Einblick in die Komplexititstheorie

Hans Ulrich Simon

1 Grundlagen und das Theorem von Cook

Waihrend eine Theorie der Berechenbarkeit die Grenze zwischen entscheidbaren und unent-
scheidbaren Problemen exploriert, ist die zentrale Frage der Komplexitatstheorie, welche

Probleme effizient 1osbar sind und welche inhérent einen hohen Ressourcenverbrauch erfor-
dern (s. Abbildung 1).

entscheidbar,
aber nicht
effizient

effizient
entscheidbar

unentscheidbar

Abbildung 1: Grobunterteilung aller Probleme.

Der Ressourcenverbrauch kann und soll i.A. nicht exakt, sondern nur gréenordnungsméflig
erfasst werden. ' Wir werden aus diesem Grund von der Landau’schen O-Notation Gebrauch
machen. Fiir eine Funktion f von N nach N sei die Funktionsmenge O(f) definiert wie folgt:

O(f) ={g:N—N| Ja,no € N,Vn >ng: g(n) <af(n)}.

Funktionen g aus O(f) heiflen grifenordnungsmdfig durch f beschrdnkt. Aus historischen
Griinden schreibt man g = O(f) anstelle von g € O(f). Zum Beispiel gilt 10n? + 1000n =
O(n?). Salopp gesprochen kann man sagen, dass das groe O Konstanten und Terme nicht-
dominanter Gréflenordnung ,,schluckt“. Aus diesem Grunde , iiberlebt* von dem Ausdruck
10n? + 1000n nur der dominante Term n?. Natiirlich gilt auch 10n2? 4+ 1000n = O(n?),

!Eine prizise Erfassung wiirde durch jede Technologieverbesserung obsolet. Nach jeder neuen Computer-
generation miisste man die Theorie umschreiben.

aber O(n?) ist die genauere Abschiitzung der Gréfienordnung. Die O-Notation sollte aus der
Vorlesung , Diskrete Mathematik® oder einer anderen mathematischen Grundveranstaltung
bekannt sein.

Die wichtigsten Ressourcen sind Platz (= Speicherplatz) und Zeit (= Rechenzeit). Seien
S, T Funktionen von N nach N und M eine DTM.

Definition 1.1 (Platzschranke, Zeitschranke)

1. M heifit S(n)-platzbeschriankt, wenn eine Rechnung von M auf einer Eingabe der
Mazimallinge n mazimal O(S(n)) Bandzellen verbraucht.

2. M heifit T'(n)-zeitbeschrankt, wenn eine Rechnung von M auf einer Eingabe der Ma-
zimalldnge n mazimal O(T(n)) Schritte dauert.

Eine DTM ist um so ,platz- bzw. zeiteffizienter je langsamer S(n) bzw. T'(n) mit n
wéchst. Eine grobe Unterscheidung ist polynomielles versus exponentielles Wachstum.

Veranschaulichung: Seien ¢, k Konstanten. T'(n) = ¢-n bedeutet, dass eine Verdop-
pelung der Eingabeldinge die Zeitschranke verdoppelt. T'(n) = ¢ - n? (bzw. T'(n) = c - n¥)
bedeutet, dass eine Verdoppelung der Eingabeléinge, die Zeitschranke vervierfacht (bzw. ver-
2k facht). T'(n) = ¢ - 2" bedeutet, dass die Zeitschranke sich schon bei Eingaben der Linge
n+ 1 auf ¢- 2" = 22" verdoppelt.

Obwohl auch Rechenzeiten der Form T'(n) = 1000000000 n oder T'(n) = n'%? im Grunde
inakzeptabel sind, &8t sich dennoch sagen, dass exponentielles Wachstum 7'(n) = ¢ - 2"
schon fiir moderate Werte von n auch schnellste Rechenanlagen fiir Milliarden von Jahren
beschéftigt. Man denke an den Konig, der versprach, auf ein Schachbrett mit 64 Feldern
Reiskorner der Anzahlen

1,2,4,8,16,...,2%

zu legen und zu verschenken. Er musste bestiirzt erkennen, dass alle Kornspeicher seines
Reiches zum Einlosen dieses Versprechens nicht ausreichen.

Aus diesen Griinden hat sich die Sichtweise durchgesetzt, polynomielles Wachstum noch
als , effizient* oder zumindest ,,praktikabel®“ durchgehen zu lassen, aber kein superpolynomi-
elles Wachstum zu tolerieren.

Definition 1.2 (Deterministische Komplexititsklassen)

1. DSpace(S) ist die Klasse aller Sprachen, die von einer S(n)-platzbeschrdnkten DTM
akzeptiert werden konnen.

2. DTime(T) ist die Klasse aller Sprachen, die von einer T(n)-zeitbeschrinkten DTM
akzeptiert werden konnen.

3. P = Up>1 DTime(n”) ist die Klasse aller deterministisch in Polynomialzeit akzeptier-
baren Sprachen.

4. PSpace = UkleSpace(nk) st die Klasse aller deterministisch in polynomaiellem Platz
akzeptierbaren Sprachen.

Diese Definitionen lassen sich auch auf NTM’s {ibertragen. Eine NTM M heifit S(n)-platz-
beschrankt (bzw. T'(n)-zeitbeschrinkt), wenn zu jeder Eingabe z € L), der Maximallinge
n eine akzeptierende Rechnung existiert, die maximal O(S(n)) Bandzellen (bzw. O(T'(n))
Rechenschritte) bendtigt.

Bemerkung 1.3 Fulls T', S bestimmte Konstruierbarkeitsaxiome erfillen, kann man eben-
sogut verlangen, dass alle Rechnungen, die Ressourcenschranken S(n), T(n) einhalten, da
man die anderen Rechnungen abbrechen kann, ohne dabei Ly, zu verdindern.

Definition 1.4 (Nichtdeterministische Komplexitétsklassen)

1. NSpace(S) ist die Klasse aller Sprachen, die von einer S(n)-platzbeschrinkten NTM
akzeptiert werden kénnen.

2. NTime(T) ist die Klasse aller Sprachen, die von einer T(n)-zeitbeschrinkten NTM
akzeptiert werden konnen.

Es hat sich gezeigt, dass
N Space(S) C DSpace(S?).

Fiir jede NTM existiert also eine deterministische Simulation mit hochstens quadratischem
»blow-up“ des Speicherplatzes (Satz von Savitch). Daher eriibrigt sich eine Unterscheidung
von DPSpace und N PSpace.

Zentrale Fragen der Komplexitéatstheorie sind die folgenden:

1. Welche Probleme erfordern (im Wesentlichen) die gleichen Ressourcen an Zeit bzw. Platz
und gehoren daher in dieselbe Komplexitatsklasse ?

2. Wie ist das Verhiltnis von Platz und Zeit? Kann man durch Mehraufwand an Spei-
cherplatz Rechenzeit einsparen und umgekehrt?

3. Wie ist das Verhaltnis von Determinismus und Nichtdeterminismus? Der Satz von
Savitch garantiert platzeffiziente deterministische Simulationen von NTM’s. Gibt es
auch zeiteffiziente deterministische Simulationen?

?
Wir wollen der zweiten Frage anhand des beriithmten (P # NP)-Problems nachgehen.?
Viele fundamentale Anwendungsprobleme (s. Liste im Anhang) gehoren zur Klasse NP. Diese

2Es handelt sich um das erste ,, Millenium Prize Problem* auf der Liste des ,,Clay Mathematics Institute*
(www.claymath.org).

Probleme konnen bis heute nicht (deterministisch) in Polynomialzeit gelost werden. Die
meisten ExpertInnen glauben daher
P # NP .

Man kann bis heute aber diese Vermutung nicht beweisen. Immerhin ist es aber im Rah-
men der NP-Vollstandigkeitstheorie gelungen, ,héirteste Vertreter“ der Problemklasse NP
dingfest zu machen. Diese werden NP-vollstéindige Probleme genannt. Wir werden in Kiirze
zeigen, dass das Erfiillbarkeitsproblem der Aussagenlogik (Satisfiability-Problem oder kurz
SAT) NP-vollstandig ist. Falls ein deterministischer Polynomialzeitalgorithmus fiir ein NP-
vollstéandiges Problem (wie zum Beispiel SAT) existieren wiirde, dann wiirde logisch zwin-
gend P=NP folgen. Im Umkehrschluss impliziert die Annahme P # NP, dass es fiir NP-
vollstdndige Probleme keine deterministischen Polynomialzeitalgorithmen gibt. Dies kann
dann als Legitimation dienen, es mit Heuristiken® zu probieren.

Der Anhang enthélt eine kleine Liste von NP-vollstdndigen Problemen. Ein wichtiges
Werkzeug zur Entwicklung der Theorie sind die ,,polynomiellen Reduktionen®:

Definition 1.5 (Polynomielle Reduktion) Seien Ly, Ly C ¥*.

1. Wir sagen, Ly ist polynomiell reduzierbar auf Lo (in Zeichen: Ly Spol Ly), wenn eine
Abbildung f : ¥* — X* existiert, so dass folgendes gilt:

(1) Yw € ¥* . U)EL1<:>f(U)>EL2.
(2) f ist von einer polynomiell zeitbeschrinkten DTM berechenbar.

2. Fine Sprache Ly C X* heifit NP-vollstandig, falls
(1) Ly € NP.
(2) VL € NP: L gpol Ly.

Falls die zweite Bedingung g¢ilt, aber Lo nicht notwendig zur Klasse NP gehort, dann
heif$st Lo NP-hart.

Die folgenden Beobachtungen sind leicht zu beweisen.

Bemerkung 1.6 1. Die Relation ,<,,“ ist transitiv. Ketten von Reduktionen ergeben
also wieder eine Reduktion.

2. Aus Ly <po Lo und Ly ist NP-hart folgt, dass auch Ly NP-hart ist.
3. Aus L <,, Lo (via Reduktionsabbildung f) und Ly € P folgt L € P. Die Frage, ob

w € L, kann ndamlich entschieden werden wie folgt:
(a) Berechne f(w).
(b) Entscheide, ob f(w) € Ly.

4. Wenn ein NP-hartes Problem (deterministisch) in Polynomialzeit gelost werden kann,
dann folgt P=NP.

3 Algorithmen ohne allgemeine Erfolgsgarantie, die in der Praxis ganz gut zu funktionieren scheinen

4

Die Liste NP-vollstéandiger Probleme im Anhang ist durch folgende Evolution entstanden:

1. Das Theorem von Cook — gewissermafien der ,,Urknall* der NP-Vollsténdigkeitstheorie
— lieferte mit SAT das erste , natiirliche* NP-vollstéindige Problem.

2. Von SAT ausgehend hat sich mit polynomiellen Reduktionen mit der Zeit eine Art
y,otammbaum® NP-vollstdndiger Probleme gebildet. Ein Teil dieser Stammbaums ist
in Abbildung 2 zu sehen. (Die Abkiirzungen beziehen sich dabei auf die Problemliste

im Anhang.)

CLIQUE

SUBSET SUM

DHC

INDEPENDENT SET

KNAPSACK PARTITION

VERTEX COVER

HITTING SET

SET COVER

BIN PACKING

TSP

Abbildung 2: Stammbaum NP-vollstéandiger Probleme.

Eine lange Liste mit NP-vollstdndigen Problemen ist in dem Buch Garey and Johnson,
Computers and Intactability, A Guide to the Theory of NP-Completeness, Freeman and
Company, 1979, zu finden. Es enthélt zudem eine groartige Beschreibung der Theorie der

NP-Vollstandigkeit.

SAT ist ein Problem im Zusammenhang mit Booleschen Formeln (die aus anderen Grund-
vorlesungen bekannt sein sollten). Ein Literal ist eine negierte oder nicht negierte Boolesche
Variable. Eine Klausel ist eine Disjunktion (Logisches Oder) von Literalen, und eine Formel
in kongunktiver Normalform (kurz: CNF-Formel) ist eine Konjunktion (Logisches Und) von

>

Klauseln. Beachte, dass eine Klausel auch aus einem einzigen Literal und eine CNF-Formel
auch aus einer einzigen Klausel bestehen darf.

Beispiel 1.7

FQ = (a:l\/xg)/\(arl\/a:_g)/\x_l
Fy = (x; VT3 Vas) A (T VT3) A xg

sind CNF-Formeln.
SAT ist folgendes Problem:
Eingabe eine CNF-Formel F.

Frage Ist die Formel erfillbar, d.h., existiert eine Belegung von x1,...,x, mit 0 oder 1, so
dass I’ zu 1 ausgewertet wird?

Beispiel 1.7 (fortgesetzt) ;= 1,29 = 1,23 =0 erfiillt die obige Formel F}.

Die Formel Fj hingegen ist nicht erfiillbar. Wieso ?

Satz 1.8 (Theorem von Cook) SAT ist NP-vollstindig.

Beweis

1. SAT € NP.
Gegeben die CNF-Formel F| rate (nichtdeterministisch) die erfiillende Belegung und
werte danach F' (deterministisch und in Polynomialzeit) aus.

2. Fir alle L € NP: L Spol SAT. Sei L € NP und M eine polynomiell zeitbeschréankte
NTM fiir L. Es ist relativ leicht einzusehen, dass M sich so normalisieren 1a8t, dass
fiir geeignete Konstanten c¢; < ¢, gilt:

e Sei R = R(n) = n°. Bei Eingaben der Lénge n rat M zunéchst einen Binérstring
r € {0,1}% und schreibt diesen in die Zellen —1,..., —R.

e Auf Zelle 0 wird Trennsymbol $ geschrieben. Zellen 1,...,n enthalten weiterhin
die Eingabe w = wy ... w,. Gestartet auf Inschrift r$w (im Startzustand z; und
Kopfposition 0) rechnet M deterministisch genau 7' = T'(n) = n® Schritte.

e M hat einen eindeutigen (akzeptierenden) Endzustand ACC.
Der wesentliche Trick bei dieser Normalisierung ist, dass alle benétigten ,,Ratebits® in
der Anfangsphase ermittelt werden und danach deterministisch weitergerechnet wird

(Schema des Ratens und Verifizierens). Unser Ziel ist es, eine Formel F' = F,, in
konjunktiver Normalform mit folgender Eigenschaft zu berechnen:

w € L < F,, erfiillbar.

Idee: F beschreibt die deterministische Rechnung von M auf r$w und ist erfiillbar genau
dann, wenn diese Rechnung fiir mindestens einen Ratestring r akzeptierend ist.

Um die Rechnung von M zu beschreiben, benutzen wir die folgenden Booleschen Varia-
blen:

Variable X ‘ Interpretation von X =1

Z(1, 2) Zustand z zum Zeitpunkt 4

H(i,j) Kopfposition j zum Zeitpunkt i

S(i, j, ¢) Bandsymbol ¢ in Zelle j zum Zeitpunkt i

Dabei gilt 0 <:<T,-T < j<T,z€ Z,ce€l. Die Anzahl der Variablen bei Eingabeldnge
|w| = n ist offensichtlich von der GréSenordnung O((T'(n))?).

Wir setzen verschiedene Typen von Klauseln ein.
Typ I: Korrektheit der Beschreibung einer Konfiguration.
Typ II: Korrekte Startkonfiguration und akzeptierende Endkonfiguration.
Typ III: Korrekte Uberfithrung einer Konfiguration in die direkte Folgekonfiguration.

Dabei haben wir hinter jedem Typ die Aufgabe genannt, die die betreffenden Klauseln
erfiillen miissen. Es folgt eine detaillierte Beschreibung aller Klauseln. Die Klauseln vom
Typ I sollen folgendes erzwingen:

(1) Fir alle ¢ existiert genau ein z mit Z(i,z) = 1.

Interpretation: Zu jedem Zeitpunkt befindet sich M in genau einem Zustand.
(2) Fiir alle ¢ existiert genau ein j mit H(i,5) = 1.
Interpretation: Zu jedem Zeitpunkt gibt es genau eine Position, auf der sich M’s
Kopf befindet.
(3) Fiir alle 7, j existiert genau ein ¢ mit S(i,7,¢) = 1.
Interpretation: Zu jedem Zeitpunkt speichert jede Bandzelle genau ein Symbol.

In allen drei Féllen haben wir das gleiche Grundmuster:
Genau ein y € {y1,...,ym} hat Wert 1. Dies ist dquivalent zu folgenden Klauseln

V.. vVe)A N @GV,

1<i<j<m

14 () = O(m?) an der Zahl.
Wenn wir dieses Grundmuster auf (1), (2) und (3) anwenden, so bendtigen wir insgesamt
O((T(n))?) Klauseln.

Wir kommen zu den Klauseln vom Typ II (von denen viele aus einem einzigen Literal
bestehen). Die Klausel

(4) Z(T, ACC)

kontrolliert, dass M am Ende der Rechnung sich im (akzeptierenden) Endzustand befindet.
Die Klauseln

(5) Z(07 ZO)

(6) H(0,0)

(7) S(0,—34,0)Vv.S(0,—j4,1) fiir j=1,...,R (bel. Ratestring)
5(0,0,9) (Trennsymbol)
S(0,5,w;) fir 1 <j<n (Eingabe)
S(0,7,0) fir —T<j<—-Rn<j<T (Blanks)

kontrollieren, dass M im Zustand zp mit Kopf in Position 0 und Bandinschrift r$w (einge-
rahmt von Blanks im relevanten Speicherbereich) startet. (4), ..., (7) zusammengenommen
sind nur O(7'(n)) viele Klauseln.

Die Klauseln vom Typ III sollen folgendes erzwingen:

(8) Die nicht gelesenen Speicherzellen haben einen unverdnderten Inhalt:
Die Schreibweise mit Implikation , = ist wegen

WA AYn=y) S TV VT V)

leicht in Klauselschreibweise transformierbar. Dies machen wir uns auch im folgenden zunut-
ze.

(9) Die eintretenden Verdnderungen miissen der Uberfithrung 6(z,¢) = (¢, ¢, d) mit d €
{L, R, N} entsprechen:
201, 2) NG, §) A S(iy¢) =
(a) Z(i+1,2)
(b) S(i+1,5,¢)

—1, falls d = L,
(¢) H(i+ 1,7+ s(d)) mit s(d) = 0,fallsd= N,
1, falls d = R.

(8), (9) zusammengenommen sind O((T(n))?) weitere Klauseln. Die Formel F,, besteht nun
aus den in (1), ..., (9) genannten Klauseln, O((T'(n))?) an der Zahl. Es ist leicht einzusehen,
dass F, deterministisch und in Polynomialzeit aus w konstruiert werden kann. Das Cooksche
Theorem ergibt sich dann direkt aus dem Beweis von:

we L <;> F,, erfiillbar.

8

=: TFalls w € L, dann besitzt M fiir einen geeigneten Ratestring r € {0,1}® eine
akzeptierende Rechnung auf w. Der Ratestring » und die Rechnung von M auf r$w liefern
eine erfiillende Belegung fiir F,, (vgl. die Interpretation der Variablen).

<: Aus der Belegung von S(0,—R,b),...,S(0,—1,b) mit b = 0,1 148t sich der Rate-
string r ablesen, fiir den M auf r$w eine akzeptierende Rechnung vollzieht. qed

2 Grundlegende NP—vollstéindige Probleme

Ausgehend von dem Erfiillbarkeitsproblem der Aussagenlogik (SAT) werden wir in diesem
Abschnitt mit Hilfe geeigneter polynomiellen Reduktionen die NP-Vollstéandigkeit einiger
grundlegender Probleme beweisen. Im Wesentlichen verifizieren wir den in Abbildung 2 ge-
zeigten Ausschnitt des Stammbaums NP-vollstdndiger Probleme. Da die Mitgliedschaft die-
ser Probleme zur Klasse NP jeweils sehr leicht nachzuweisen ist, konzentrieren wir uns auf
den Nachweis der NP-Hérte.

Eine k-Klausel ist eine Boolesche Klausel, die genau k paarweise verschiedene Literale
enthélt. k-SAT ist das Teilproblem von SAT, bei welchem als Eingabe nur Kollektionen von
k-Klauseln zugelassen sind. Um uns den Entwurf der weiteren polynomiellen Reduktionen
zu erleichtern, zeigen wir zunéchst, dass sogar 3-SAT NP-vollstandig ist. Am Rande sei
bemerkt, dass 2-SAT zur Klasse P gehort.

Satz 2.1 SAT <,y 3-SAT.

Beweis Der Beweis benutzt die Methode der lokalen Ersetzung: zu einer Klausel
C=zV...Vzymit z1,...,2, € {x1,T1, ..., T, T}

suchen wir eine ,dquivalente Kollektion“ Ko von 3-Klauseln. Ko benutzt neben den Boo-
leschen Variablen z4,...,z, weitere Hilfsvariable hc 1, hc o, ... und soll zu C in folgendem
Sinn dquivalent sein:

Eigenschaft 1: Jede C erfiillende Belegung ist fortsetzbar zu einer K¢ erfiillenden Bele-
gung.

Eigenschaft 2: Die Einschrankung einer K¢ erfiillenden Belegung auf die Variablen z4, ..., x,
ist eine C' erfiillende Belegung.

Falls wir eine polynomiell berechenbare Reduktionsabbildung C' — Ko mit diesen Eigen-
schaften finden, dann liefert offensichtlich die Reduktionsabbildung

(Ch,...,Cr) = U™ Ko,

eine polynomielle Reduktion von SAT auf 3-SAT.* Begeben wir uns also auf die Suche nach
einer geeigneten lokalen Ersetzung C' — K.
Bei der Reduktionsabbildung C' +— K¢ unterscheiden wir die folgenden Fille:

4Beachte dabei, dass die Variablen der Klauseln Ci,...,C,, aus dem gemeinsamen Vorrat xi,...,Z,
stammen, wohingegen jede Kollektion K¢, von 3-Klauseln ihren privaten Hilfsvariablenvorrat hat.

9

Fall 1: k= 3.
Gliick gehabt: C' ist bereits eine 3-Klausel.

Fall 2: k£ < 3.
C ist also zu kurz und muss um weitere Literale ,ausgepolstert® werden. Im Falle
C' = z; benutzen wir zwei Hilfsvariable a,b und Ko enthalte die 3-Klauseln

#2VaVvb, zzVaVvb, nvVavb, xVaVvb .
Im Falle C = z; V 2z, benutzen wir eine Hilfsvariable a und Ko enthalte die 3-Klauseln
21iVzmVa, z1VzaVa .

Man {iberlegt sich leicht, dass diese lokalen Ersetzungen die Eigenschaften 1 und 2
besitzen.

Fall 3: k > 3.
C ist also zu lang und muss in 3-Klauseln aufgesplittert werden. Wir demonstrie-
ren die allgemeine Konstruktion am Beispiel £k = 7. K¢ verwendet die Hilfsvariablen
ha, ..., hy_o und enthélt die folgenden 3-Klauseln:

Zl\/ZQ\/hQ,]_12\/23\/]13,%3\/24\/]14,]_14\/25\/h5, 715\/26\/27.

Fiir allgemeines k£ hat die letzte dieser 3-Klauseln die Form hi—a V 2k—1 V 2.

Wir verifizieren Eigenschaft 1. Sei eine Belegung von xq,...,z, gegeben, die C' mit
Hilfe des Literals z; erfiillt. Wir erweitern diese Belegung auf die Hilfsvariablen, indem
wir hj, hjiq, ... mit Null belegen und h;_;,h;_o,... mit Eins. Es ist leicht zu sehen,
dass damit alle 3-Klauseln aus K¢ erfiillt sind.

Wir verifizieren Eigenschaft 2. Es geniigt zu zeigen, dass eine C nicht erfiillende Be-
legung der Variablen xy,...,z, nicht zu einer K¢ erfiillenden Belegung fortgesetzt
werden kann. Da C' nicht erfiillt ist, ist keines der Literale zq, ..., 2z, erfiillt. Was die
Belegung der Hilfsvariablen betrifft, argumentieren wir mit der Logik des Zugzwan-
ges. Um z; V z3 V hy zu erfiillen, miissen wir ho = 1 setzen. Um ho V z3 V hs zu
erfiillen, miissen wir hy = 1 setzen. Iterative Anwendung dieses Argumentes fiihrt zu
dem Zwang auch hy,..., hy_o auf Eins zu setzen. Dann ist aber die letzte 3-Klausel
hi_oV 21 V 2p — im Beispiel hs \V 2z V 27 — nicht erfiillt. Schachmatt!

qed

10

Die polynomielle Reduktion von SAT auf 3-SAT verlduft im Bereich der Booleschen
Logik. Die folgende polynomielle Reduktion fiihrt von einem Problem der Booleschen Logik
zu einem graphentheoretischen Problem.

Satz 2.2 3-SAT <, CLIQUE.

Beweis Sei C' = (C,...,Cp,) mit C; = 2z;1 V zi2 V 23 und 2;; € {1,%1,...,2,, Ty} eine
Eingabe fiir 3-SAT. Bevor wir die Reduktionsabbildung beschreiben, welche C' auf eine kor-
respondierende Eingabe fiir CLIQUE abbildet, fithren wir eine vorbereitende Uberlegung
durch:

Zwei Literale z, 2’ heiflen kompatibel, falls 2/ # Z. Mehrere Literale zq,..., 2., r > 2, hei-
Ben kompatibel, wenn sie paarweise kompatibel sind. Die folgende Beobachtung enthélt den
Schliissel zur Wahl der Reduktionsabbildung.

Beobachtung: Es gibt genau dann eine Belegung, die zq,...,z,. erfiillt, wenn z,..., 2,
kompatibel sind.

Die zum Klauselsystem C' korrespondierende Eingabe (G, k) mit G = (V, E) fiir CLIQUE soll
folgendermaflen aussehen. V' enthélt 3m Knoten (7,j),1 <i <m,1 < j < 3, die die Literale
in den Klauseln darstellen. E enthélt die Kante zwischen (i,7) und (¢, j), wenn i # 4’ ist
(es handelt sich um Knoten aus verschiedenen Klauseln) und z;; # Z;j ist (die betreffenden
Literale sind kompatibel). Schlielich sei k& = m. Natiirlich ist die Reduktionsabbildung
C +— (G, m) in polynomieller Zeit berechenbar.

Bleibt zu zeigen, dass C' genau dann erfiillbar ist, wenn G eine Clique der Grofle m (ge-
nannt m-Clique) enthélt.
Gehen wir aus von einer Belegung, die alle Klauseln erfiillt. Dann ist in jeder Klausel Cj
mindestens ein Literal, sagen wir z; ;;), erfiillt. Folglich sind die Literale z; ;;), 1 < i < m,
kompatibel. Dann bilden die Knoten (i, 7()), 1 <i < m, in G eine m-Clique.
Nehmen wir umgekehrt an, dass G eine m-Clique enthélt. Der Konstruktion von G entneh-
men wir, dass die Knoten der Clique Literale aus verschiedenen Klauseln reprisentieren und
die reprisentierten Literale, sagen wir z; j;) mit 1 <4 < m, kompatibel sind. Folglich gibt
es eine Belegung, die diese Literale und somit auch die Klauseln C1, ..., C,, erfiillt. qed

Die in diesem Beweis verwendete Reduktion ist eine sogenannte Reduktionsabbildung
mit verbundenen Komponenten, da wir zuniachst Komponenten fiir die einzelnen Klauseln
bilden, diese aber durch die Kanten des Graphen verbinden.

Die polynomielle Reduktionskette

CLIQUE <,, INDEPENDENT SET
<,, VERTEX COVER
<,s HITTING SET
<, SET COVER

empfehlen wir als Ubung.

11

Die néchste polynomielle Reduktion, die wir durchfiihren, fithrt von einem Problem der
Booleschen Logik (3-SAT) zu einem Zahlenproblem (SUBSET SUM). Diese Reduktion steht
vor der technischen Schwierigkeit, dass Zahlenprobleme von Natur aus keinen rein kombi-
natorischen Charakter haben. Zum Beispiel hat die Ubertragsbildung bei arithmetischen
Operationen auf Zahlen in kombinatorischen Strukturen keine unmittelbare Entsprechung.
Um die Reduktion erfolgreich zu entwerfen, verwenden wir die Technik der Kombinatoriali-
sierung von Zahlen. Es wird eine Art ,,Zahlenpuzzle“ generiert, dass durch Vermeidung von
Ubertragsbildung eine klare Bezichung zum 3-SAT Problem aufweist.

Satz 2.3 3-SAT <,, SUBSET SUM.

Beweis

Sei C = (Cl, ceuy Cm) mit Cz = Zil V Zi2 V Zi3 und Zij € {(L’l, .1_31, vy Ly, fZ’n} eine Eingabe
fiir 3-SAT. Die korrespondierende Eingabe 7 fiir SUBSET SUM soll aus folgenden Zahlen
bestehen:

Literalzahlen die Zahlen A;,..., A,, die zu z,...,x, korrespondieren, und die Zahlen
By, ..., B,, die zu 7y, ..., 7, korrespondieren

Klauselzahlen die Zahlen Fy,..., E,, und Dy,...,D,,, die jeweils zu C1,...,C,, korre-
spondieren

Teilsummenzahl die angestrebte Teilsumme S
7 soll so entworfen werden, dass C' genau dann erfiillbar ist, wenn eine Auswahl der Literal-

und Klauselzahlen mit Summe S existiert. Die Zahlen in Z sind in Dezimaldarstellung durch

Qi k

1 falls x, € C;
0 falls 2y ¢ C;

b, . 1 falls 7, € C;
vk~ 0 falls zp ¢ C;

1 <i<m,1 <k <n,und durch folgende Tabelle gegeben:

12

a1 R AT oo Qm 1 0 0 ... 0 O Al
921 R oo Qom O 1 0 ... 00 A2
an1 Qpy Apm 0 0 0 O]. An
b1 by bim |1 0 0 0 By
bay ba; bo, |0 1 O 0 0] Be
1 0 0 {0 0 O 0 Ey
0 1 0 (0 0 O 0 0] E;
0 0 1 10 0 0 0 0| En
2 0 0 0 O 0 0| Dy
0 2 0 (0 0 O 0 0| D
O .../0 ... 20 0 0 ... 0 0| Dp
2 4] 4 [111 . 11[5]

Es sollte klar sein, dass sich die Reduktionsabbildung C' — Z in Polynomialzeit berechnen
lasst. Beschéftigen wir uns nun mit dem kunstvollen Design von Z. Jede Zahl in Z besteht
aus m+n Dezimalziffern. Die ersten m Dezimalziffern der Literalzahlen sind die 0, 1-wertigen
Inzidenzvariablen, die anzeigen ob Literal xp bzw. T in Klausel C; vorkommt. Beachte, dass
genau drei der Bits ay;, . . ., ni, b1s, - - -, bp; auf 1 gesetzt sind, da jede Klausel C; eine 3-Klausel
ist. Die letzten n Dezimalziffern sind 0, 1-wertige Auswahlvariablen: um die Teilsumme S zu
erzeugen, deren letzte n Dezimalziffern Einsen sind, miissen wir ganz offensichtlich fiir jedes
k entweder die Zahl Ay oder die Zahl By auswihlen (Auswahlregel fiir Literalzahlen).

Zu X C Z\{S} bezeichne Sy die Summe der Zahlen in X. Beachte, dass bei der Bildung
der Summe Sy keine Ubertrige entstehen, egal wieviele Literal- oder Klauselzahlen in X
aufgenommen werden.

Die Klauselzahlen dienen der Inkrementierung der ersten m Dezimalziffern in Sx. Auf-
nahme von Ej (bzw. Dy, bzw. Ej und Dy) in X erhoht die k-te Dezimalziffer von Sy um 1
(bzw. 2, bzw. 3).

13

Der Beweis von Theorem 2.3 wird abgeschlossen durch die

Behauptung: C' ist genau dann erfiillbar, wenn eine Auswahl X der Zahlen aus Z \ S
existiert mit Sy = S.

Nehmen wir zunéchst an, dass C erfiillbar ist. Dann bestimmen wir zu einer gegebenen
erfiillenden Belegung eine geeignete Auswahl X von Zahlen nach der folgenden Strategie:

Regel 1: Falls x; mit 1 belegt wird, nehmen wir Ay in X auf. Falls x; mit 0 belegt wird,
nehmen wir By in X auf.

Regel 2: Falls die i-te Dezimalziffer von Sx den Wert 3 (bzw. 2, bzw. 1) hat, dann nehmen
wir zusétzlich E; (bzw. D;, bzw. E; und D;) in X auf.

Nach Anwendung von Regel 1 stimmt Sx auf den letzten n Dezimalziffern bereits mit S
iiberein. Da die ersten m Dezimalziffern der Literalzahlen die Inzidenzstruktur von C an-
geben, gilt zusitzlich: wenn C; durch die erfiillende Belegung mit r; € {1,2,3} Literalen
erfiillt wird, dann hat die i-te Dezimalziffer von Sy den Wert r; (und somit im Vergleich zur
Dezimalziffer 4 von S den Defekt 4 —r;. Anwendung von Regel 2 bewirkt ganz offensichtlich,
dass der Defekt auf den ersten m Dezimalziffern exakt ausgeglichen wird. Somit gilt nach
Anwendung beider Regeln Sy = S.

Nehmen wir umgekehrt an, dass X eine Auswahl von Zahlen aus Z\ S ist, so dass Sx = S.
Notwendigerweise muss X dann die Auswahlregel fiir Literalzahlen beherzigen. Wir wenden
folgende Belegungsregel an:

Belege z;, mit 1, falls Ay € X, und mit 0, falls By € X.
Sei i € {1,...,m} beliebig aber fest. Da die i-te Dezimalziffer von Sx Wert 4 hat, die Ziffern
der Klauselzahlen dazu aber maximal den Beitrag 3 leisten, muss ein Beitrag von mindestens
1 von einer Literalzahl geleistet werden, sagen wir von Ay, (der Fall By, ist symmetrisch). D.h.,
A € X und a;; = 1. Geméfl der Belegungsregel haben wir x, mit 1 belegt. Da a; = 1,
kommt z; in C; vor. Die Belegung erfiillt jede Klausel C;. Damit ist der Beweis abgeschlossen.
qed

Die in diesem Beweis verwendete Reduktion benutzt erneut verbundene Komponenten. Auf
den ersten Blick sieht es zwar nach einer lokalen Ersetzung aus, bei der Literale durch Li-
teralzahlen und Klauseln durch Klauselzahlen ersetzt werden. Die ersten m Dezimalziffern
der Literalzahlen kodieren jedoch die Inzidenzstruktur der Klauselmenge C' und schafft im-
plizit eine Verbindung zwischen allen Komponenten. Die Reduktion enthélt auch ein neues
Werkzeug, ndmlich die Ergdnzung. Oft hinterldsst eine Reduktion (im ersten Versuch) einen
Defekt, der durch geeignete Ergdnzungskomponenten beseitigt werden kann. Bei der Reduk-
tion von 3-SAT nach SUBSET SUM bestand dieser Defekt in zu kleinen Dezimalziffern auf
den ersten m Zifferpositionen. Wir illustrieren die Reduktion von 3-SAT nach SUBSET SUM
abschliefend mit einem

14

Beispiel 2.4 Sei C' = (C1, Cy, C3) mit

Cl = xl\/i’g\/.iEg
CQ = (Z’l\/ZEQ\/Zf4
Cy = VIV T3

d.h. m=3,n=4.

S =444 1111

A;=100 1000 B;=011 1000 E;=100 0000 D;=200 0000
Ay=010 0100 B,=101 0100 E5»=010 0000 D,=020 0000
A3=100 0010 Bs=001 0010 E5=001 0000 D;=002 0000
A,=000 0001 B,=010 0001

FEsist (1,1,0,0) eine erfillende Belegung, und es gilt:
A1+ Ay +Bs+ By +E1+Es+Dy+Dy+ Ds = 5.

Im Konigreich der Zahlenprobleme angekommen, lassen sich weitere Reduktionen relativ
leicht finden.

Satz 2.5 SUBSET SUM <,, KNAPSACK.

Beweis Obwohl der Beweis trivial ist fithren wir ihn aus didaktischen Griinden zweimal.

Es folgt Beweis Nummer 1. Es sei Z = (aq, ..., a,,S) eine Eingabe fir SUBSET SUM.
Die Frage ist also, ob eine Auswahl I C {1,...,n} mit) ., a; = S existiert. Die korre-
spondierende Eingabe Z' fiir KNAPSACK sei gegeben durch die Gewichte aq,...,a, mit
Gewichtsschranke S sowie die Nutzenwerte aq, ..., a, mit Nutzenschranke S. Die Frage ist
also, ob eine Auswahl I C {1,...,n} mit > . _,a;, < S und > ., a;, > S existiert. Die
erste Ungleichung driickt aus, dass das Gesamtgewicht des (imaginierten) Rucksackes die
Gewichtsschranke S nicht iiberschreitet. Die zweite Ungleichung driickt aus, dass die Nut-
zenschranke S nicht unterschritten wird. Offensichtlich ist die Reduktionsabbildung Z — 7’
in Polynomialzeit berechenbar und es gilt Z € SUBSET SUM < 7' € KNAPSACK .

Es folgt Beweis Nummer 2. SUBSET SUM ist der Spezialfall von KNAPSACK, bei dem
die Nutzenwerte mit den Gewichtswerten und die Nutzenschranke mit der Gewichtsschranke
iibereinstimmt. Fertig! qed

Wir lernen hier eine neue Reduktionsmethode kennen, die im Vergleich zu lokaler Erset-
zung oder gar verbundenen Komponenten sympathisch einfach ist: Spezialisierung. Darunter
verstehen wir eine Reduktion von L; nach Ls, die dokumentiert, dass eine spezielle Wahl
der Eingabeparameter von Ly ein Teilproblem erzeugt, dass ,isomorph® zu L; ist. Der Be-
griff ,,Isomorphie® sollte hier nicht formal-mathematisch aufgefasst werden. Es ist vielmehr
gemeint, dass man durch ,,scharfes Hinsehen* erkennt, dass die spezielle Wahl der Eingabe
fiir Ly zu erkennen gibt, dass L; ein Teilproblem von L, ist. Da ein Teilproblem immer

15

auf triviale Weise auf das Gesamtproblem polynomiell reduzierbar ist, kann man sich die
wortreiche Beschreibung der Reduktionsabbildung sparen.

Damit wir nicht aus der Ubung kommen, hier eine weitere Reduktion mit lokaler Erset-
zung plus Erginzungskomponente.

Satz 2.6 SUBSET SUM <,, PARTITION.

Beweis Schade, dass wir nicht PARTITION auf SUBSET SUM polynomiell reduzieren sol-
len! Dann konnten wir ndmlich demonstrieren, dass wir das Prinzip der Spezialisierung
verstanden haben. PARTITION ist namlich der Spezialfall von SUBSET SUM mit S =
(a1 + -+ an)/2.

Okay, okay, das ist die falsche Richtung. Um SUBSET SUM auf PARTITION zu reduzie-
ren, miissen wir irgendwie erzwingen, dass die zu bildende Teilsumme genau die Hélfte der
Gesamtsumme ist. Sei also Z = (aq, ..., a,,S) die Eingabe fiir SUBSET SUM. Sei A = a; +
-+ -+a,. Die korrespondierende Eingabe fiir PARTITION sei 7' = (a4, ..., a,, S+1, A—S+1).
Die Zahlen S+ 1 und A — S+ 1 sind dabei die angekiindigten Ergénzungskomponenten. Im
folgenden sei A’ = A+ (S +1)+ (A —S+1) = 24 + 2 die Gesamtsumme aller Zahlen in Z'.
Die Reduktionsabbildung Z — Z' ist offensichtlich in Polynomialzeit berechenbar. Es gentigt
also die folgende Aussage zu beweisen:

Behauptung: Es gibt genau dann eine Auswahl I C {1,...,n} mit > .., a, = S, wenn
sich die Zahlen aus Z’ in zwei Mengen mit gleichen Teilsummen A’/2 = A+ 1 zerlegen
lassen.

Sei zunéchst I mit) ., a; = S vorgegeben. Dann zerlegen wir die Zahlen aus Z' in die
Teilmengen

My ={a]ie I} U{A—S+1}und My = {aj| j ¢ I} U{S +1}.

M liefert die Teilsumme S+(A—S+1) = A+1, und M, liefert die Teilsumme (A—S)+(S+
1) = A+ 1. Beachte, dass die Ergédnzungskomponenten gerade so gewéhlt waren, dass die
Teilsummen S und A — S, die von SUBSET SUM herriihrten, zu zwei gleichen Teilsummen
ergénzt werden. Gute Sache diese Ergédnzungskomponenten !

Nehmen wir nun umgekehrt an, dass eine Zerlegung der Zahlen von Z’ in zwei Mengen
M, My mit gleichen Teilsummen A+ 1 vorgegeben ist. Addition der beiden Ergénzungskom-
ponenten liefert (S + 1)+ (A — S+ 1) = A+ 2. Diese beiden Zahlen kénnen also unméglich
in der gleichen Menge M; stecken. Also gilt oBAA A — S+ 1€ M; und S+ 1 € M,. Da M,
(wie auch My) zur Teilsumme A + 1 fiihrt, miissen die Zahlen aus M; N{ay,...,a,} sich zu
S addieren. Voila, I = {i| a; € M} ist eine Losung fiir die Eingabe von SUBSET SUM. qed

16

Als néchstes Problem gliedern wir BP in unseren Stammbaum ein.

Satz 2.7 PARTITION<,, BP.

Beweis Entziickend! Jetzt kommen wir endlich dazu, die Kunst der Spezialisierung zu de-
monstrieren. PARTITION ist namlich der Spezialfall von BIN PACKING, bei welchem wir n
Objekte der Groien ay, . . ., a, in zwei Behiilter der speziellen Behiltergrofie (a;+- - +a,,)/2
verpacken sollen (Spezialisierungen durch Fettdruck hervorgehoben). (Kein Wort mehr, sonst
ist die Eleganz des Beweises dahin.) qed

In unserem angekiindigten Stammbaum fehlen noch die Probleme DHC, HC und TSP.
Auf geht’s!

Satz 2.8 3-SAT<,,DHC.

Beweis Sei C' = (Cy,...,Cp,) mit C; = z;1 V 22 V 23 und 2;; € {xo, To, ..., Tn_1,Tn_1} €ine
Eingabe fiir 3-SAT. Unser Ziel ist C' effizient in einen Digraphen G zu transformieren, so
dass C' genau dann erfiillbar ist, wenn es in G einen gerichteten Hamiltonschen Kreis gibt.

Wir beginnen mit einer groben Modellierung der CNF-Formel C' durch einen Digraphen
G' = (V',E'). In G’ ist jede Boolesche Variable zy, k = 0,...,n — 1, durch einen Knoten
reprasentiert, den wir ebenfalls mit x; notieren. Analog repréisentieren wir jede Klausel Cj,
i =1,...,m, durch einen Klauselknoten C;.> Aus dem Kontext wird stets hervorgehen, ob
mit z; (bzw. C;) die Boolelsche Variable (bzw. Klausel) oder der betreffende Knoten in G’
gemeint ist. Die Knotenmenge von G’ ist somit gegeben durch

V/ == {xo,...,xn_l,C'l,...,Cm}.

Kantenmenge £’ wird so entworfen, dass sie eine Zerlegung der Form

n—1
E' = |J(E(k,0)UE(L,1))
k=0
besitzt. Fiir alle k =0,...,n — 1 seien

i (k) < - <idpy(k) baw. iy (k) < - < gy (k)

die Indizes aller Klauseln, in denen z; bzw. Z;, vorkommt. Mit diesen Bezeichnungen bestehe
E(k,1) aus allen Kanten des Pfades

Pk, 1)+ ax = Ciyry = Cige) = =+~ Gl (k) = Th41 mod n-
Analog bestehe E(k,0) aus allen Kanten des Pfades

P(k‘, 0) LT — Ozl(k) - 052(@ — e sz(k)(k) — Lk+1 mod n-

°Die mehrdeutige Verwendung von x, und C; ist etwas schlampig, unterstiitzt aber im Folgenden das
intuitive Versténdnis der Konstruktion.

17

Pfad P(k,1) représentiert einen Spaziergang von xp nach Zgiimodn, bei dem der Reihe
nach alle Klauseln (sprich: Klauselknoten) C; mit z;, € C; besucht werden. Pfad P(k,0)
repréasentiert einen Spaziergang von xj nach y.y1 mod n, bei dem der Reihe nach alle Klauseln
(sprich: Klauselknoten) C5 mit Zy € C5 besucht werden.

Mit einer Belegung a = (ay, ..., a,_1) € {0,1}" der Variablen zy, ..., x,_; verbinden wir
die folgende Rundtour durch G”:

/ P(0,a0) P(1,a1) P(n—2,an—2) P(n—1,an—1)
R'(a): ©g — oy — -+ =" x, = g

Beachte, dass P(k, ay) alle Klauseln (sprich: Klauselknoten) besucht, die durch die Belegung
x = ay, erfiillt werden. Dies fiihrt zu folgender

Beobachtung: «a ist eine Belegung, die alle Klauseln C1,...,C,, erfillt gdw R'(a) eine
Rundtour ist, die alle Klauselknoten C1, ..., C,, (und somit alle Knoten) in G’ besucht.

Da sich verschiedene Pfade P(k, ax) und P(k, a) an demselben (dann mehrfach besuch-
ten) Klauselknoten kreuzen kénnen, ist R'(a) aber i.A. noch kein gerichteter Hamiltonscher
Kreis. Um eine Entflechtung der Pfade zu erreichen, miissen wir unsere Modellierung verfei-
nern. Details folgen.

Wir ersetzen jeden Klauselknoten C; durch einen Untergraphen H;, der isomorph zu dem
Hilfsgraphen H in Abbildung 3 ist. H hat drei Eingangsknoten 1,2,3 und drei Ausgangs-
knoten 1’,2',3'. Es ist nicht schwer zu sehen, dass H die folgenden Eigenschaften hat®:

Eigenschaft 1: Sei p € {1,2,3}. p Pfade, die H {iber die Eingangsknoten ji,...,j, (in
dieser Reihenfolge) betreten, kénnen so durch H geroutet werden, dass H an den
Ausgangsknoten ji, ..., j, (in dieser Reihenfolge) wieder verlassen wird. Dabei wird
jeder Knoten von H genau einmal durchlaufen.

Eigenschaft 2: Sei p € {1,2,3}. Wenn p Pfade, die H iiber die Eingangsknoten ji,. .., j,
(in dieser Reihenfolge) betreten, so durch H geroutet werden, dass jeder Knoten von H
genau einmal durchlaufen wird, dann miissen diese Pfade H iiber die Ausgangsknoten
Ji»---»Jy, (in dieser Reihenfolge) wieder verlassen.

Ein Pfad P(k,1) mit x; = z; fiir ein j € {1,2,3}, der vorher durch Klauselknoten C;
geroutet wurde, wird nunmehr so geroutet, dass er H; iiber den j—ten Eingangsknoten betritt
und iiber den j—ten Ausgangsknoten verlisst. Eine analoge Bemerkung gilt fiir die Pfade der
Form P(k,0). " Den Graphen, der auf diese Weise entsteht, bezeichnen wir als G = (V, E).
Die Reduktionsabbildung C' +— G ist offensichtlich in Polynomialzeit berechenbar.

Wir kénnen nun eine Rundtour der Form R'(a) durch G’ in eine Rundtour R(a) durch
G transformieren wie folgt:

SHilfsgraph H ist gerade so kunstvoll entworfen, dass diese Eigenschaften gelten. Konstruktionen die-
ser Art werden im Amerikanischen gadget (Spielzeug) genannt. Die Eigenschaften eines Gadget kann man
verifizieren, indem man eine Weile damit herumspielt.

7S. Abbildung 4 zur Hllustration. Beachte, dass C; ein einziger (wenn auch dicker—fetter) Knoten ist; H;
hingegen ist der (hier als ,Black Box*“ dargestellte) zu H isomorphe Graph.

18

Abbildung 3: Die Klauselkomponente H in der Reduktion von 3-SAT auf DHC

PR PR P(2,1) PRY)
a0 | PUO) P(4,0) P40
ACE PGL) aSE) PGY

(a) (b)
Abbildung 4: (a) Pfade durch C; mit C; = x5 V Z4 V x5. (b) Pfade durch H;.

e Besuche die Untergraphen H; mit der gleichen Routing—Strategie wie vorher die Klau-
selknoten C;.

e Wenn H; insgesamt p—mal besucht wird (mit p € {1,2,3}), dann verwende innerhalb
H; die bei ,Eigenschaft 1¢ geschilderte Routing—Strategie.

Mit Hilfe von Eigenschaft 1 erkennt man leicht die Aquivalenz der folgenden Aussagen:
(1) a ist eine Belegung, welche die Klauseln C1, ..., C,, erfiillt.
(2) R'(a) besucht alle Klauselknoten C1, ..., C,, (sowie natiirlich die Knoten zg, ..., z,-1).

(3) R(a) besucht alle Knoten von G genau einmal, d.h., R(a) ist ein gerichteter Hamilton-
scher Kreis durch G.

Es folgt direkt, dass es in G einen gerichteten Hamiltonschen Kreis gibt, falls die Klauseln
Ci,...,C,, erfillbar sind.

19

Der Beweis wird nun abgeschlossen, indem wir umgekehrt nachweisen, dass die Klauseln
Ci,...,C,, erfiillbar sind, wenn G einen gerichteten Hamiltonschen Kreis K enthélt.

Wir konstruieren zunéchst eine Belegung a € {0,1}". Da K jeden Knoten von G genau
einmal durchlauft, wird z; entweder iiber den Pfad P(k,0) oder iiber den Pfad P(k,1)
verlassen. Wenn K den Teilpfad P(k,0) verwendet, setzen wir aj, = 0; andernfalls setzen wir
ap — 1.

Mit Hilfe von Eigenschaft 2 erkennt man leicht, dass der Kreis K die Form R(a) haben
muss. Wegen der Aquivalenz der obigen Aussagen (1) und (3) ergibt sich nun direkt, dass a
eine erfiillende Belegung ist. qed

Diese Reduktion benutzte offenkundig wieder eine Reduktionsabbildung mit verbundenen
Komponenten. Die Knoten xj, sind Variablenkomponenten und die Untergraphen H; Klausel-
komponenten. Die Verbindungsstruktur zwischen diesen Komponenten wurde iiberaus trick-
reich gewéhlt.

Eine Reduktion von L; nach Ls ist i.A. technisch umso anspruchsvoller je grofier die
inhaltliche Kluft zwischen den Problemen L; und L, ist. 3-SAT ist ein Auswahlproblem der
Booleschen Logik: zu jeder Booleschen Variable miissen wir einen der Booleschen Wahrheits-
werte 0, 1 auswéihlen. Die Reduktion von 3-SAT auf CLIQUE fiihrte zu einem graphentheore-
tischen Auswahlproblem: wir miissen paarweise verbundene Knoten auswéahlen. Obwohl also
die Kluft zwischen Boolescher Logik und Graphentheorie iiberbriickt werden musste, han-
delte es sich immerhin beidemal um Auswahlprobleme. Die Reduktion von 3-SAT auf DHC
musste eine groflere Kluft iiberbriicken: sie fithrt von einem Auswahlproblem der Booleschen
Logik zu einem Anordnungsproblem der Graphentheorie: wir miissen die Knoten eines Digra-
phen so anordnen, dass sie im Digraphen einen gerichteten Hamiltonschen Kreis bilden. Es
ist also kein Zufall, dass eine komplexe Beweisfiihrung notwendig war.

Im Konigreich der Anordnungsprobleme angekommen, haben wir es nun wieder etwas
leichter.

Satz 2.9 DHC<,,HC.
Beweis Sei G = (V, E) ein Digraph, der die Eingabe fiir DHC représentiert. Wir verwandeln
G durch eine lokale Ersetzung in einen Graphen G' = (V' E'):

o V' = {vn, V', Upu| v €V}

e F' besteht

— aus den (ungerichteten) Verbindungskanten zwischen v;, und v" bzw. zwischen v’
und v, fir allev e V

— sowie den Kanten ¢’ fiir alle e € E. Wenn e eine (gerichtete) Kante von u nach v
ist, so ist €’ die (ungerichtete) Kante zwischen 1y, und v;,.

Hinter dieser Konstruktion steckt die einfache lokale Ersetzungsregel, die in Abbildung 5
illustriert ist. Die Reduktionsabbildung G — G’ ist sicher in Polynomialzeit berechenbar.
Der Beweis wird vervollstédndigt durch die

20

Behauptung: Es existiert genau dann ein gerichteter Hamiltonscher Kreis (DHC) in G,
wenn ein (ungerichteter) Hamiltonscher Kreis (HC) in G existiert.

e TN —
DHC HC

Abbildung 5: Die lokale Ersetzung bei der Reduktion von DHC auf HC.

Es sollte klar sein, wie wir einen DHC in G in einen HC in G’ transformieren kénnen.
Die Knoten v’ sind dabei im HC genauso angeordnet wie die Knoten v im DHC (gleiche
Durchlaufstrategie).

Gehen wir umgekehrt von einem HC in G” aus. Obwohl die Kanten in GG ungerichtet sind
stellen wir sie uns (im Geiste) als gerichtete Kanten der Form (uous, Vi), (Vin, v'), (V/; Vout)
vor. Die erste Beobachtung ist: die Kanten auf dem HC werden entweder alle entlang die-
ser Orientierung oder alle entlang der umgekehrten Orientierung durchlaufen. Denn wiirden
wir etwa bei vy, die Orientierung ,,umpolen®, also v;, iiber €| (mit Eingangskante e; von
v) betreten und iiber €}, (mit Eingangskante e, von v) gleich wieder verlassen, dann kénn-
te HC den Knoten v nicht durchlaufen, ohne v;, oder v,,; mehrmals zu durchlaufen.® Wir
kénnen daher oBdA annehmen, dass alle Kanten von HC geméafl unserer imaginierten Ori-
entierung durchlaufen werden. Die gleiche Durchlaufstrategie konnen wir dann aber auch in
G anwenden. G besitzt folglich einen DHC. qed

Wir kommen zum Finale mit einer Spezialisierung.

Satz 2.10 HC<,, TSP.

Beweis Sei G = (V, E) mit V = {1,...,n} eine Eingabeinstanz von HC. Wir assoziieren zu
G die Kostenschranke K¢ = n und die Distanzmatrix Dg = D = (d;j)1<i j<n, WObei

0 fallsi =7y,
dij=4q 1 fallsi# jund {i,j} € E,
2 fallsi# j und {i,j} ¢ E.

Die Reduktionsabbildung G +— (Dg, K¢) ist sicherlich in Polynomialzeit berechenbar. Of-
fensichtlich kann man beziiglich D die Kostenschranke n genau dann einhalten, wenn die
Rundreise nur durch Kanten aus F fiihrt, also genau dann, wenn ein Hamiltonscher Kreis in
G existiert. qed

8Wir erinnern uns, dass ein Hamiltonscher Kreis jeden Knoten genau einmal durchlaufen muss.

21

Die im Beweis von Satz 2.10 vorgefiihrte Reduktion zeigt, dass HC als folgender Spezialfall
von TSP aufgefasst werden kann:

e Die Distanzmatrix D € N™*" ist symmetrisch und hat auerhalb der Hauptdiagonalen
nur Eintrage aus {1,2}.

e Die Kostenschranke ist n.

Wir fassen das Hauptresultat dieses Abschnitts zusammen in der

Folgerung 2.11 Die Probleme SAT, 3-SAT, CLIQUE, INDEPENDENT SET, VERTEX
COVER, HITTING SET, SET COVER, SUBSET SUM, KNAPSACK, PARTITION, BIN
PACKING, DHC, HC und TSP sind NP-vollstindig.

Beweis Die Mitgliedschaft dieser Sprachen in der Klasse NP ist jeweils leicht nachzuweisen.
Die NP-Hérte dieser Sprachen ergibt sich aus dem Cookschen Theorem und der Tatsache,
dass von SAT zu jedem dieser Probleme eine Kette von polynomiellen Reduktionen existiert.

qed

A Problemliste

SAT: Satisfiability (Erfiillbarkeitsproblem der Aussagenlogik)

Eingabe: Kollektion C1, ..., C,, von Booleschen Klauseln in n Booleschen Variablen
Z1,...,ZT,. (Eine Boolesche Klausel ist eine Disjunktion von Booleschen Literalen.
Ein Boolesches Literal ist eine negierte oder unnegierte Boolesche Variable.)

Frage: Existiert eine Belegung von x4, ..., x, mit 0 oder 1, die alle Klauseln erfiillt,
d.h., die dazu fiihrt, dass C,...,C,, zu 1 ausgewertet werden 7

3-SAT: Einschrankung von SAT auf Eingaben, deren Boolesche Klauseln aus jeweils 3
Booleschen Literalen bestehen.

CLIQUE: Cliquenproblem.

Eingabe: Ein ungerichteter Graph G = (V, E) und eine Anzahl k.

Frage: Existiert in GG eine Clique der Grofle k, d.h., eine Menge C' C V' der Méchtigkeit
k, deren Knoten paarweise in G' benachbart sind ?

INDEPENDENT SET: Unabhéngige Mengen.

Eingabe: Ein ungerichteter Graph G = (V, E) und eine Anzahl k.

Frage: Existiert in GG eine unabhéngige Menge der Grofle k, d.h., eine Menge U C V
der Méchtigkeit k£, deren Knoten paarweise in G nicht benachbart sind 7

22

VERTEX COVER: Uberdeckung mit Knoten.

Eingabe: Ein ungerichteter Graph G = (V, E') und eine Anzahl k.

Frage: Existiert in G ein , Vertex Cover (Knoteniiberdeckungsmenge)“ der GroBe k,
d.h., eine Menge C' C V' der Méchtigkeit k, die von jeder Kante aus E mindestens
einen Randknoten enthalt ?

HITTING SET: Auffinden eines Représentantensystems.

Eingabe: eine Kollektion My, Ms, ..., M,, endlicher Mengen und eine Zahl k£ € N.

Frage: Gibt es fiir diese Mengen ein Repriasentantensystem der Grofle k, d.h., eine
Menge R der Méchtigkeit k, die von jeder der Mengen My, Mo, ..., M, mindestens
ein Element enthélt ?

SET COVER: Mengeniiberdeckung.

Eingabe: eine Kollektion My, Ms, ..., M,, endlicher Mengen und eine Zahl k£ € N.

Frage: Gibt es eine Auswahl von k dieser Mengen, deren Vereinigung mit der Verei-
nigung aller Mengen {ibereinstimmt, d.h., existiert eine k-elementige Indexmenge

IC{1,...,m} mit
U =) 2
=1

iel
SUBSET SUM: Erzielung einer vorgeschriebenen Teilsumme.

Eingabe: n Zahlen aq,...,a, € N und eine , Teilsummenzahl“ S € N.
Frage: Gibt es eine Menge I C {1,...,n},sodass >, .;a;, =S 7
PARTITION: Zerlegung in zwei gleichgrofle Teilsummen.
Eingabe: n Zahlen ay,...,a, € N.
Frage: Kann man diese Zahlen in zwei gleichgrofle Teilsummen zerlegen, d.h., existiert
eine Teilmenge I C {1,...,n}, sodass 3 ,c;a;i =) 4ra; 7
KNAPSACK: Rucksackproblem.
Eingabe: n Objekte mit Gewichten wq, ..., w, € N und Nutzen pq,...,p, € N, eine
Gewichtsschranke W und eine Nutzenschranke P.

Frage: Kann man einen Rucksack R so packen, dass die Objekte in R einen Gesamt-
nutzen von mindestens P und ein Gesamtgewicht von héchstens W besitzen, d.h.,
existiert eine Teilmenge I C {1,...,n},sodass) ,.,p; > Pund > ., w; < W ?

23

BP: Bin Packing (Behélterpackungsproblem).

Eingabe: n Objekte der Grofien ay, ..., a, € N, m Behilter (=bins) der ,Bingrofie“
b.

Frage: Kann man die n Objekte so in die m Behélter verpacken, dass in jedem Behélter
die GroBlen der in ihm enthaltenen Objekte sich zu hochstens b addieren, d.h.,
existiert eine Zerlegung von {1,...,n} in m disjunkte Teilmengen Iy, ..., I, so
dass), 1, G < b fiir alle 1 < j < m erfiillt ist ?

HC: Hamiltonian Circuit (Hamiltonscher Kreis).

Eingabe: Ein ungerichter Graph G = (V, E).

Frage: Gibt es in G einen Hamiltonschen Kreis, d.h., kénnen wir mit Kanten aus F
einen Kreis formen, der jeden Knoten aus V' genau einmal durchlauft ?

DHC: Directed Hamiltonian Circuit (Gerichteter Hamiltonscher Kreis)
Dies ist das entsprechende Problem fiir gerichtete Graphen.

TSP: Travelling Salesman Problem (Problem des Handelsreisenden)

Eingabe: Eine Kostenschranke C', n Stadte (1, ..., C, und eine Distanzmatrix D =
(d; j)1<ij<n, Wobei d; ; € N die Distanz zwischen C; und C; angibt.

Frage: Existiert eine Rundreise durch C1,...,C,, deren Gesamtlange C' nicht iiber-

schreitet, d.h., existiert eine Permutation o von 1,...,n, so dass
n—1
Z do(i)o(i+1) T domycq) < C 7
i=1

24

