Präsenzaufgaben zur Vorlesung

Theoretische Informatik

WS 13/14

Blatt 13

Hinweis: Die Probleme die in diesem Blatt benutzt werden, sind auf der Rückseite definiert.

Präsenzaufgabe 13.1

Gegeben seien folgende Mengen

$$M_1 = \{1, 2, 3, 6\}$$
 $M_2 = \{1, 5, 7\}$ $M_3 = \{2, 6\}$ $M_4 = \{4, 6\}$ $M_5 = \{2, 3, 4\}$

und die Zahl k=3. Bestimme für die folgenden Probleme, ob sie bezüglich obiger Eingabe eine Lösung haben. Begründe Deine Behauptung.

- a) HITTING SET
- b) SET COVER

Präsenzaufgabe 13.2

Führe eine polynomielle Reduktion von VERTEX COVER auf HITTING SET durch um zu zeigen, dass HITTING SET NP-hart ist.

Präsenzaufgabe 13.3

Führe eine polynomielle Reduktion von HITTING SET auf SET COVER durch um zu zeigen, dass SET COVER NP-hart ist.

HITTING SET: Auffinden eines Repräsentantensystems.

Eingabe: eine Kollektion M_1, M_2, \ldots, M_m endlicher Mengen und eine natürliche Zahl $k \leq m$.

Frage: Gibt es für diese Mengen ein Repräsentantensystem der Größe höchstens k, d.h., eine Menge R mit $|R| \leq k$, die von jeder der Mengen M_1, M_2, \ldots, M_m mindestens ein Element enthält?

SET COVER: Mengenüberdeckung.

Eingabe: eine Kollektion M_1, M_2, \ldots, M_m endlicher Mengen und eine natürliche Zahl $k \leq m$.

Frage: Gibt es eine Auswahl von höchstens k dieser Mengen, deren Vereinigung mit der Vereinigung aller Mengen u"bereinstimmt, d.h., existiert eine Indexmenge $I \subseteq \{1, \ldots, m\}$ mit $|I| \leq k$ und

$$\bigcup_{i \in I} M_i = \bigcup_{i=1}^m M_i?$$

CLIQUE: Cliquenproblem.

Eingabe: Ein ungerichteter Graph G = (V, E) und eine natürliche Zahl $k \leq |V|$.

Frage: Existiert in G eine Clique der Größe mindestens k, d.h., eine Menge $C \subseteq V$ mit $|C| \ge k$, deren Knoten paarweise in G benachbart sind?

INDEPENDENT SET: Unabhängige Mengen.

Eingabe: Ein ungerichteter Graph G = (V, E) und eine natürliche Zahl $k \leq |V|$.

Frage: Existiert in G eine unabhängige Menge der Größe mindestens k, d.h., eine Menge $U \subseteq V$ mit $|U| \ge k$, deren Knoten paarweise in G nicht benachbart sind?

VERTEX COVER: Überdeckung mit Knoten.

Eingabe: Ein ungerichteter Graph G = (V, E) und eine natürliche Zahl $k \leq |V|$.

Frage: Existiert in G ein "Vertex Cover (Knotenüberdeckungsmenge)" der Größe höchstens k, d.h., eine Menge $C \subseteq V$ mit $|C| \leq k$, die von jeder Kante aus E mindestens einen Randknoten enthält?