journal of Experimental Psychol-
ogy: General, 132:277–293.

Gigerenzer, G. and Goldstein, D. G. (1996). Reasoning the fast and frugal way: Models of bounded
rationality. Psychological Review, 103:650–669.

Gigerenzer, G., Todd, P. M., and the ABC Research Group (1999). Simple Heuristics That Make Us
Smart. Oxford University Press, New York, NY.

Hogarth, R. M. and Karelaia, N. (2003). “Take-the-best” and other simple strategies: Why and
when they work “well” in binary choice. DEE Working Paper 709, Universitat Pompeu Fabra,
Barcelona.

Lee, M. D. and Cummins, T. D. R. (2004). Evidence accumulation in decision making: Unifying the
“take the best” and the “rational” models. Psychonomic Bulletin & Review, 11:343–352.

Martignon, L. and Hoffrage, U. (2002). Fast, frugal, and fit: Simple heuristics for paired comparison.
Theory and Decision, 52:29–71.

Nellen, S. (2003). The use of the “take the best” heuristic under different conditions, modeled with
ACT-R. In Detje, F., Dörner, D., and Schaub, H., editors, Proceedings of the Fifth International
Conference on Cognitive Modeling, pages 171–176, Universitätsverlag Bamberg, Bamberg.

Newell, B. R. and Shanks, D. R. (2003). Take the best or look at the rest? Factors influencing
“One-Reason” decision making. Journal of Experimental Psychology: Learning, Memory, and
Cognition, 29:53–65.

Newell, B. R., Weston, N. J., and Shanks, D. R. (2003). Empirical tests of a fast-and-frugal heuristic:
Not everyone “takes-the-best”. Organizational Behavior and Human Decision Processes, 91:82–
96.

Schmitt, M. and Martignon, L. (2006). On the complexity of learning lexicographic strategies. Jour-
nal of Machine Learning Research, 7(Jan):55–83.

Simon, H. A. (1982). Models of Bounded Rationality, Volume 2. MIT Press, Cambridge, MA.

Slegers, D. W., Brake, G. L., and Doherty, M. E. (2000). Probabilistic mental models with continuous
predictors. Organizational Behavior and Human Decision Processes, 81:98–114.

Todd, P. M. and Dieckmann, A. (2005). Heuristics for ordering cue search in decision making. In
Saul, L. K., Weiss, Y., and Bottou, L., editors, Advances in Neural Information Processing Systems
17, pages 1393–1400. MIT Press, Cambridge, MA.

Todd, P. M. and Gigerenzer, G. (2000). Précis of “Simple Heuristics That Make Us Smart”. Behav-
ioral and Brain Sciences, 23:727–741.

