Übungen zur Vorlesung

Theoretische Informatik

WS 13/14

Blatt 10

Aufgabe 10.1

Wandle mittels des Verfahrens aus der Vorlesung folgendes GOTO-Programm in ein WHILE-Programm um.

 $M_1: z := 0;$ $M_2: y := 1;$ $M_3: x := y;$ $M_4: \text{IF } x = n \text{ THEN GOTO } M_8;$ $M_5: y := z + x;$ $M_6: z := x + 0;$ $M_7: \text{GOTO } M_3;$ $M_8: \text{HALT}$

Eingabe: n, Ausgabe: x.

Aufgabe 10.2

In dieser Aufgabe betrachten wir die erste Phase der Simulation von Turing-Maschinen durch GOTO-Programme (siehe Buch S. 98-100).

Sei k = 2, $\Sigma = \{0, 1, \#\}$ und $\Gamma = \{0, 1, \#, \square\}$. Das heißt $b = |\Gamma| + 1 = 5$. Wir verwenden folgende Zahlenkodierung für die Elemente aus Γ : Code(0) = 1, Code(1) = 2, Code(#) = 3, Code $(\square) = 4$. Der Startzustand z_0 habe den Zahlencode 0.

- a) Sei $n_1 = 5$ und $n_2 = 2$. Das heißt, die Startkonfiguration der Turing-Maschine ist also $z_0101\#10$. Bestimme das Zahlentrippel (x, y, z).
- b) Schreibe ein GOTO-Programm, das die Phase 1 umsetzt. Das heißt, das Programm erzeugt bei der Eingabe von n_1 und n_2 das zur Start-Konfiguration z_0 bin (n_1) # bin (n_2) passende Zahlentrippel (x, y, z).

Aufgabe 10.3

Betrachte folgenden Sprachen. Sind sie entscheidbar? Begründe Deine Behauptung.

- a) $L_1 := \{n \in \mathbb{N} \mid \text{es gibt eine Mersenne-Primzahl } 2^p 1 \text{ mit } p \geq n\}$ Hinweis: Es ist unbekannt ob es unendlich viele Mersenne-Primzahlen gibt.
- b) $L_2 := \{ w \mid M_w \text{ berechnet } \chi'_D \}$, wobei D die Diagonalsprache aus der Vorlesung ist.
- c) $L_3 := \{ w \mid T(M_w) = \emptyset \}$

Aufgabe 10.4

Sei L_1 eine rekursive Sprache und L_2 eine rekursiv aufzählbare Sprache. Zeige, dass $L_2 \setminus L_1$ rekursiv aufzählbar ist.