
Einblick in die Komplexitätstheorie

Hans Ulrich Simon

1 Grundlagen und das Theorem von Cook

Während eine Theorie der Berechenbarkeit die Grenze zwischen entscheidbaren und unent-
scheidbaren Problemen exploriert, ist die zentrale Frage der Komplexitätstheorie, welche
Probleme effizient lösbar sind und welche inhärent einen hohen Ressourcenverbrauch erfor-
dern (s. Abbildung 1).

unentscheidbar

entscheidbar,
aber nicht
effizient

effizient
entscheidbar

Abbildung 1: Grobunterteilung aller Probleme.

Der Ressourcenverbrauch kann und soll i.A. nicht exakt, sondern nur größenordnungsmäßig
erfasst werden. 1 Wir werden aus diesem Grund von der Landau’schen O-Notation Gebrauch
machen. Für eine Funktion f von

�
nach

�
sei die Funktionsmenge O(f) definiert wie folgt:

O(f) = {g :
�

→
�
| ∃a, n0 ∈

�
, ∀n ≥ n0 : g(n) ≤ af(n)}.

Funktionen g aus O(f) heißen größenordnungsmäßig durch f beschränkt. Aus historischen
Gründen schreibt man g = O(f) anstelle von g ∈ O(f). Zum Beispiel gilt 10n2 + 1000n =
O(n2). Salopp gesprochen kann man sagen, dass das große O Konstanten und Terme nicht-
dominanter Größenordnung

”
schluckt“. Aus diesem Grunde

”
überlebt“ von dem Ausdruck

10n2 + 1000n nur der dominante Term n2. Natürlich gilt auch 10n2 + 1000n = O(n3),

1Eine präzise Erfassung würde durch jede Technologieverbesserung obsolet. Nach jeder neuen Computer-
generation müsste man die Theorie umschreiben.

1

aber O(n2) ist die genauere Abschätzung der Größenordnung. Die O-Notation sollte aus der
Vorlesung

”
Diskrete Mathematik“ oder einer anderen mathematischen Grundveranstaltung

bekannt sein.
Die wichtigsten Ressourcen sind Platz (= Speicherplatz) und Zeit (= Rechenzeit). Seien

S, T Funktionen von
�

nach
�

und M eine DTM.

Definition 1.1 (Platzschranke, Zeitschranke)

1. M heißt S(n)-platzbeschränkt, wenn eine Rechnung von M auf einer Eingabe der
Maximallänge n maximal O(S(n)) Bandzellen verbraucht.

2. M heißt T (n)-zeitbeschränkt, wenn eine Rechnung von M auf einer Eingabe der Ma-
ximallänge n maximal O(T (n)) Schritte dauert.

Eine DTM ist um so
”
platz- bzw. zeiteffizienter“ je langsamer S(n) bzw. T (n) mit n

wächst. Eine grobe Unterscheidung ist polynomielles versus exponentielles Wachstum.
Veranschaulichung: Seien c, k Konstanten. T (n) = c ·n bedeutet, dass eine Verdop-

pelung der Eingabelänge die Zeitschranke verdoppelt. T (n) = c · n2 (bzw. T (n) = c · nk)
bedeutet, dass eine Verdoppelung der Eingabelänge, die Zeitschranke vervierfacht (bzw. ver-
2k-facht). T (n) = c · 2n bedeutet, dass die Zeitschranke sich schon bei Eingaben der Länge
n + 1 auf c · 2n+1 = 2c2n verdoppelt.

Obwohl auch Rechenzeiten der Form T (n) = 1000000000 ·n oder T (n) = n1000 im Grunde
inakzeptabel sind, läßt sich dennoch sagen, dass exponentielles Wachstum T (n) = c · 2n

schon für moderate Werte von n auch schnellste Rechenanlagen für Milliarden von Jahren
beschäftigt. Man denke an den König, der versprach, auf ein Schachbrett mit 64 Feldern
Reiskörner der Anzahlen

1, 2, 4, 8, 16, . . . , 263

zu legen und zu verschenken. Er musste bestürzt erkennen, dass alle Kornspeicher seines
Reiches zum Einlösen dieses Versprechens nicht ausreichen.

Aus diesen Gründen hat sich die Sichtweise durchgesetzt, polynomielles Wachstum noch
als

”
effizient“ oder zumindest

”
praktikabel“ durchgehen zu lassen, aber kein superpolynomi-

elles Wachstum zu tolerieren.

Definition 1.2 (Deterministische Komplexitätsklassen)

1. DSpace(S) ist die Klasse aller Sprachen, die von einer S(n)-platzbeschränkten DTM
akzeptiert werden können.

2. DTime(T) ist die Klasse aller Sprachen, die von einer T (n)-zeitbeschränkten DTM
akzeptiert werden können.

3. P = ∪k≥1DTime(nk) ist die Klasse aller deterministisch in Polynomialzeit akzeptier-
baren Sprachen.

2

4. PSpace = ∪k≥1DSpace(nk) ist die Klasse aller deterministisch in polynomiellem Platz
akzeptierbaren Sprachen.

Diese Definitionen lassen sich auch auf NTM’s übertragen. Eine NTM M heißt S(n)-platz-
beschränkt (bzw. T (n)-zeitbeschränkt), wenn zu jeder Eingabe x ∈ LM der Maximallänge
n eine akzeptierende Rechnung existiert, die maximal O(S(n)) Bandzellen (bzw. O(T (n))
Rechenschritte) benötigt.

Bemerkung 1.3 Falls T , S bestimmte Konstruierbarkeitsaxiome erfüllen, kann man eben-
sogut verlangen, dass alle Rechnungen, die Ressourcenschranken S(n), T (n) einhalten, da
man die anderen Rechnungen abbrechen kann, ohne dabei LM zu verändern.

Definition 1.4 (Nichtdeterministische Komplexitätsklassen)

1. NSpace(S) ist die Klasse aller Sprachen, die von einer S(n)-platzbeschränkten NTM
akzeptiert werden können.

2. NTime(T) ist die Klasse aller Sprachen, die von einer T (n)-zeitbeschränkten NTM
akzeptiert werden können.

3. NP = ∪k≥1NTime(nk).

Es hat sich gezeigt, dass
NSpace(S) ⊆ DSpace(S2).

Für jede NTM existiert also eine deterministische Simulation mit höchstens quadratischem

”
blow-up“ des Speicherplatzes (Satz von Savitch). Daher erübrigt sich eine Unterscheidung

von DPSpace und NPSpace.
Zentrale Fragen der Komplexitätstheorie sind die folgenden:

1. Welche Probleme erfordern (im Wesentlichen) die gleichen Ressourcen an Zeit bzw. Platz
und gehören daher in dieselbe Komplexitätsklasse ?

2. Wie ist das Verhältnis von Platz und Zeit? Kann man durch Mehraufwand an Spei-
cherplatz Rechenzeit einsparen und umgekehrt?

3. Wie ist das Verhältnis von Determinismus und Nichtdeterminismus? Der Satz von
Savitch garantiert platzeffiziente deterministische Simulationen von NTM’s. Gibt es
auch zeiteffiziente deterministische Simulationen?

Wir wollen der zweiten Frage anhand des berühmten (P
?

6= NP)-Problems nachgehen.2

Viele fundamentale Anwendungsprobleme (s. Liste im Anhang) gehören zur Klasse NP. Diese

2Es handelt sich um das erste
”
Millenium Prize Problem“ auf der Liste des

”
Clay Mathematics Institute“

(www.claymath.org).

3

Probleme können bis heute nicht (deterministisch) in Polynomialzeit gelöst werden. Die
meisten ExpertInnen glauben daher

P 6= NP .

Man kann bis heute aber diese Vermutung nicht beweisen. Immerhin ist es aber im Rah-
men der NP-Vollständigkeitstheorie gelungen,

”
härteste Vertreter“ der Problemklasse NP

dingfest zu machen. Diese werden NP-vollständige Probleme genannt. Wir werden in Kürze
zeigen, dass das Erfüllbarkeitsproblem der Aussagenlogik (Satisfiability-Problem oder kurz
SAT) NP-vollständig ist. Falls ein deterministischer Polynomialzeitalgorithmus für ein NP-
vollständiges Problem (wie zum Beispiel SAT) existieren würde, dann würde logisch zwin-
gend P=NP folgen. Im Umkehrschluss impliziert die Annahme P 6= NP , dass es für NP-
vollständige Probleme keine deterministischen Polynomialzeitalgorithmen gibt. Dies kann
dann als Legitimation dienen, es mit Heuristiken3 zu probieren.

Der Anhang enthält eine kleine Liste von NP-vollständigen Problemen. Ein wichtiges
Werkzeug zur Entwicklung der Theorie sind die

”
polynomiellen Reduktionen“:

Definition 1.5 (Polynomielle Reduktion) Seien L1, L2 ⊆ Σ∗.

1. Wir sagen, L1 ist polynomiell reduzierbar auf L2 (in Zeichen: L1 ≤pol L2), wenn eine

Abbildung f : Σ∗ → Σ∗ existiert, so dass folgendes gilt:

(1) ∀w ∈ Σ∗ : w ∈ L1 ⇔ f(w) ∈ L2.

(2) f ist von einer polynomiell zeitbeschränkten DTM berechenbar.

2. Eine Sprache L0 ⊆ Σ∗ heißt NP-vollständig, falls

(1) L0 ∈ NP.

(2) ∀L ∈ NP : L ≤pol L0.

Falls die zweite Bedingung gilt, aber L0 nicht notwendig zur Klasse NP gehört, dann
heißt L0 NP-hart.

Die folgenden Beobachtungen sind leicht zu beweisen.

Bemerkung 1.6 1. Die Relation
”
≤pol“ ist transitiv. Ketten von Reduktionen ergeben

also wieder eine Reduktion.

2. Aus L1 ≤pol L2 und L1 ist NP-hart folgt, dass auch L2 NP-hart ist.

3. Aus L ≤pol L0 (via Reduktionsabbildung f) und L0 ∈ P folgt L ∈ P. Die Frage, ob
w ∈ L, kann nämlich entschieden werden wie folgt:

(a) Berechne f(w).

(b) Entscheide, ob f(w) ∈ L0.

4. Wenn ein NP-hartes Problem (deterministisch) in Polynomialzeit gelöst werden kann,
dann folgt P=NP.

3Algorithmen ohne allgemeine Erfolgsgarantie, die in der Praxis ganz gut zu funktionieren scheinen

4

Die Liste NP-vollständiger Probleme im Anhang ist durch folgende Evolution entstanden:

1. Das Theorem von Cook — gewissermaßen der
”
Urknall“ der NP-Vollständigkeitstheorie

— lieferte mit SAT das erste
”
natürliche“ NP-vollständige Problem.

2. Von SAT ausgehend hat sich mit polynomiellen Reduktionen mit der Zeit eine Art

”
Stammbaum“ NP-vollständiger Probleme gebildet. Ein Teil dieser Stammbaums ist

in Abbildung 2 zu sehen. (Die Abkürzungen beziehen sich dabei auf die Problemliste
im Anhang.)

CLIQUE

INDEPENDENT SET

VERTEX COVER

SET COVER

HITTING SET

KNAPSACK PARTITION

DHCSUBSET SUM

TSP

HC

BIN PACKING

SAT

3-SAT

Abbildung 2: Stammbaum NP-vollständiger Probleme.

Eine lange Liste mit NP-vollständigen Problemen ist in dem Buch Garey and Johnson,
Computers and Intactability, A Guide to the Theory of NP-Completeness, Freeman and
Company, 1979, zu finden. Es enthält zudem eine großartige Beschreibung der Theorie der
NP-Vollständigkeit.

SAT ist ein Problem im Zusammenhang mit Booleschen Formeln (die aus anderen Grund-
vorlesungen bekannt sein sollten). Ein Literal ist eine negierte oder nicht negierte Boolesche
Variable. Eine Klausel ist eine Disjunktion (Logisches Oder) von Literalen, und eine Formel
in konjunktiver Normalform (kurz: CNF-Formel) ist eine Konjunktion (Logisches Und) von

5

Klauseln. Beachte, dass eine Klausel auch aus einem einzigen Literal und eine CNF-Formel
auch aus einer einzigen Klausel bestehen darf.

Beispiel 1.7

F0 = (x1 ∨ x3) ∧ (x1 ∨ x3) ∧ x1

F1 = (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x3) ∧ x2

sind CNF-Formeln.

SAT ist folgendes Problem:

Eingabe eine CNF-Formel F.

Frage Ist die Formel erfüllbar, d.h., existiert eine Belegung von x1, . . . , xn mit 0 oder 1, so
dass F zu 1 ausgewertet wird?

Beispiel 1.7 (fortgesetzt) x1 = 1, x2 = 1, x3 = 0 erfüllt die obige Formel F1.
Die Formel F0 hingegen ist nicht erfüllbar. Wieso ?

Satz 1.8 (Theorem von Cook) SAT ist NP-vollständig.

Beweis

1. SAT ∈ NP.
Gegeben die CNF-Formel F , rate (nichtdeterministisch) die erfüllende Belegung und
werte danach F (deterministisch und in Polynomialzeit) aus.

2. Für alle L ∈ NP: L ≤pol SAT. Sei L ∈ NP und M eine polynomiell zeitbeschränkte

NTM für L. Es ist relativ leicht einzusehen, dass M sich so normalisieren läßt, dass
für geeignete Konstanten c1 ≤ c2 gilt:

• Sei R = R(n) = nc1 . Bei Eingaben der Länge n rät M zunächst einen Binärstring
r ∈ {0, 1}R und schreibt diesen in die Zellen −1, . . . ,−R.

• Auf Zelle 0 wird Trennsymbol $ geschrieben. Zellen 1, . . . , n enthalten weiterhin
die Eingabe w = w1 . . . wn. Gestartet auf Inschrift r$w (im Startzustand z0 und
Kopfposition 0) rechnet M deterministisch genau T = T (n) = nc2 Schritte.

• M hat einen eindeutigen (akzeptierenden) Endzustand ACC.

Der wesentliche Trick bei dieser Normalisierung ist, dass alle benötigten
”
Ratebits“ in

der Anfangsphase ermittelt werden und danach deterministisch weitergerechnet wird
(Schema des Ratens und Verifizierens). Unser Ziel ist es, eine Formel F = Fw in
konjunktiver Normalform mit folgender Eigenschaft zu berechnen:

w ∈ L ⇔ Fw erfüllbar.

Idee: F beschreibt die deterministische Rechnung von M auf r$w und ist erfüllbar genau
dann, wenn diese Rechnung für mindestens einen Ratestring r akzeptierend ist.

6

Um die Rechnung von M zu beschreiben, benutzen wir die folgenden Booleschen Varia-
blen:

Variable X Interpretation von X = 1
Z(i, z) Zustand z zum Zeitpunkt i
H(i, j) Kopfposition j zum Zeitpunkt i
S(i, j, c) Bandsymbol c in Zelle j zum Zeitpunkt i

Dabei gilt 0 ≤ i ≤ T,−T ≤ j ≤ T, z ∈ Z, c ∈ Γ. Die Anzahl der Variablen bei Eingabelänge
|w| = n ist offensichtlich von der Größenordnung O((T (n))2).

Wir setzen verschiedene Typen von Klauseln ein.

Typ I: Korrektheit der Beschreibung einer Konfiguration.

Typ II: Korrekte Startkonfiguration und akzeptierende Endkonfiguration.

Typ III: Korrekte Überführung einer Konfiguration in die direkte Folgekonfiguration.

Dabei haben wir hinter jedem Typ die Aufgabe genannt, die die betreffenden Klauseln
erfüllen müssen. Es folgt eine detaillierte Beschreibung aller Klauseln. Die Klauseln vom
Typ I sollen folgendes erzwingen:

(1) Für alle i existiert genau ein z mit Z(i, z) = 1.

Interpretation: Zu jedem Zeitpunkt befindet sich M in genau einem Zustand.

(2) Für alle i existiert genau ein j mit H(i, j) = 1.

Interpretation: Zu jedem Zeitpunkt gibt es genau eine Position, auf der sich M ’s
Kopf befindet.

(3) Für alle i, j existiert genau ein c mit S(i, j, c) = 1.

Interpretation: Zu jedem Zeitpunkt speichert jede Bandzelle genau ein Symbol.

In allen drei Fällen haben wir das gleiche Grundmuster:
Genau ein y ∈ {y1, . . . , ym} hat Wert 1. Dies ist äquivalent zu folgenden Klauseln

(y1 ∨ . . . ∨ ym) ∧
∧

1≤i<j≤m

(yi ∨ yj),

1 +
(

m
2

)

= O(m2) an der Zahl.
Wenn wir dieses Grundmuster auf (1), (2) und (3) anwenden, so benötigen wir insgesamt

O((T (n))3) Klauseln.

7

Wir kommen zu den Klauseln vom Typ II (von denen viele aus einem einzigen Literal
bestehen). Die Klausel

(4) Z(T, ACC)

kontrolliert, dass M am Ende der Rechnung sich im (akzeptierenden) Endzustand befindet.
Die Klauseln

(5) Z(0, z0)

(6) H(0, 0)

(7) S(0,−j, 0) ∨ S(0,−j, 1) für j = 1, . . . , R (bel. Ratestring)
S(0, 0, $) (Trennsymbol)
S(0, j, wj) für 1 ≤ j ≤ n (Eingabe)
S(0, j, �) für − T ≤ j < −R, n < j ≤ T (Blanks)

kontrollieren, dass M im Zustand z0 mit Kopf in Position 0 und Bandinschrift r$w (einge-
rahmt von Blanks im relevanten Speicherbereich) startet. (4), . . . , (7) zusammengenommen
sind nur O(T (n)) viele Klauseln.
Die Klauseln vom Typ III sollen folgendes erzwingen:

(8) Die nicht gelesenen Speicherzellen haben einen unveränderten Inhalt:

H(i, j) ∧ S(i, j, c) ⇒ S(i + 1, j, c).

Die Schreibweise mit Implikation
”
⇒“ ist wegen

(y1 ∧ . . . ∧ ym ⇒ y) ⇔ (y1 ∨ . . . ∨ ym ∨ y)

leicht in Klauselschreibweise transformierbar. Dies machen wir uns auch im folgenden zunut-
ze.

(9) Die eintretenden Veränderungen müssen der Überführung δ(z, c) = (z′, c′, d) mit d ∈
{L, R, N} entsprechen:

Z(i, z) ∧ H(i, j) ∧ S(i, j, c) ⇒
(a) Z(i + 1, z′)
(b) S(i + 1, j, c′)

(c) H(i + 1, j + s(d)) mit s(d) =







−1, falls d = L,
0 , falls d = N,
1 , falls d = R.

(8), (9) zusammengenommen sind O((T (n))2) weitere Klauseln. Die Formel Fw besteht nun
aus den in (1), . . . , (9) genannten Klauseln, O((T (n))3) an der Zahl. Es ist leicht einzusehen,
dass Fw deterministisch und in Polynomialzeit aus w konstruiert werden kann. Das Cooksche
Theorem ergibt sich dann direkt aus dem Beweis von:

w ∈ L
!
⇔ Fw erfüllbar.

8

⇒: Falls w ∈ L, dann besitzt M für einen geeigneten Ratestring r ∈ {0, 1}R eine
akzeptierende Rechnung auf w. Der Ratestring r und die Rechnung von M auf r$w liefern
eine erfüllende Belegung für Fw (vgl. die Interpretation der Variablen).

⇐: Aus der Belegung von S(0,−R, b), . . . , S(0,−1, b) mit b = 0, 1 läßt sich der Rate-
string r ablesen, für den M auf r$w eine akzeptierende Rechnung vollzieht. qed

2 Grundlegende NP–vollständige Probleme

Ausgehend von dem Erfüllbarkeitsproblem der Aussagenlogik (SAT) werden wir in diesem
Abschnitt mit Hilfe geeigneter polynomiellen Reduktionen die NP -Vollständigkeit einiger
grundlegender Probleme beweisen. Im Wesentlichen verifizieren wir den in Abbildung 2 ge-
zeigten Ausschnitt des Stammbaums NP -vollständiger Probleme. Da die Mitgliedschaft die-
ser Probleme zur Klasse NP jeweils sehr leicht nachzuweisen ist, konzentrieren wir uns auf
den Nachweis der NP -Härte.

Eine k-Klausel ist eine Boolesche Klausel, die genau k paarweise verschiedene Literale
enthält. k-SAT ist das Teilproblem von SAT, bei welchem als Eingabe nur Kollektionen von
k-Klauseln zugelassen sind. Um uns den Entwurf der weiteren polynomiellen Reduktionen
zu erleichtern, zeigen wir zunächst, dass sogar 3-SAT NP -vollständig ist. Am Rande sei
bemerkt, dass 2-SAT zur Klasse P gehört.

Satz 2.1 SAT ≤pol 3-SAT.

Beweis Der Beweis benutzt die Methode der lokalen Ersetzung: zu einer Klausel

C = z1 ∨ . . . ∨ zk mit z1, . . . , zk ∈ {x1, x̄1, . . . , xn, x̄n}

suchen wir eine
”
äquivalente Kollektion“ KC von 3-Klauseln. KC benutzt neben den Boo-

leschen Variablen x1, . . . , xn weitere Hilfsvariable hC,1, hC,2, . . . und soll zu C in folgendem
Sinn äquivalent sein:

Eigenschaft 1: Jede C erfüllende Belegung ist fortsetzbar zu einer KC erfüllenden Bele-
gung.

Eigenschaft 2: Die Einschränkung einer KC erfüllenden Belegung auf die Variablen x1, . . . , xn

ist eine C erfüllende Belegung.

Falls wir eine polynomiell berechenbare Reduktionsabbildung C 7→ KC mit diesen Eigen-
schaften finden, dann liefert offensichtlich die Reduktionsabbildung

(C1, . . . , Cm) 7→ ∪m
j=1KCj

eine polynomielle Reduktion von SAT auf 3-SAT.4 Begeben wir uns also auf die Suche nach
einer geeigneten lokalen Ersetzung C 7→ KC .

Bei der Reduktionsabbildung C 7→ KC unterscheiden wir die folgenden Fälle:

4Beachte dabei, dass die Variablen der Klauseln C1, . . . , Cm aus dem gemeinsamen Vorrat x1, . . . , xn

stammen, wohingegen jede Kollektion KCj
von 3-Klauseln ihren privaten Hilfsvariablenvorrat hat.

9

Fall 1: k = 3.
Glück gehabt: C ist bereits eine 3-Klausel.

Fall 2: k < 3.
C ist also zu kurz und muss um weitere Literale

”
ausgepolstert“ werden. Im Falle

C = z1 benutzen wir zwei Hilfsvariable a, b und KC enthalte die 3-Klauseln

z1 ∨ a ∨ b , z1 ∨ a ∨ b̄ , z1 ∨ ā ∨ b , z1 ∨ ā ∨ b̄ .

Im Falle C = z1 ∨ z2 benutzen wir eine Hilfsvariable a und KC enthalte die 3-Klauseln

z1 ∨ z2 ∨ a , z1 ∨ z2 ∨ ā .

Man überlegt sich leicht, dass diese lokalen Ersetzungen die Eigenschaften 1 und 2
besitzen.

Fall 3: k > 3.
C ist also zu lang und muss in 3-Klauseln aufgesplittert werden. Wir demonstrie-
ren die allgemeine Konstruktion am Beispiel k = 7. KC verwendet die Hilfsvariablen
h2, . . . , hk−2 und enthält die folgenden 3-Klauseln:

z1 ∨ z2 ∨ h2, h̄2 ∨ z3 ∨ h3, h̄3 ∨ z4 ∨ h4, h̄4 ∨ z5 ∨ h5, h̄5 ∨ z6 ∨ z7.

Für allgemeines k hat die letzte dieser 3-Klauseln die Form h̄k−2 ∨ zk−1 ∨ zk.
Wir verifizieren Eigenschaft 1. Sei eine Belegung von x1, . . . , xn gegeben, die C mit
Hilfe des Literals zj erfüllt. Wir erweitern diese Belegung auf die Hilfsvariablen, indem
wir hj, hj+1, . . . mit Null belegen und hj−1, hj−2, . . . mit Eins. Es ist leicht zu sehen,
dass damit alle 3-Klauseln aus KC erfüllt sind.
Wir verifizieren Eigenschaft 2. Es genügt zu zeigen, dass eine C nicht erfüllende Be-
legung der Variablen x1, . . . , xn nicht zu einer KC erfüllenden Belegung fortgesetzt
werden kann. Da C nicht erfüllt ist, ist keines der Literale z1, . . . , zk erfüllt. Was die
Belegung der Hilfsvariablen betrifft, argumentieren wir mit der Logik des Zugzwan-
ges. Um z1 ∨ z2 ∨ h2 zu erfüllen, müssen wir h2 = 1 setzen. Um h̄2 ∨ z3 ∨ h3 zu
erfüllen, müssen wir h3 = 1 setzen. Iterative Anwendung dieses Argumentes führt zu
dem Zwang auch h4, . . . , hk−2 auf Eins zu setzen. Dann ist aber die letzte 3-Klausel
h̄k−2 ∨ zk−1 ∨ zk — im Beispiel h̄5 ∨ z6 ∨ z7 — nicht erfüllt. Schachmatt!

qed

10

Die polynomielle Reduktion von SAT auf 3-SAT verläuft im Bereich der Booleschen
Logik. Die folgende polynomielle Reduktion führt von einem Problem der Booleschen Logik
zu einem graphentheoretischen Problem.

Satz 2.2 3-SAT ≤polCLIQUE.

Beweis Sei C = (C1, . . . , Cm) mit Ci = zi1 ∨ zi2 ∨ zi3 und zij ∈ {x1, x̄1, . . . , xn, x̄n} eine
Eingabe für 3-SAT. Bevor wir die Reduktionsabbildung beschreiben, welche C auf eine kor-
respondierende Eingabe für CLIQUE abbildet, führen wir eine vorbereitende Überlegung
durch:
Zwei Literale z, z′ heißen kompatibel, falls z′ 6= z̄. Mehrere Literale z1, . . . , zr, r ≥ 2, hei-
ßen kompatibel, wenn sie paarweise kompatibel sind. Die folgende Beobachtung enthält den
Schlüssel zur Wahl der Reduktionsabbildung.

Beobachtung: Es gibt genau dann eine Belegung, die z1, . . . , zr erfüllt, wenn z1, . . . , zr

kompatibel sind.

Die zum Klauselsystem C korrespondierende Eingabe (G, k) mit G = (V, E) für CLIQUE soll
folgendermaßen aussehen. V enthält 3m Knoten (i, j), 1 ≤ i ≤ m, 1 ≤ j ≤ 3, die die Literale
in den Klauseln darstellen. E enthält die Kante zwischen (i, j) und (i′, j ′), wenn i 6= i′ ist
(es handelt sich um Knoten aus verschiedenen Klauseln) und zij 6= z̄i′j′ ist (die betreffenden
Literale sind kompatibel). Schließlich sei k = m. Natürlich ist die Reduktionsabbildung
C 7→ (G, m) in polynomieller Zeit berechenbar.

Bleibt zu zeigen, dass C genau dann erfüllbar ist, wenn G eine Clique der Größe m (ge-
nannt m-Clique) enthält.
Gehen wir aus von einer Belegung, die alle Klauseln erfüllt. Dann ist in jeder Klausel Ci

mindestens ein Literal, sagen wir zi,j(i), erfüllt. Folglich sind die Literale zi,j(i), 1 ≤ i ≤ m,
kompatibel. Dann bilden die Knoten (i, j(i)), 1 ≤ i ≤ m, in G eine m-Clique.
Nehmen wir umgekehrt an, dass G eine m-Clique enthält. Der Konstruktion von G entneh-
men wir, dass die Knoten der Clique Literale aus verschiedenen Klauseln repräsentieren und
die repräsentierten Literale, sagen wir zi,j(i) mit 1 ≤ i ≤ m, kompatibel sind. Folglich gibt
es eine Belegung, die diese Literale und somit auch die Klauseln C1, . . . , Cm erfüllt. qed

Die in diesem Beweis verwendete Reduktion ist eine sogenannte Reduktionsabbildung
mit verbundenen Komponenten, da wir zunächst Komponenten für die einzelnen Klauseln
bilden, diese aber durch die Kanten des Graphen verbinden.

Die polynomielle Reduktionskette

CLIQUE ≤pol INDEPENDENT SET

≤pol VERTEX COVER

≤pol HITTING SET

≤pol SET COVER

empfehlen wir als Übung.

11

Die nächste polynomielle Reduktion, die wir durchführen, führt von einem Problem der
Booleschen Logik (3-SAT) zu einem Zahlenproblem (SUBSET SUM). Diese Reduktion steht
vor der technischen Schwierigkeit, dass Zahlenprobleme von Natur aus keinen rein kombi-
natorischen Charakter haben. Zum Beispiel hat die Übertragsbildung bei arithmetischen
Operationen auf Zahlen in kombinatorischen Strukturen keine unmittelbare Entsprechung.
Um die Reduktion erfolgreich zu entwerfen, verwenden wir die Technik der Kombinatoriali-
sierung von Zahlen. Es wird eine Art

”
Zahlenpuzzle“ generiert, dass durch Vermeidung von

Übertragsbildung eine klare Beziehung zum 3-SAT Problem aufweist.

Satz 2.3 3-SAT ≤pol SUBSET SUM.

Beweis
Sei C = (C1, . . . , Cm) mit Ci = zi1 ∨ zi2 ∨ zi3 und zij ∈ {x1, x̄1, . . . , xn, x̄n} eine Eingabe

für 3-SAT. Die korrespondierende Eingabe I für SUBSET SUM soll aus folgenden Zahlen
bestehen:

Literalzahlen die Zahlen A1, . . . , An, die zu x1, . . . , xn korrespondieren, und die Zahlen
B1, . . . , Bn, die zu x̄1, . . . , x̄n korrespondieren

Klauselzahlen die Zahlen E1, . . . , Em und D1, . . . , Dm, die jeweils zu C1, . . . , Cm korre-
spondieren

Teilsummenzahl die angestrebte Teilsumme S

I soll so entworfen werden, dass C genau dann erfüllbar ist, wenn eine Auswahl der Literal-
und Klauselzahlen mit Summe S existiert. Die Zahlen in I sind in Dezimaldarstellung durch

ai,k =

{

1 falls xk ∈ Ci

0 falls xk /∈ Ci

bi,k =

{

1 falls x̄k ∈ Ci

0 falls x̄k /∈ Ci
,

1 ≤ i ≤ m, 1 ≤ k ≤ n, und durch folgende Tabelle gegeben:

12

a11 . . . a1i . . . a1m 1 0 0 . . . 0 0 A1

a21 . . . a2i . . . a2m 0 1 0 . . . 0 0 A2

· · · · · · · · ·
· · · · · · · · ·
· · · · · · · · ·

an1 . . . ani . . . anm 0 0 0 . . . 0 1 An

b11 . . . b1i . . . b1m 1 0 0 . . . 0 0 B1

b21 . . . b2i . . . b2m 0 1 0 . . . 0 0 B2

· · · · · · · · ·
· · · · · · · · ·
· · · · · · · · ·

bn1 . . . bni . . . bnm 0 0 0 . . . 0 1 Bn

1 . . . 0 . . . 0 0 0 0 . . . 0 0 E1

· · · · · · · · ·
· · · · · · · · ·
0 . . . 1 . . . 0 0 0 0 . . . 0 0 Ei

· · · · · · · · ·
· · · · · · · · ·
0 . . . 0 . . . 1 0 0 0 . . . 0 0 Em

2 . . . 0 . . . 0 0 0 0 . . . 0 0 D1

· · · · · · · · ·
· · · · · · · · ·
0 . . . 2 . . . 0 0 0 0 . . . 0 0 Di

· · · · · · · · ·
· · · · · · · · ·
0 . . . 0 . . . 2 0 0 0 . . . 0 0 Dm

4 . . . 4 . . . 4 1 1 1 . . . 1 1 S

Es sollte klar sein, dass sich die Reduktionsabbildung C 7→ I in Polynomialzeit berechnen
lässt. Beschäftigen wir uns nun mit dem kunstvollen Design von I. Jede Zahl in I besteht
aus m+n Dezimalziffern. Die ersten m Dezimalziffern der Literalzahlen sind die 0, 1-wertigen
Inzidenzvariablen, die anzeigen ob Literal xk bzw. x̄k in Klausel Ci vorkommt. Beachte, dass
genau drei der Bits a1i, . . . , ani, b1i, . . . , bni auf 1 gesetzt sind, da jede Klausel Ci eine 3-Klausel
ist. Die letzten n Dezimalziffern sind 0, 1-wertige Auswahlvariablen: um die Teilsumme S zu
erzeugen, deren letzte n Dezimalziffern Einsen sind, müssen wir ganz offensichtlich für jedes
k entweder die Zahl Ak oder die Zahl Bk auswählen (Auswahlregel für Literalzahlen).

Zu X ⊆ I \{S} bezeichne SX die Summe der Zahlen in X. Beachte, dass bei der Bildung
der Summe SX keine Überträge entstehen, egal wieviele Literal- oder Klauselzahlen in X
aufgenommen werden.

Die Klauselzahlen dienen der Inkrementierung der ersten m Dezimalziffern in SX . Auf-
nahme von Ek (bzw. Dk, bzw. Ek und Dk) in X erhöht die k-te Dezimalziffer von SX um 1
(bzw. 2, bzw. 3).

13

Der Beweis von Theorem 2.3 wird abgeschlossen durch die

Behauptung: C ist genau dann erfüllbar, wenn eine Auswahl X der Zahlen aus I \ S
existiert mit SX = S.

Nehmen wir zunächst an, dass C erfüllbar ist. Dann bestimmen wir zu einer gegebenen
erfüllenden Belegung eine geeignete Auswahl X von Zahlen nach der folgenden Strategie:

Regel 1: Falls xk mit 1 belegt wird, nehmen wir Ak in X auf. Falls xk mit 0 belegt wird,
nehmen wir Bk in X auf.

Regel 2: Falls die i-te Dezimalziffer von SX den Wert 3 (bzw. 2, bzw. 1) hat, dann nehmen
wir zusätzlich Ei (bzw. Di, bzw. Ei und Di) in X auf.

Nach Anwendung von Regel 1 stimmt SX auf den letzten n Dezimalziffern bereits mit S
überein. Da die ersten m Dezimalziffern der Literalzahlen die Inzidenzstruktur von C an-
geben, gilt zusätzlich: wenn Ci durch die erfüllende Belegung mit ri ∈ {1, 2, 3} Literalen
erfüllt wird, dann hat die i-te Dezimalziffer von SX den Wert ri (und somit im Vergleich zur
Dezimalziffer 4 von S den Defekt 4− ri. Anwendung von Regel 2 bewirkt ganz offensichtlich,
dass der Defekt auf den ersten m Dezimalziffern exakt ausgeglichen wird. Somit gilt nach
Anwendung beider Regeln SX = S.

Nehmen wir umgekehrt an, dass X eine Auswahl von Zahlen aus I\S ist, so dass SX = S.
Notwendigerweise muss X dann die Auswahlregel für Literalzahlen beherzigen. Wir wenden
folgende Belegungsregel an:

Belege xk mit 1, falls Ak ∈ X, und mit 0, falls Bk ∈ X.
Sei i ∈ {1, . . . , m} beliebig aber fest. Da die i-te Dezimalziffer von SX Wert 4 hat, die Ziffern
der Klauselzahlen dazu aber maximal den Beitrag 3 leisten, muss ein Beitrag von mindestens
1 von einer Literalzahl geleistet werden, sagen wir von Ak (der Fall Bk ist symmetrisch). D.h.,
Ak ∈ X und aik = 1. Gemäß der Belegungsregel haben wir xk mit 1 belegt. Da aik = 1,
kommt xk in Ci vor. Die Belegung erfüllt jede Klausel Ci. Damit ist der Beweis abgeschlossen.

qed

Die in diesem Beweis verwendete Reduktion benutzt erneut verbundene Komponenten. Auf
den ersten Blick sieht es zwar nach einer lokalen Ersetzung aus, bei der Literale durch Li-
teralzahlen und Klauseln durch Klauselzahlen ersetzt werden. Die ersten m Dezimalziffern
der Literalzahlen kodieren jedoch die Inzidenzstruktur der Klauselmenge C und schafft im-
plizit eine Verbindung zwischen allen Komponenten. Die Reduktion enthält auch ein neues
Werkzeug, nämlich die Ergänzung. Oft hinterlässt eine Reduktion (im ersten Versuch) einen
Defekt, der durch geeignete Ergänzungskomponenten beseitigt werden kann. Bei der Reduk-
tion von 3-SAT nach SUBSET SUM bestand dieser Defekt in zu kleinen Dezimalziffern auf
den ersten m Zifferpositionen. Wir illustrieren die Reduktion von 3-SAT nach SUBSET SUM
abschließend mit einem

14

Beispiel 2.4 Sei C = (C1, C2, C3) mit

C1 = x1 ∨ x̄2 ∨ x3

C2 = x̄1 ∨ x2 ∨ x̄4

C3 = x̄1 ∨ x̄2 ∨ x̄3

d.h. m = 3, n = 4.

S =444 1111
A1=100 1000 B1=011 1000 E1=100 0000 D1=200 0000
A2=010 0100 B2=101 0100 E2=010 0000 D2=020 0000
A3=100 0010 B3=001 0010 E3=001 0000 D1=002 0000
A4=000 0001 B4=010 0001

Es ist (1, 1, 0, 0) eine erfüllende Belegung, und es gilt:

A1 + A2 + B3 + B4 + E1 + E3 + D1 + D2 + D3 = S.

Im Königreich der Zahlenprobleme angekommen, lassen sich weitere Reduktionen relativ
leicht finden.

Satz 2.5 SUBSET SUM ≤pol KNAPSACK.

Beweis Obwohl der Beweis trivial ist führen wir ihn aus didaktischen Gründen zweimal.
Es folgt Beweis Nummer 1. Es sei I = (a1, . . . , an, S) eine Eingabe für SUBSET SUM.

Die Frage ist also, ob eine Auswahl I ⊆ {1, . . . , n} mit
∑

i∈I ai = S existiert. Die korre-
spondierende Eingabe I ′ für KNAPSACK sei gegeben durch die Gewichte a1, . . . , an mit
Gewichtsschranke S sowie die Nutzenwerte a1, . . . , an mit Nutzenschranke S. Die Frage ist
also, ob eine Auswahl I ⊆ {1, . . . , n} mit

∑

i∈I ai ≤ S und
∑

i∈I ai ≥ S existiert. Die
erste Ungleichung drückt aus, dass das Gesamtgewicht des (imaginierten) Rucksackes die
Gewichtsschranke S nicht überschreitet. Die zweite Ungleichung drückt aus, dass die Nut-
zenschranke S nicht unterschritten wird. Offensichtlich ist die Reduktionsabbildung I 7→ I ′

in Polynomialzeit berechenbar und es gilt I ∈ SUBSET SUM ⇔ I ′ ∈ KNAPSACK .
Es folgt Beweis Nummer 2. SUBSET SUM ist der Spezialfall von KNAPSACK, bei dem

die Nutzenwerte mit den Gewichtswerten und die Nutzenschranke mit der Gewichtsschranke
übereinstimmt. Fertig! qed

Wir lernen hier eine neue Reduktionsmethode kennen, die im Vergleich zu lokaler Erset-
zung oder gar verbundenen Komponenten sympathisch einfach ist: Spezialisierung. Darunter
verstehen wir eine Reduktion von L1 nach L2, die dokumentiert, dass eine spezielle Wahl
der Eingabeparameter von L2 ein Teilproblem erzeugt, dass

”
isomorph“ zu L1 ist. Der Be-

griff
”
Isomorphie“ sollte hier nicht formal-mathematisch aufgefasst werden. Es ist vielmehr

gemeint, dass man durch
”
scharfes Hinsehen“ erkennt, dass die spezielle Wahl der Eingabe

für L2 zu erkennen gibt, dass L1 ein Teilproblem von L2 ist. Da ein Teilproblem immer

15

auf triviale Weise auf das Gesamtproblem polynomiell reduzierbar ist, kann man sich die
wortreiche Beschreibung der Reduktionsabbildung sparen.

Damit wir nicht aus der Übung kommen, hier eine weitere Reduktion mit lokaler Erset-
zung plus Ergänzungskomponente.

Satz 2.6 SUBSET SUM ≤pol PARTITION.

Beweis Schade, dass wir nicht PARTITION auf SUBSET SUM polynomiell reduzieren sol-
len! Dann könnten wir nämlich demonstrieren, dass wir das Prinzip der Spezialisierung
verstanden haben. PARTITION ist nämlich der Spezialfall von SUBSET SUM mit S =
(a1 + · · ·+ an)/2.

Okay, okay, das ist die falsche Richtung. Um SUBSET SUM auf PARTITION zu reduzie-
ren, müssen wir irgendwie erzwingen, dass die zu bildende Teilsumme genau die Hälfte der
Gesamtsumme ist. Sei also I = (a1, . . . , an, S) die Eingabe für SUBSET SUM. Sei A = a1 +
· · ·+an. Die korrespondierende Eingabe für PARTITION sei I ′ = (a1, . . . , an, S+1, A−S+1).
Die Zahlen S + 1 und A− S + 1 sind dabei die angekündigten Ergänzungskomponenten. Im
folgenden sei A′ = A + (S + 1) + (A− S + 1) = 2A + 2 die Gesamtsumme aller Zahlen in I ′.
Die Reduktionsabbildung I 7→ I ′ ist offensichtlich in Polynomialzeit berechenbar. Es genügt
also die folgende Aussage zu beweisen:

Behauptung: Es gibt genau dann eine Auswahl I ⊆ {1, . . . , n} mit
∑

i∈I ai = S, wenn
sich die Zahlen aus I ′ in zwei Mengen mit gleichen Teilsummen A′/2 = A + 1 zerlegen
lassen.

Sei zunächst I mit
∑

i∈I ai = S vorgegeben. Dann zerlegen wir die Zahlen aus I ′ in die
Teilmengen

M1 = {ai| i ∈ I} ∪ {A − S + 1} und M2 = {aj| j /∈ I} ∪ {S + 1}.

M1 liefert die Teilsumme S+(A−S+1) = A+1, und M2 liefert die Teilsumme (A−S)+(S+
1) = A + 1. Beachte, dass die Ergänzungskomponenten gerade so gewählt waren, dass die
Teilsummen S und A − S, die von SUBSET SUM herrührten, zu zwei gleichen Teilsummen
ergänzt werden. Gute Sache diese Ergänzungskomponenten !

Nehmen wir nun umgekehrt an, dass eine Zerlegung der Zahlen von I ′ in zwei Mengen
M1, M2 mit gleichen Teilsummen A+1 vorgegeben ist. Addition der beiden Ergänzungskom-
ponenten liefert (S + 1) + (A− S + 1) = A + 2. Diese beiden Zahlen können also unmöglich
in der gleichen Menge Mi stecken. Also gilt oBdA A − S + 1 ∈ M1 und S + 1 ∈ M2. Da M1

(wie auch M2) zur Teilsumme A + 1 führt, müssen die Zahlen aus M1 ∩ {a1, . . . , an} sich zu
S addieren. Voilà, I = {i| ai ∈ M1} ist eine Lösung für die Eingabe von SUBSET SUM. qed

16

Als nächstes Problem gliedern wir BP in unseren Stammbaum ein.

Satz 2.7 PARTITION≤polBP.

Beweis Entzückend! Jetzt kommen wir endlich dazu, die Kunst der Spezialisierung zu de-
monstrieren. PARTITION ist nämlich der Spezialfall von BIN PACKING, bei welchem wir n
Objekte der Größen a1, . . . , an in zwei Behälter der speziellen Behältergröße (a1+· · ·+an)/2
verpacken sollen (Spezialisierungen durch Fettdruck hervorgehoben). (Kein Wort mehr, sonst
ist die Eleganz des Beweises dahin.) qed

In unserem angekündigten Stammbaum fehlen noch die Probleme DHC, HC und TSP.
Auf geht’s!

Satz 2.8 3-SAT≤polDHC.

Beweis Sei C = (C1, . . . , Cm) mit Ci = zi1 ∨ zi2 ∨ zi3 und zij ∈ {x0, x̄0, . . . , xn−1, x̄n−1} eine
Eingabe für 3-SAT. Unser Ziel ist C effizient in einen Digraphen G zu transformieren, so
dass C genau dann erfüllbar ist, wenn es in G einen gerichteten Hamiltonschen Kreis gibt.

Wir beginnen mit einer groben Modellierung der CNF-Formel C durch einen Digraphen
G′ = (V ′, E ′). In G′ ist jede Boolesche Variable xk, k = 0, . . . , n − 1, durch einen Knoten
repräsentiert, den wir ebenfalls mit xk notieren. Analog repräsentieren wir jede Klausel Ci,
i = 1, . . . , m, durch einen Klauselknoten Ci.

5 Aus dem Kontext wird stets hervorgehen, ob
mit xk (bzw. Ci) die Boolelsche Variable (bzw. Klausel) oder der betreffende Knoten in G′

gemeint ist. Die Knotenmenge von G′ ist somit gegeben durch

V ′ = {x0, . . . , xn−1, C1, . . . , Cm}.

Kantenmenge E ′ wird so entworfen, dass sie eine Zerlegung der Form

E ′ =
n−1
⋃

k=0

(E(k, 0) ∪ E(k, 1))

besitzt. Für alle k = 0, . . . , n − 1 seien

i1(k) < · · · < ir(k)(k) bzw. ī1(k) < · · · < īr̄(k)(k)

die Indizes aller Klauseln, in denen xk bzw. x̄k vorkommt. Mit diesen Bezeichnungen bestehe
E(k, 1) aus allen Kanten des Pfades

P (k, 1) : xk → Ci1(k) → Ci2(k) → · · ·Cir(k)(k) → xk+1 mod n.

Analog bestehe E(k, 0) aus allen Kanten des Pfades

P (k, 0) : xk → Cī1(k) → Cī2(k) → · · ·Cīr̄(k)(k) → xk+1 mod n.

5Die mehrdeutige Verwendung von xk und Ci ist etwas schlampig, unterstützt aber im Folgenden das
intuitive Verständnis der Konstruktion.

17

Pfad P (k, 1) repräsentiert einen Spaziergang von xk nach xk+1 mod n, bei dem der Reihe
nach alle Klauseln (sprich: Klauselknoten) Ci mit xk ∈ Ci besucht werden. Pfad P (k, 0)
repräsentiert einen Spaziergang von xk nach xk+1 mod n, bei dem der Reihe nach alle Klauseln
(sprich: Klauselknoten) Cī mit x̄k ∈ Cī besucht werden.

Mit einer Belegung a = (a0, . . . , an−1) ∈ {0, 1}n der Variablen x0, . . . , xn−1 verbinden wir
die folgende Rundtour durch G′:

R′(a) : x0
P (0,a0)
−→ x1

P (1,a1)
−→ · · ·

P (n−2,an−2)
−→ xn−1

P (n−1,an−1)
−→ x0

Beachte, dass P (k, ak) alle Klauseln (sprich: Klauselknoten) besucht, die durch die Belegung
xk = ak erfüllt werden. Dies führt zu folgender

Beobachtung: a ist eine Belegung, die alle Klauseln C1, . . . , Cm erfüllt gdw R′(a) eine
Rundtour ist, die alle Klauselknoten C1, . . . , Cm (und somit alle Knoten) in G′ besucht.

Da sich verschiedene Pfade P (k, ak) und P (k′, ak′) an demselben (dann mehrfach besuch-
ten) Klauselknoten kreuzen können, ist R′(a) aber i.A. noch kein gerichteter Hamiltonscher
Kreis. Um eine Entflechtung der Pfade zu erreichen, müssen wir unsere Modellierung verfei-
nern. Details folgen.

Wir ersetzen jeden Klauselknoten Ci durch einen Untergraphen Hi, der isomorph zu dem
Hilfsgraphen H in Abbildung 3 ist. H hat drei Eingangsknoten 1, 2, 3 und drei Ausgangs-
knoten 1′, 2′, 3′. Es ist nicht schwer zu sehen, dass H die folgenden Eigenschaften hat6:

Eigenschaft 1: Sei p ∈ {1, 2, 3}. p Pfade, die H über die Eingangsknoten j1, . . . , jp (in
dieser Reihenfolge) betreten, können so durch H geroutet werden, dass H an den
Ausgangsknoten j ′1, . . . , j

′
p (in dieser Reihenfolge) wieder verlassen wird. Dabei wird

jeder Knoten von H genau einmal durchlaufen.

Eigenschaft 2: Sei p ∈ {1, 2, 3}. Wenn p Pfade, die H über die Eingangsknoten j1, . . . , jp

(in dieser Reihenfolge) betreten, so durch H geroutet werden, dass jeder Knoten von H
genau einmal durchlaufen wird, dann müssen diese Pfade H über die Ausgangsknoten
j ′1, . . . , j

′
p (in dieser Reihenfolge) wieder verlassen.

Ein Pfad P (k, 1) mit xk = zij für ein j ∈ {1, 2, 3}, der vorher durch Klauselknoten Ci

geroutet wurde, wird nunmehr so geroutet, dass er Hi über den j–ten Eingangsknoten betritt
und über den j–ten Ausgangsknoten verlässt. Eine analoge Bemerkung gilt für die Pfade der
Form P (k, 0). 7 Den Graphen, der auf diese Weise entsteht, bezeichnen wir als G = (V, E).
Die Reduktionsabbildung C 7→ G ist offensichtlich in Polynomialzeit berechenbar.

Wir können nun eine Rundtour der Form R′(a) durch G′ in eine Rundtour R(a) durch
G transformieren wie folgt:

6Hilfsgraph H ist gerade so kunstvoll entworfen, dass diese Eigenschaften gelten. Konstruktionen die-
ser Art werden im Amerikanischen gadget (Spielzeug) genannt. Die Eigenschaften eines Gadget kann man
verifizieren, indem man eine Weile damit herumspielt.

7S. Abbildung 4 zur Illustration. Beachte, dass Ci ein einziger (wenn auch dicker–fetter) Knoten ist; Hi

hingegen ist der (hier als
”
Black Box“ dargestellte) zu H isomorphe Graph.

18

1

2

3

1’

2’

3’

Abbildung 3: Die Klauselkomponente H in der Reduktion von 3-SAT auf DHC

1

2

3

1’

2’

3’

C H
i i

P(2,1) P(2,1)P(2,1)

P(4,0)P(4,0)

P(5,1) P(5,1)P(5,1)

P(4,0)

P(2,1)

P(4,0)

P(5,1)

(a) (b)

Abbildung 4: (a) Pfade durch Ci mit Ci = x2 ∨ x̄4 ∨ x5. (b) Pfade durch Hi.

• Besuche die Untergraphen Hi mit der gleichen Routing–Strategie wie vorher die Klau-
selknoten Ci.

• Wenn Hi insgesamt p–mal besucht wird (mit p ∈ {1, 2, 3}), dann verwende innerhalb
Hi die bei

”
Eigenschaft 1“ geschilderte Routing–Strategie.

Mit Hilfe von Eigenschaft 1 erkennt man leicht die Äquivalenz der folgenden Aussagen:

(1) a ist eine Belegung, welche die Klauseln C1, . . . , Cm erfüllt.

(2) R′(a) besucht alle Klauselknoten C1, . . . , Cm (sowie natürlich die Knoten x0, . . . , xn−1).

(3) R(a) besucht alle Knoten von G genau einmal, d.h., R(a) ist ein gerichteter Hamilton-
scher Kreis durch G.

Es folgt direkt, dass es in G einen gerichteten Hamiltonschen Kreis gibt, falls die Klauseln
C1, . . . , Cm erfüllbar sind.

19

Der Beweis wird nun abgeschlossen, indem wir umgekehrt nachweisen, dass die Klauseln
C1, . . . , Cm erfüllbar sind, wenn G einen gerichteten Hamiltonschen Kreis K enthält.

Wir konstruieren zunächst eine Belegung a ∈ {0, 1}n. Da K jeden Knoten von G genau
einmal durchläuft, wird xk entweder über den Pfad P (k, 0) oder über den Pfad P (k, 1)
verlassen. Wenn K den Teilpfad P (k, 0) verwendet, setzen wir ak = 0; andernfalls setzen wir
ak = 1.

Mit Hilfe von Eigenschaft 2 erkennt man leicht, dass der Kreis K die Form R(a) haben
muss. Wegen der Äquivalenz der obigen Aussagen (1) und (3) ergibt sich nun direkt, dass a
eine erfüllende Belegung ist. qed

Diese Reduktion benutzte offenkundig wieder eine Reduktionsabbildung mit verbundenen
Komponenten. Die Knoten xk sind Variablenkomponenten und die Untergraphen Hi Klausel-
komponenten. Die Verbindungsstruktur zwischen diesen Komponenten wurde überaus trick-
reich gewählt.

Eine Reduktion von L1 nach L2 ist i.A. technisch umso anspruchsvoller je größer die
inhaltliche Kluft zwischen den Problemen L1 und L2 ist. 3-SAT ist ein Auswahlproblem der
Booleschen Logik: zu jeder Booleschen Variable müssen wir einen der Booleschen Wahrheits-
werte 0, 1 auswählen. Die Reduktion von 3-SAT auf CLIQUE führte zu einem graphentheore-
tischen Auswahlproblem: wir müssen paarweise verbundene Knoten auswählen. Obwohl also
die Kluft zwischen Boolescher Logik und Graphentheorie überbrückt werden musste, han-
delte es sich immerhin beidemal um Auswahlprobleme. Die Reduktion von 3-SAT auf DHC
musste eine größere Kluft überbrücken: sie führt von einem Auswahlproblem der Booleschen
Logik zu einem Anordnungsproblem der Graphentheorie: wir müssen die Knoten eines Digra-
phen so anordnen, dass sie im Digraphen einen gerichteten Hamiltonschen Kreis bilden. Es
ist also kein Zufall, dass eine komplexe Beweisführung notwendig war.

Im Königreich der Anordnungsprobleme angekommen, haben wir es nun wieder etwas
leichter.

Satz 2.9 DHC≤polHC.

Beweis Sei G = (V, E) ein Digraph, der die Eingabe für DHC repräsentiert. Wir verwandeln
G durch eine lokale Ersetzung in einen Graphen G′ = (V ′, E ′):

• V ′ = {vin, v′, vout| v ∈ V }.

• E ′ besteht

– aus den (ungerichteten) Verbindungskanten zwischen vin und v′ bzw. zwischen v′

und vout für alle v ∈ V

– sowie den Kanten e′ für alle e ∈ E. Wenn e eine (gerichtete) Kante von u nach v
ist, so ist e′ die (ungerichtete) Kante zwischen uout und vin.

Hinter dieser Konstruktion steckt die einfache lokale Ersetzungsregel, die in Abbildung 5
illustriert ist. Die Reduktionsabbildung G 7→ G′ ist sicher in Polynomialzeit berechenbar.
Der Beweis wird vervollständigt durch die

20

Behauptung: Es existiert genau dann ein gerichteter Hamiltonscher Kreis (DHC) in G,
wenn ein (ungerichteter) Hamiltonscher Kreis (HC) in G existiert.

v vv v’in out

DHC HC

Abbildung 5: Die lokale Ersetzung bei der Reduktion von DHC auf HC.

Es sollte klar sein, wie wir einen DHC in G in einen HC in G′ transformieren können.
Die Knoten v′ sind dabei im HC genauso angeordnet wie die Knoten v im DHC (gleiche
Durchlaufstrategie).

Gehen wir umgekehrt von einem HC in G′ aus. Obwohl die Kanten in G ungerichtet sind
stellen wir sie uns (im Geiste) als gerichtete Kanten der Form (uout, vin), (vin, v′), (v′, vout)
vor. Die erste Beobachtung ist: die Kanten auf dem HC werden entweder alle entlang die-
ser Orientierung oder alle entlang der umgekehrten Orientierung durchlaufen. Denn würden
wir etwa bei vin die Orientierung

”
umpolen“, also vin über e′1 (mit Eingangskante e1 von

v) betreten und über e′2 (mit Eingangskante e2 von v) gleich wieder verlassen, dann könn-
te HC den Knoten v′ nicht durchlaufen, ohne vin oder vout mehrmals zu durchlaufen.8 Wir
können daher oBdA annehmen, dass alle Kanten von HC gemäß unserer imaginierten Ori-
entierung durchlaufen werden. Die gleiche Durchlaufstrategie können wir dann aber auch in
G anwenden. G besitzt folglich einen DHC. qed

Wir kommen zum Finale mit einer Spezialisierung.

Satz 2.10 HC≤polTSP.

Beweis Sei G = (V, E) mit V = {1, . . . , n} eine Eingabeinstanz von HC. Wir assoziieren zu
G die Kostenschranke KG = n und die Distanzmatrix DG = D = (dij)1≤i,j≤n, wobei

di,j =







0 falls i = j,
1 falls i 6= j und {i, j} ∈ E,
2 falls i 6= j und {i, j} /∈ E.

Die Reduktionsabbildung G 7→ (DG, KG) ist sicherlich in Polynomialzeit berechenbar. Of-
fensichtlich kann man bezüglich D die Kostenschranke n genau dann einhalten, wenn die
Rundreise nur durch Kanten aus E führt, also genau dann, wenn ein Hamiltonscher Kreis in
G existiert. qed

8Wir erinnern uns, dass ein Hamiltonscher Kreis jeden Knoten genau einmal durchlaufen muss.

21

Die im Beweis von Satz 2.10 vorgeführte Reduktion zeigt, dass HC als folgender Spezialfall
von TSP aufgefasst werden kann:

• Die Distanzmatrix D ∈
� n×n ist symmetrisch und hat außerhalb der Hauptdiagonalen

nur Einträge aus {1, 2}.

• Die Kostenschranke ist n.

Wir fassen das Hauptresultat dieses Abschnitts zusammen in der

Folgerung 2.11 Die Probleme SAT, 3-SAT, CLIQUE, INDEPENDENT SET, VERTEX
COVER, HITTING SET, SET COVER, SUBSET SUM, KNAPSACK, PARTITION, BIN
PACKING, DHC, HC und TSP sind NP-vollständig.

Beweis Die Mitgliedschaft dieser Sprachen in der Klasse NP ist jeweils leicht nachzuweisen.
Die NP-Härte dieser Sprachen ergibt sich aus dem Cookschen Theorem und der Tatsache,
dass von SAT zu jedem dieser Probleme eine Kette von polynomiellen Reduktionen existiert.

qed

A Problemliste

SAT: Satisfiability (Erfüllbarkeitsproblem der Aussagenlogik)

Eingabe: Kollektion C1, . . . , Cm von Booleschen Klauseln in n Booleschen Variablen
x1, . . . , xn. (Eine Boolesche Klausel ist eine Disjunktion von Booleschen Literalen.
Ein Boolesches Literal ist eine negierte oder unnegierte Boolesche Variable.)

Frage: Existiert eine Belegung von x1, . . . , xn mit 0 oder 1, die alle Klauseln erfüllt,
d.h., die dazu führt, dass C1, . . . , Cm zu 1 ausgewertet werden ?

3-SAT: Einschränkung von SAT auf Eingaben, deren Boolesche Klauseln aus jeweils 3
Booleschen Literalen bestehen.

CLIQUE: Cliquenproblem.

Eingabe: Ein ungerichteter Graph G = (V, E) und eine Anzahl k.

Frage: Existiert in G eine Clique der Größe k, d.h., eine Menge C ⊆ V der Mächtigkeit
k, deren Knoten paarweise in G benachbart sind ?

INDEPENDENT SET: Unabhängige Mengen.

Eingabe: Ein ungerichteter Graph G = (V, E) und eine Anzahl k.

Frage: Existiert in G eine unabhängige Menge der Größe k, d.h., eine Menge U ⊆ V
der Mächtigkeit k, deren Knoten paarweise in G nicht benachbart sind ?

22

VERTEX COVER: Überdeckung mit Knoten.

Eingabe: Ein ungerichteter Graph G = (V, E) und eine Anzahl k.

Frage: Existiert in G ein
”
Vertex Cover (Knotenüberdeckungsmenge)“ der Größe k,

d.h., eine Menge C ⊆ V der Mächtigkeit k, die von jeder Kante aus E mindestens
einen Randknoten enthält ?

HITTING SET: Auffinden eines Repräsentantensystems.

Eingabe: eine Kollektion M1, M2, . . . , Mm endlicher Mengen und eine Zahl k ∈
�

.

Frage: Gibt es für diese Mengen ein Repräsentantensystem der Größe k, d.h., eine
Menge R der Mächtigkeit k, die von jeder der Mengen M1, M2, . . . , Mm mindestens
ein Element enthält ?

SET COVER: Mengenüberdeckung.

Eingabe: eine Kollektion M1, M2, . . . , Mm endlicher Mengen und eine Zahl k ∈
�

.

Frage: Gibt es eine Auswahl von k dieser Mengen, deren Vereinigung mit der Verei-
nigung aller Mengen übereinstimmt, d.h., existiert eine k-elementige Indexmenge
I ⊆ {1, . . . , m} mit

⋃

i∈I

Mi =

m
⋃

i=1

Mi ?

SUBSET SUM: Erzielung einer vorgeschriebenen Teilsumme.

Eingabe: n Zahlen a1, . . . , an ∈
�

und eine
”
Teilsummenzahl“ S ∈

�
.

Frage: Gibt es eine Menge I ⊆ {1, . . . , n}, so dass
∑

i∈I ai = S ?

PARTITION: Zerlegung in zwei gleichgroße Teilsummen.

Eingabe: n Zahlen a1, . . . , an ∈
�

.

Frage: Kann man diese Zahlen in zwei gleichgroße Teilsummen zerlegen, d.h., existiert
eine Teilmenge I ⊆ {1, . . . , n}, so dass

∑

i∈I ai =
∑

j /∈I aj ?

KNAPSACK: Rucksackproblem.

Eingabe: n Objekte mit Gewichten w1, . . . , wn ∈
�

und Nutzen p1, . . . , pn ∈
�

, eine
Gewichtsschranke W und eine Nutzenschranke P .

Frage: Kann man einen Rucksack R so packen, dass die Objekte in R einen Gesamt-
nutzen von mindestens P und ein Gesamtgewicht von höchstens W besitzen, d.h.,
existiert eine Teilmenge I ⊆ {1, . . . , n}, so dass

∑

i∈I pi ≥ P und
∑

i∈I wi ≤ W ?

23

BP: Bin Packing (Behälterpackungsproblem).

Eingabe: n Objekte der Größen a1, . . . , an ∈
�

, m Behälter (=bins) der
”
Bingröße“

b.

Frage: Kann man die n Objekte so in die m Behälter verpacken, dass in jedem Behälter
die Größen der in ihm enthaltenen Objekte sich zu höchstens b addieren, d.h.,
existiert eine Zerlegung von {1, . . . , n} in m disjunkte Teilmengen I1, . . . , Im, so
dass

∑

i∈Ij
ai ≤ b für alle 1 ≤ j ≤ m erfüllt ist ?

HC: Hamiltonian Circuit (Hamiltonscher Kreis).

Eingabe: Ein ungerichter Graph G = (V, E).

Frage: Gibt es in G einen Hamiltonschen Kreis, d.h., können wir mit Kanten aus E
einen Kreis formen, der jeden Knoten aus V genau einmal durchläuft ?

DHC: Directed Hamiltonian Circuit (Gerichteter Hamiltonscher Kreis)
Dies ist das entsprechende Problem für gerichtete Graphen.

TSP: Travelling Salesman Problem (Problem des Handelsreisenden)

Eingabe: Eine Kostenschranke C, n Städte C1, . . . , Cn und eine Distanzmatrix D =
(di,j)1≤i,j≤n, wobei di,j ∈

�
die Distanz zwischen Ci und Cj angibt.

Frage: Existiert eine Rundreise durch C1, . . . , Cn, deren Gesamtlänge C nicht über-
schreitet, d.h., existiert eine Permutation σ von 1, . . . , n, so dass

n−1
∑

i=1

dσ(i)σ(i+1) + dσ(n)σ(1) ≤ C ?

24

