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Entscheidbarkeit und Semi–Entscheidbarkeit

Eine Sprache L ⊆ Σ∗ heißt entscheidbar gdw die charakteristische Funktion

χL(w) :=







1 falls w ∈ L

0 falls w /∈ L

von L berechenbar ist.

Eine Sprache L ⊆ Σ∗ heißt semi–entscheidbar gdw die
”
halbe“ charakteristi-

sche Funktion

χ′

L(w) :=







1 falls w ∈ L

”
undefiniert“ falls w /∈ L

von L berechenbar ist.

Hans U. Simon, Ruhr-Universität Bochum, Germany TI WS 2007/2008
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Erinnerung: Sprache und Haltebereich einer DTM

Wir erinnern an die Definition der Sprache T (M) und des Haltebereiches

H(M) einer DTM M :

T (M) = {w ∈ Σ∗| ∃ze ∈ E, α, β ∈ Γ∗ : z0w `∗ αzeβ}

H(M) = {w ∈ Σ∗|

∃z ∈ Z, A ∈ Γ, α, β ∈ Γ∗ : z0w `∗ αzAβ, δ(z, A) =
”
undefiniert“}

Hierbei setzen wir folgendes voraus:

• δ(ze, A) =
”
undefiniert“ für alle ze ∈ E.

• δ(z, A) mit z ∈ Z \ E darf undefiniert sein (muss aber nicht).

Die DTM stoppt also stets nach endlich vielen Schritten, wenn sie auf einer

Eingabe w ∈ L gestartet wird (und evtl. bei Eingaben w /∈ L). Somit gilt

T (M) ⊆ H(M) ⊆ Σ∗ .

Hans U. Simon, Ruhr-Universität Bochum, Germany TI WS 2007/2008
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Stoppzustände

Ein Zustand z ∈ Z \ E heißt nicht–akzeptierender Stoppzustand bzw. einfach

Stoppzustand gdw δ(z, A) =
”
undefiniert“ für alle A ∈ Γ.

Intuition:

• In Endzuständen stoppt die DTM akzeptierend.

• In Stoppzuständen stoppt die DTM nicht-akzeptierend.

In der Folge nehmen wir o.E. an, dass DTMs nur in End– oder Stoppzuständen

stoppen. (Jede DTM kann leicht so modifiziert werden, dass sie anschließend

diese Eigenschaft hat.)

Hans U. Simon, Ruhr-Universität Bochum, Germany TI WS 2007/2008
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Entscheidbarkeit (fortgesetzt)

Satz: L ist entscheidbar gdw es eine DTM M gibt mit

T (M) = L und H(M) = Σ∗ .

Beweis: Eine DTM, die χL(w) berechnet, kann so modifiziert werden, dass sie

• sich in einen Stoppzustand begibt anstatt
”
0“ auszugeben.

Umgekehrt kann eine DTM M mit T (M) = M und H(M) = Σ∗ so modifiziert

werden, dass sie

• vor dem Wechsel in einen Endzustand die Ausgabe
”
1“ auf das Band

schreibt,

• vor dem Wechsel in einen Stoppzustand die Ausgabe
”
0“ auf das Band

schreibt.

Hans U. Simon, Ruhr-Universität Bochum, Germany TI WS 2007/2008
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Semi–Entscheidbarkeit (fortgesetzt)

Satz: L ist semi–entscheidbar gdw es eine DTM M gibt mit T (M) = L.

Beweis: Eine DTM, die χ′

L(w) berechnet, ist auch ein Akzeptor von L, da sie

nur bei Ausgabe 1 in einen Endzustand gelangt.

Eine DTM M mit T (M) = L kann so modifiziert werden, dass sie

• vor dem Wechsel in einen Endzustand die Ausgabe
”
1“ auf das Band

schreibt.

Hans U. Simon, Ruhr-Universität Bochum, Germany TI WS 2007/2008
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Sprachen und Entscheidungsprobleme

(Binäre) Entscheidungsprobleme sind Probleme, welche nur die Antworten JA

oder NEIN zulassen.

Sprachen und Entscheidungsprobleme sind zwei Seiten der gleichen Münze:

• Ein Entscheidungsproblem kann auch aufgefasst werden als die Sprache

aller Eingabeinstanzen, welche zur Antwort JA führen.

• Eine Sprache kann auch als das Problem aufgefasst werden zu entscheiden,

ob eine Eingabeinstanz zur Sprache gehört (Wortproblem).

Wir werden daher im Folgenden
”
Sprache“ und

”
Problem“ zuweilen synonym

verwenden.

Hans U. Simon, Ruhr-Universität Bochum, Germany TI WS 2007/2008
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Erinnerung: Abzählbarkeit

Erinnerung: Eine nichtleere Menge A ist abzählbar gdw wenn wir ihre

Elemente durchnummerieren können, d.h., wenn die Elemente sich bijektiv

(1–zu–1) auf � oder (falls A endlich ist) auf eine endliche Teilmenge von �

abbilden lassen.

Äquivalent hierzu können wir fordern, dass eine Abbildung f : � → A existiert,

so dass

A = {f(0), f(1), f(2), . . .} .

Beachte, dass f(i) = f(j) für i 6= j zulässig ist (sonst würden endliche Mengen

A ausgeschlossen).

• Jede Teilmenge einer abzählbaren Menge ist ebenfalls abzählbar.

• Da die Wortmenge Σ∗ über einem endlichen Alphabet Σ abzählbar ist, ist

jede formale Sprache L ⊆ Σ∗ eine abzählbare Menge.

Hans U. Simon, Ruhr-Universität Bochum, Germany TI WS 2007/2008
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Aufzählbarkeit

intuitiv:
”
Aufzählbarkeit“ =

”
algorithmisch durchführbare Abzählbarkeit“.

Formale Definition: Eine Sprache L heißt (rekursiv) aufzählbar gdw L = ∅

oder es gibt eine total berechenbare (= total definierte und berechenbare)

Abbildung f mit

L = {f(0), f(1), f(2), . . .} .

Eine DTM zur Berechnung von f nennen wir im Folgenden eine
”
Abzählma-

schine“ für L.

• Σ∗ ist aufzählbar.

• Es gibt nicht aufzählbare formale Sprachen (Beispiele hierfür später).

• Die Teilmenge einer aufzählbaren Menge ist nicht notwendig aufzählbar.

Hans U. Simon, Ruhr-Universität Bochum, Germany TI WS 2007/2008
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Eine Abzählmaschine für {0, 1}∗

Betrachte die Abbildung f∗ : � → {0, 1}∗, die i abbildet auf den i–ten

Binärstring der unendlichen Liste

ε, 0, 1, 00, 01, 10, 11, 000, . . . . (1)

Also

f∗(0) = ε, f∗(1) = 0, f∗(2) = 1, f∗(3) = 00, f∗(4) = 01, f∗(5) = 10, f∗(6) = 11, . . .

Die Berechnung von f∗(i) (mit bin(i) auf Band 1) ist nicht schwer:

• Zähle auf Band 2 einen Zähler hoch, der die Binärstrings gemäß (1)

durchläuft.

• Zähle parallel dazu die Eingabe bin(i) auf Band 1 runter.

• Wenn der Zähler von Band 1 auf Null steht, gib den auf Band 2 stehenden

String aus.

Hans U. Simon, Ruhr-Universität Bochum, Germany TI WS 2007/2008
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Äquivalenz von Aufzählbarkeit und

Semi–Entscheidbarkeit

Satz Eine Sprache L ist aufzählbar gdw L semi–entscheidbar ist.

Wir haben zwei Beweisrichtungen:

1. Transformation einer Abzählmaschine für L in eine DTM zur Berechnung

von χ′

L.

2. Transformation einer DTM zur Berechnung von χ′

L in eine Abzählmaschine

für L (vorausgesetzt L 6= ∅).

Hans U. Simon, Ruhr-Universität Bochum, Germany TI WS 2007/2008
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1. Beweisrichtung

Gegeben: eine Abzählmaschine M für L, die eine passende Funktion f

berechnet

Gesucht: eine DTM M ′ zur Berechnung von χ′(w)

Methode: Für i = 0, 1, 2, . . . mache folgendes:

1. Berechne f(i) mit Hilfe von M .

2. Falls f(i) = w, dann gib 1 aus und stoppe.

• Ein Eingabewort w ∈ L taucht für mindestens einen Index i als w = f(i)

in der Abzählung auf und führt zur Ausgabe 1.

• Für w /∈ L gerät M ′ in eine Endlosschleife.

Hans U. Simon, Ruhr-Universität Bochum, Germany TI WS 2007/2008
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2. Beweisrichtung

Erinnerung: berechenbare Bijektion c : � 2 → � mit berechenbarer Umkehr-

funktion

Gegeben: eine DTM M ′ zur Berechnung von χ′

L, Abzählmaschine für {0, 1}∗

Gesucht: eine Abzählmaschine M für L, die eine passende Funktion f(n)

berechnet

Naive Methode: 1. Simuliere M ′ auf dem n-ten Binärstring f∗(n).

2. Falls M ′ mit Ausgabe
”
1“ stoppt, dann gib f(n) := f∗(n) aus;

andernfalls gib einen
”
Default–String“ w ∈ L aus.

Problem: Falls M ′ auf Eingabe f∗(n) endlos rechnet, dann wäre f(n)

(verbotenerweise) undefiniert.

Idee (
”
dove tailing“): Interpretiere Eingabe n als Paar (n1, n2), wobei

c(n1, n2) = n, und nutze n2 als Laufzeitschranke für die Simulation von

M ′ angesetzt auf Eingabe f∗(n1).

Hans U. Simon, Ruhr-Universität Bochum, Germany TI WS 2007/2008
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2. Beweisrichtung (fortgesetzt)

Resultierende Methode:

1. Zu Eingabe n berechne (n1, n2) ∈ � 2 mit n = c(n1, n2).

2. Simuliere n2 Schritte von M ′ angesetzt auf Eingabe f∗(n1).

3. Falls M ′ in dieser Zeit Ausgabe
”
1“ produziert, dann gib f(n) := f∗(n1)

aus; andernfalls gib einen
”
Default–String“ w ∈ L aus.

Korrektheit: Offensichtlich gilt f(n) ∈ L für alle n ∈ � , d.h., es werden

wirklich nur Wörter aus L aufgezählt.

Zudem ist f surjektiv, d.h., jedes Wort x ∈ L kommt in der Aufzählung

vor. Wieso ? (Begründung in der Vorlesung)

Hans U. Simon, Ruhr-Universität Bochum, Germany TI WS 2007/2008
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Überblick zur Semi–Entscheidbarkeit

Folgende Aussagen zu einer Sprache L ⊆ Σ∗ sind äquivalent:

• L ist aufzählbar.

• L ist semi–entscheidbar.

• L hat eine DTM als Akzeptor.

• L hat eine NTM als Akzeptor.

• L ist vom Typ 0.

Hans U. Simon, Ruhr-Universität Bochum, Germany TI WS 2007/2008
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Abschluss–Eigenschaften

Satz 1: Die Klasse der entscheidbaren Sprachen ist abgeschlossen unter den

Operationen
”
∪,∩,¬, ·, ∗“.

Satz 2: Die Klasse der semi–entscheidbaren Sprachen ist abgeschlossen unter

den Operationen
”
∪,∩, ·, ∗“, aber (wie wir später noch zeigen werden) nicht

unter der Operation
”
¬“.

• Der Nachweis der Abschluss–Eigenschaften kann (relativ leicht) geführt

werden, indem zwei gegebene DTMs für L1 und L2 benutzt werden, um

DTMs für

L1 ∪ L2, L1 ∩ L2, L̄1, L1 · L2, L
∗

1

zusammenzubasteln (Syntheseprobleme).

• Bei Semi–Entscheidbarkeit könnte man alternativ auch über NTMs oder

Typ 0 Grammatiken argumentieren.

Mehr Details evtl. in der Vorlesung.

Hans U. Simon, Ruhr-Universität Bochum, Germany TI WS 2007/2008



Entscheidbare und unentscheidbare Probleme Slide 18'

&

$

%

Zweimal
”
halb“ macht

”
ganz“

Satz: Eine Sprache L ist entscheidbar gdw L und L̄ semi–entscheidbar sind.

⇒:

Wenn L entscheidbar ist, dann ist auch L̄ entscheidbar.

Da jede entscheidbare Sprache erst recht semi–entscheidbar ist, sind folgerichtig

dann L und L̄ semi–entscheidbar.

⇐:

Wenn L und L̄ semi–entscheidbar sind, sagen wir χ′

L̄
und χ′

L werden durch

DTMs M0 und M1 berechnet, dann ist χL nach folgendem Muster berechenbar:

Für t = 0, 1, 2, . . . mache folgendes:

1. Simuliere M0 und M1 jeweils auf Eingabe w für t Schritte.

2. Sowie eine der DTMs, sagen wir Mi, eine 1 ausgibt und stoppt, dann gib i

aus und stoppe ebenfalls.

Hans U. Simon, Ruhr-Universität Bochum, Germany TI WS 2007/2008
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Eine binäre Kodierung von Turing–Maschinen

Arbeitsalphabet und Zustandsmenge können stets so gewählt werden, dass

jedes Symbol und jeder Zustand eine Nummer erhält:

Γ = {A0, . . . , Ar}

Z = {z0, . . . , zs}

Ebenso können die Richtungsangaben nummeriert werden:

d0 = L, d1 = R, d2 = N

Hans U. Simon, Ruhr-Universität Bochum, Germany TI WS 2007/2008
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Binäre Kodierung von Turing–Maschinen (fortgesetzt)

• Ein Eintrag

δ(zi, Aj) = (zi′ , Aj′ , dk)

der Turing–Tafel kann dann durch den String

##bin(i)#bin(j)#bin(i′)#bin(j′)#bin(k)

kodiert werden.

• Die komplette Turing–Tafel ist dann kodiert durch die Konkatenation der

Kodewörter ihrer Einträge (wobei diese, sagen wir, zeilenweise durchlaufen

werden).

• Schließlich erhalten wir ein binäres Kodewort durch die Substitutionen

0 7→ 00, 1 7→ 01, # 7→ 11 .

Hans U. Simon, Ruhr-Universität Bochum, Germany TI WS 2007/2008
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Binäre Kodierung von Turing–Maschinen (fortgesetzt)

Es ist nicht schwer zu zeigen, dass

G := {w ∈ {0, 1}∗| w ist Codewort einer DTM}

entscheidbar ist.

• Falls w ∈ G, dann bezeichne Mw die von w kodierte DTM.

• Falls w /∈ G, dann bezeichne Mw eine (beliebig aber fest ausgewählte)

”
Default–DTM“.

Hans U. Simon, Ruhr-Universität Bochum, Germany TI WS 2007/2008
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Universelle Turing–Maschine

Die universelle Sprache ist definiert wie folgt:

U := {w#x| x ∈ T (Mw)}

Eine DTM heißt universelle Turing–Maschine gdw sie ein Akzeptor von U ist.

Eine universelle Turing–Maschine ist eine Art
”
General Purpose Computer“,

der auf Eingaben der Form w#x vorgeht wie folgt:

• Simuliere Mw auf x.

• Akzeptiere w#x gdw Mw ihre Eingabe x akzeptiert.

Hans U. Simon, Ruhr-Universität Bochum, Germany TI WS 2007/2008
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Und es gibt sie wirklich . . .

Das folgende Resultat ist nicht schwer zu zeigen:

Satz: Es gibt eine universelle Turing–Maschine.

Bezeichnung: UTM

Folgerung 1: U ist semi–entscheidbar.

Hans U. Simon, Ruhr-Universität Bochum, Germany TI WS 2007/2008
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Erste Beispiele unentscheidbarer Sprachen

Hans U. Simon, Ruhr-Universität Bochum, Germany TI WS 2007/2008
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Eine nicht semi–entscheidbare Sprache

Die sogenannte Diagonalsprache ist definiert wie folgt:

D := {w ∈ {0, 1}∗| w /∈ T (Mw)}

In Worten: D besteht aus allen (Kodierungen von) DTMs, die ihre eigene

Beschreibung (durch ein Kodewort) nicht akzeptieren.

Satz: D ist nicht semi–entscheidbar.

Beweis durch Widerspruch: Wir machen die (heuchlerische) Annahme, es

gäbe eine DTM M0 mit T (M0) = D. Betrachte das Kodewort w0 von M0. Die

folgenden Aussagen sind äquivalent:

(1) w0 ∈ T (M0) (2) w0 ∈ D. (3) w0 /∈ T (M0).

• Zur Äquivalenz von (1) und (2) nutze aus, dass T (M0) = D.

• Zur Äquivalenz von (2) und (3) nutze die Definition von D aus.

• Die Äquivalenz von (1) und (3) ist ein WIDERSPRUCH.

Hans U. Simon, Ruhr-Universität Bochum, Germany TI WS 2007/2008
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Reduzierbarkeit

Definition: Betrachte zwei Sprachen L1, L2 ⊆ Σ∗.

L1 heißt reduzierbar auf L2 gdw eine total berechenbare Abbildung

f : Σ∗ → Σ∗

existiert mit der Eigenschaft

∀w ∈ Σ∗ : w ∈ L1 ⇔ f(w) ∈ L2 .

f nennen wir in diesem Zusammenhang eine Reduktionsabbildung.

Notation: L1 ≤ L2.

Hans U. Simon, Ruhr-Universität Bochum, Germany TI WS 2007/2008
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Eigenschaften dieser Relation

Reflexivität: L ≤ L.

Transitivität: Aus L1 ≤ L2 und L2 ≤ L3 folgt L1 ≤ L3.

• Zum Nachweis der Reflexivität benutze die identische Reduktionsabbildung

f(w) = w.

• Zum Nachweis der Transitivität setze die Reduktionsabbildungen f1 und f2

für die Reduktionen L1 ≤ L2 und L2 ≤ L3 zu einer Reduktionsabbildung

f(w) := f2(f1(w)) für die Reduktion L1 ≤ L3 zusammen:

w ∈ L1 ⇔ f1(w) ∈ L2 ⇔ f2(f1(w)) ∈ L3

Hans U. Simon, Ruhr-Universität Bochum, Germany TI WS 2007/2008
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Eigenschaften (fortgesetzt)

Voraussetzung: L1 ≤ L2 (Reduktionsabbildung f).

Behauptungen: 1. Falls L2 (semi–)entscheidbar ist, dann ist auch L1

(semi–)entscheidbar.

2. Falls L1 nicht (semi–)entscheidbar ist, dann ist auch L2 nicht

(semi–)entscheidbar.

Beweis: 1. Wegen w ∈ L1 ⇔ f(w) ∈ L2 gilt

χ′

L1
(w) = χ′

L2
(f(w)) .

Abbildung χ′

L1
(w) kann also berechnet werden, indem zunächst f(w)

und anschließend χ′

L2
(f(w)) berechnet wird. Eine analoge Bemerkung

gilt für die Funktion χL1
(w).

2. Die zweite Behauptung ist logisch äquivalent zur ersten.

(Umkehrschluss: A ⇒ B ist logisch äquivalent zu ¬B ⇒ ¬A.)

Hans U. Simon, Ruhr-Universität Bochum, Germany TI WS 2007/2008



Entscheidbare und unentscheidbare Probleme Slide 29'

&

$

%

Verbreitung
”
guter und schlechter Nachrichten“

Betrachte eine Reduktionskette

L1 ≤ L2 ≤ · · · ≤ Lk−1 ≤ Lk .

• Wenn Lk (semi–)entscheidbar ist, so auch Lk−1, . . . , L2, L1.

• Wenn L1 nicht (semi–)entscheidbar ist, so auch L2, . . . , Lk−1, Lk.

Salopp formuliert:

•
”
Gute Nachrichten“ verbreiten sich entlang von Reduktionsketten von

rechts nach links.

•
”
Schlechte Nachrichten“ verbreiten sich entlang von Reduktionsketten von

links nach rechts.

Wir werden diese Denkweise ausnutzen, um aus der Diagonalsprache D weitere

nicht entscheidbare bzw. nicht semi–entscheidbare Sprachen abzuleiten.

Hans U. Simon, Ruhr-Universität Bochum, Germany TI WS 2007/2008
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Eine kleine Sammlung unentscheidbarer Sprachen

Neben dem Komplement der Diagonalsprache

D̄ = {w ∈ {0, 1}∗| w ∈ T (Mw)}

und der universellen Sprache

U = {w#x| x ∈ T (Mw)}

betrachten wir noch die folgenden Sprachen:

H := {w#x| x ∈ H(Mw)} (Halteproblem)

H0 := {w| ε ∈ H(Mw)} (Halteproblem auf leerem Band)

K := {w| w ∈ H(Mw)} (spezielles Halteproblem)

Hans U. Simon, Ruhr-Universität Bochum, Germany TI WS 2007/2008
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Kleine Sammlung (fortgesetzt)

Bei diesen Sprachen geht es also um die folgenden Fragen:

D̄: Akzeptiert eine DTM ihre eigene Beschreibung ?

U: Akzeptiert eine DTM ihre Eingabe ?

H: Stoppt eine DTM auf ihrer Eingabe nach endlich vielen Schritten ?

H0: Stoppt eine auf das leere Band angesetzte DTM

nach endlich vielen Schritten ?

K: Stoppt eine auf ihre eigene Beschreibung angesetzte DTM

nach endlich vielen Schritten ?

Alle diese Fragen werden sich als unentscheidbar erweisen.

Hans U. Simon, Ruhr-Universität Bochum, Germany TI WS 2007/2008
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Kleine Sammlung (fortgesetzt)

Satz: D̄ ist unentscheidbar.

Beweis: Wäre D̄ entscheidbar, so wäre auch D entscheidbar.

D ist aber noch nicht einmal semi–entscheidbar.

Satz: K = {w| w ∈ H(Mw)} ist semi–entscheidbar.

Beweis: Verwende eine (vereinfachte) Variante UTM’ der UTM, die folgendes

macht:

1. Simuliere (Schritt für Schritt) die DTM Mw auf Eingabe w.

2. Falls Mw irgendwann stoppt, dann produziere Ausgabe
”
1“ und stoppe

ebenfalls.

Offensichtlich berechnet UTM’ die Funktion χ′

K(w).

Hans U. Simon, Ruhr-Universität Bochum, Germany TI WS 2007/2008
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Kleine Sammlung (fortgesetzt)

Wir werden die folgende Reduktionskette nachweisen:

D̄ ≤ U ≤ H ≤ H0 ≤ K

Wegen der Art, wie sich gute und schlechte Nachrichten verbreiten, erhalten

wir die

Folgerung

D̄, U, H, H0, K sind zwar semi-entscheidbar aber unentscheidbar.

Bleibt der Nachweis der obigen Reduktionskette.

Hans U. Simon, Ruhr-Universität Bochum, Germany TI WS 2007/2008
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Reduktion 1

Lemma: D̄ ≤ U .

Verwende Reduktionsabbildung

w 7→ w#w .

Offensichtlich gilt:

w ∈ D̄ ⇔ w ∈ T (Mw) ⇔ w#w ∈ U .
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Reduktion 2

Lemma: U ≤ H.

Verwende Reduktionsabbildung

w#x 7→ w′#x .

Ziel: w#x ∈ U ⇔ x ∈ T (Mw)⇔x ∈ H(Mw′) ⇔ w′#x ∈ H.

Ändere dazu das
”
Programm“ w von Mw zu einem neuen

”
Programm“ w′

einer DTM Mw′ ab:

• Mw′ simuliert Mw Schritt-für-Schritt,

• außer dass Mw′ sich in eine Endlosschleife begibt, falls Mw nicht–

akzeptierend stoppt.
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Reduktion 3

Lemma: H ≤ H0.

Verwende Reduktionsabbildung

w#x 7→ w′ .

Ziel: w#x ∈ H ⇔ x ∈ H(Mw)⇔ε ∈ H(Mw′) ⇔ w′ ∈ H0.

Ändere dazu das
”
Programm“ w von Mw zu einem neuen (auch von x

abhängigen)
”
Programm“ w′ einer TM Mw′ ab:

• Mw′ , angesetzt auf das leere Band, schreibt zunächst den String x auf

• und simuliert dann Schritt-für-Schritt Mw auf Eingabe x.
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Reduktion 4

Lemma: H0 ≤ K.

Verwende Reduktionsabbildung

w 7→ w′ .

Ziel: w ∈ H0 ⇔ ε ∈ H(Mw)⇔w′ ∈ H(Mw′) ⇔ w′ ∈ K.

Ändere dabei das
”
Programm“ w von Mw zu einem neuen Programm w′ einer

TM Mw′ ab:

• Mw′ löscht zunächst ihre Eingabe

• und simuliert dann Schritt-für-Schritt Mw angesetzt auf das leere Band.
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Das Post’sche Korrespondenzproblem

Hans U. Simon, Ruhr-Universität Bochum, Germany TI WS 2007/2008



Entscheidbare und unentscheidbare Probleme Slide 39'

&

$

%

PKP und MPKP

Postsches Korrespondenzproblem (PKP)

Entscheide zu einer gegeben Folge

K = [(x1, y1), . . . , (xk, yk)]

von Wortpaaren über einem endlichen Alphabet Σ, ob es eine Folge

i1, . . . , in ∈ [1 : k]

von Indizes, genannt
”
Lösung“, gibt, so dass

xi1 . . . xin
= yi1 . . . yin

.

Modifiziertes Postsches Korrespondenzproblem (MPKP)

Wie PKP, außer dass die Indexfolge mit i1 = 1 beginnen muss.
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Beispiel 1

Zu

K = [(1, 111), (10111, 10), (10, 0)]

ist (2, 1, 1, 3) eine passende Indexfolge:

x2

︷ ︸︸ ︷

10111

x1

︷︸︸︷

1

x1

︷︸︸︷

1

x3

︷︸︸︷

10 = 101111110 =

y2

︷︸︸︷

10

y1

︷︸︸︷

111

y1

︷︸︸︷

111

y3

︷︸︸︷

0
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Beispiel 2

Zu

K = [(10, 101), (011, 11), (101, 011)]

gibt es keine passende Indexfolge (Zugzwangargument):

1. Jede potenzielle Lösung müßte beginnen mit i1 = 1:

x1 = 10, y1 = 101

2. Wann immer die y-Sequenz eine 1 Vorsprung hat, ist die einzig aussichts-

reiche Fortsetzung

x-Sequenz : . . .

x3

︷︸︸︷

101

y-Sequenz : . . . 1 011
︸︷︷︸

y3

,

was den Vorsprung von der y-Sequenz auf ewig reproduziert.
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Beispiel 3

Zu

K = [(001, 0), (01, 011), (01, 101), (10, 001)]

gibt es eine passende Indexfolge i1, . . . , in, aber erst ab n = 66.

Wer findet die Lösung ?
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Hauptresultat

Wir werden die Reduktionskette

H ≤ MPKP ≤ PKP

nachweisen.

Folgerung MPKP und PKP sind unentscheidbar.

Bemerkungen:

1. Die Unentscheidbarkeit ergibt sich bereits für binäres Alphabet (wie sich

zeigen wird).

2. Bei unärem Alphabet hingegen sind MPKP und PKP entscheidbar

(s. Übung).
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Reduktion von MPKP auf PKP

Die Eingabeinstanz von MPKP über Alphabet Σ sei

K = [(x1, y1), . . . , (xk, yk)] .

Seien #, $ /∈ Σ zwei neue Symbole. Dann soll

f(K) = [(x′

0, y
′

0), (x
′

1, y
′

1), . . . , (x
′

k, y′

k), (x′

k+1, y
′

k+1)]

die folgende Eingabe von PKP sein:

• Für i = 1, . . . , k entsteht x′

i, indem hinter jedem Buchstaben von xi

Symbol # eingefügt wird; y′

i entsteht aus yi, indem vor jedem Buchstaben

von yi Symbol # eingefügt wird.

• x′

0 = #x′

1, x′

k+1 = $, y′

0 = y′

1, y′

k+1 = #$.
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Reduktionsabbildung f an einem Beispiel

x1 = 10111 x′

1 = 1#0#1#1#1# x′

0 = #1#0#1#1#1#

y1 = 10 y′

1 = #1#0 y′

0 = #1#0

x2 = 1 x′

2 = 1#

y2 = 111 y′

2 = #1#1#1

x3 = 10 x′

3 = 1#0# x′

4 = $

y3 = 0 y′

3 = #0 y′

4 = #$

(1, 2, 2, 3) ist eine passende Indexfolge für K = [(x1, y1), (x2, y2), (x3, y3)]:

x1

︷ ︸︸ ︷

10111

x2

︷︸︸︷

1

x2

︷︸︸︷

1

x3

︷︸︸︷

10 = 101111110 =

y1

︷︸︸︷

10

y2

︷︸︸︷

111

y2

︷︸︸︷

111

y3

︷︸︸︷

0 .

(0, 2, 2, 3, 4) ist eine passende Indexfolge für f(K), die folgenden
”
gepolsterten“

Lösungsstring liefert:

#1#0#1#1#1#1#1#1#0#$
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Reduktion von MPKP auf PKP (fortgesetzt)

Aus dem Design von f(K) ergibt sich leicht:

1. Für alle n und alle i2, . . . , in ∈ [1 : k]:

1, i2, . . . , in Lösung für K ⇔ 0, i2, . . . , in, k + 1 Lösung für f(K) .

2. Jede Lösung (= passende Indexfolge) kürzester Länge für f(K) startet mit

Index 0, endet mit Index k + 1 und verwendet dazwischen nur Indizes aus

{1, . . . , k}.

Es folgt:

K besitzt eine passende Indexfolge gdw f(K) besitzt eine passende Indexfolge.

Da f außerdem berechenbar ist, ergibt sich MPKP≤PKP.
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Reduktion von H auf MPKP

Ziel:

Entwurf einer Reduktionsabbildung f , die Eingaben von H der Form M#x,

so auf Eingaben von MPKP abbildet, dass gilt:

x ∈ H(M)⇔f(M#x) hat eine Lösung . (2)

Idee:

Um (2) zu erzwingen, werden die x- und y-Sequenzen Konfigurationsfolgen

von M entsprechen, wobei die y-Sequenz immer eine Konfiguration Vorsprung

hat. Der x-Sequenz erlauben wir erst nach Stoppen von M diesen Vorsprung

einzuholen.
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Normierung der Turing-Maschine M

Indem wir (falls nötig) die TM M leicht normieren (ohne ihr Stoppverhalten

auf Eingabe x zu verändern), können wir o.E. voraussetzen:

1. Wie früher bereits vereinbart, stoppt M gdw sie sich in einem Zustand

aus einer Menge S (End- plus Stoppzustände) befindet.

2. M hat ein einseitig unendliches Band.

3. M bewegt in jedem Schritt den Kopf.

4. M druckt niemals ihr Leerzeichen B.

Diese Normierung vereinfacht die folgende Konstruktion der MPKP-Eingabe-

instanz f(M#x).
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Die MPKP-Eingabeinstanz K=f(M#x)

Die Stringpaare von K zerfallen in fünf Gruppen:
• das Anfangspaar (#, #z0x#)

• Kopierpaare (X, X) für alle X ∈ Γ ∪ {#}

• Überführungspaare

(zY, Y ′z′) , falls δ(z, Y ) = (z′, Y ′, R)

(XzY, z′XY ′) , falls δ(z, Y ) = (z′, Y ′, L)

(z#, Y ′z′#) , falls δ(z, B) = (z′, Y ′, R)

(Xz#, z′XY ′#), falls δ(z, B) = (z′, Y ′, L)

für alle z ∈ Z \ S, z′ ∈ Z, X, Y, Y ′ ∈ Γ \ {B}.

• Löschpaare (XsY, s), (Xs#, s#), (#sY, #s)

für alle s ∈ S, X, Y ∈ Γ \ {B}.

• Abschlusspaare (s##, #) für alle s ∈ S.
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Intuition hinter diesem Design

• Das Anfangspaar dient dazu, der y-Sequenz eine Konfiguration (hier die

Anfangskonfiguration) Vorsprung zu geben.

• Die Kopier- und Überführungspaare dienen dazu, beide Sequenzen um eine

Konfiguration zu verlängern.

• Die Lösch- und Abschlußpaare sollen die x-Sequenz den Vorsprung aufholen

lassen, sofern einen Zustand aus S erreicht wurde.

Um zu verifizieren, dass dieser Plan aufgeht, benötigen wir das folgende

Konzept der partiellen Lösung für K.
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Partielle Lösung für K=f(M#x)

Stringpaar (x, y) ∈ Σ∗ × Σ∗ heißt eine partielle Lösung für K ist, wenn gilt:

1. x ist Anfangswort von y.

2. Es existiert ein n ≥ 1 und i1, . . . , in mit i1 = 1 (das Anfangspaar), so dass

x die x-Sequenz und y die y-Sequenz zu i1, . . . , in ist.

Zentrale Beobachtung:

Falls M aus Startkonfiguration z0x die Folgekonfigurationen

α1z1β1, α2z2β2, . . . , αkzkβk mit z0, . . . , zk−1 /∈ S

produziert, dann besitzt K eine partielle Lösung der Form

(x, y) = (#z0w#α1z1β1# . . .#αk−1zk−1βk−1# ,

#z0w#α1z1β1# . . .#αk−1zk−1βk−1#αkzkβk#)
(3)
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Induktiver Beweis der zentralen Beobachtung

Der Beweis erfolgt durch Induktion nach k.

k = 0: (x, y) = (#, #z0w#) realisiert durch das Anfangspaar.

Schritt von k auf k+1: Sei per Induktionsvoraussetzung eine partielle

Lösung der Form (3) gegeben und zk /∈ S. Wir können die x-Sequenz um

αkzkβk# und die y-Sequenz um αk+1zk+1βk+1# verlängern, indem wir

• die identischen Teile von Konfigurationen k und k+1 mit den Kopierpaaren

aufbauen,

• die verschiedenen Teile (lokale Umgebung der Zustandssymbole zk, zk+1,

weil dort jeweils der Kopf von M positioniert ist) mit dem eindeutig

bestimmten Überführungspaar aufbauen.

Auf diese Weise erhalten wir die partielle Lösung

(x′, y′) = (y, yαk+1zk+1βk+1#) .

Damit ist der induktive Beweis abgeschlossen.
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Illustration des Induktionsschrittes

Es sei ABCzDEF# die Konfiguration, welche den Vorsprung der y-Sequenz

ausmacht. Wir nehmen an, dass die Turing-Tafel von M die Aktion

δ(z, D) = (z′, D′, L) (4)

vorschreibt. Wir machen drei
”
Schnappschüsse“ der x- und y-Sequenz:

x-Sequenz (Einsatz Kopierpaare): . . . AB

y-Sequenz (Einsatz Kopierpaare): . . . ABCzDEF#AB

x-Sequenz (Einsatz Überführungspaar): . . . ABCzD

y-Sequenz (Einsatz Überführungspaar: . . . ABCzDEF#ABz′CD′

x-Sequenz (Einsatz Kopierpaare): . . . ABCzDEF#

y-Sequenz (Einsatz Kopierpaare): . . . ABCzDEF#ABz′CD′EF#
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Nachweis der Reduktionseigenschaften von f

Behauptung 1 Falls x ∈ H(M), dann besitzt K eine Lösung.

Falls x ∈ H(M), erhalten wir irgendwann eine partielle Lösung der Form

(y, yαsβ#) mit s ∈ S, α, β ∈ Γ∗ .

Nun können wir die Kopierpaare und die Löschpaare einsetzen, um den

Vorsprung αsβ# zu vermindern:

• Jede Anwendung eines Löschpaares vermindert den Vorsprung um ein α-

oder β-Symbol.

• Irgendwann ist der Vorsprung auf s# zusammengeschmolzen und die

Sequenzen haben die Form

(y′, y′s#) .

Anwendung des Abschlußpaares für s egalisiert die Sequenzen:

(y′s##, y′s##)
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Illustration der
”
Aufholjagd“

x-Sequenz: . . .

y-Sequenz (Endkonfiguration als Vorsprung): . . . ABsD#

x-Sequenz (Einsatz Kopierpaar): . . . A

y-Sequenz (Einsatz Kopierpaar): . . . ABsD#A

x-Sequenz (Einsatz Löschpaar): . . . ABsD

y-Sequenz (Einsatz Löschpaar): . . . ABsD#As

x-Sequenz (Einsatz Kopierpaar): . . . ABsD#

y-Sequenz (Einsatz Kopierpaar): . . . ABsD#As#

x-Sequenz (Einsatz Löschpaar): . . . ABsD#As#

x-Sequenz (Einsatz Löschpaar): . . . ABsD#As#s#

x-Sequenz (Einsatz Abschlusspaar): . . . ABsD#As#s##

x-Sequenz (Einsatz Abschlusspaar): . . . ABsD#As#s##
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Nachweis der Reduktionseigenschaften von f (fortgesetzt)

Behauptung 2 Falls K eine Lösung besitzt, dann gilt x ∈ H(M).

Indirekter Beweis: Wir zeigen, dass K keine Lösung besitzt, falls x /∈ H(M).

Da wir bei der Produktion von partiellen Lösungen keine Freiheiten hatten

(Anwendung von anderen Paaren als die beschriebenen führt immer direkt in

eine Sackgasse), besteht der einzige Lösungsversuch im Produzieren partieller

Lösungen der Form (3), wobei (solange kein Zustand aus S erreicht wird), die

Löschpaare nicht zum Einsatz kommen und die y-Sequenz daher stets eine

Konfiguration Vorsprung hat. Eine Egalisierung der Sequenzen kann nicht

stattfinden.
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PKP mit binärem Alphabet

01-PKP sei das PKP über dem Alphabet Σ = {0, 1}.

Satz: PKP≤01-PKP.

Beweis: Sei K eine PKP-Eingabeinstanz über einem beliebigen Alphabet der

Form Σ = {a1, . . . , am}. Wähle als f(K) die 01-PKP-Eingabeinstanz, die aus

K durch die Substitutionsregel

aj 7→ 10j

hervorgeht. Die Lösungen (sofern vorhanden) für K und f(K) entsprechen

sich (in der offensichtlichen Weise) 1-zu-1. Insbesondere besitzt K eine Lösung

gdw f(K) eine Lösung besitzt.

Folgerung: 01-PKP ist unentscheidbar.
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Unentscheidbare Probleme

mit Grammatiken und Automaten
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Zu 01-PKP assoziierte kontextfreie Sprachen

Zu einem Wort w = w1 · · ·wn bezeichne w̃ = wn · · ·w1 sein
”
Spiegelbild“. Zu

der Eingabeinstanz

K = [(x1, y1), . . . , (xk, yk)]

von 01-PKP assoziieren wir die folgenden Sprachen über dem Alphabet

{0, 1, $, a1, . . . , ak, }:

L1[K] := {aim
· · ·ai1xi1 · · ·xim

$ỹjn
· · · ỹj1aj1 · · ·ajn

| m, n ≥ 1}

L2[K] :=
{
uv$ṽũ| u ∈ {a1, . . . , ak}

+, v ∈ {0, 1}+
}

Erinnerung: i1, . . . , in ist eine Lösung für K gdw xi1 · · ·xin
= yi1 · · · yin

.

Zentrale Beobachtung: L1[K] ∩ L2[K] ist identisch zu

{ain
· · ·ai1xi1 · · ·xin

$ỹin
· · · ỹi1ai1 · · · ain

| i1, . . . , in ist eine Lösung für K} .
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(Deterministische) Kontextfreiheit dieser Sprachen

Wir geben hier kfG’s G1[K], G2[K] für L1[K], L2[K] an:

1. G1[K] enthält die Regeln

S1 → A$B , A → aiAxi | aixi , B → ỹiBai | ỹiai

für i = 1, . . . , k.

2. G2[K] enthält die Regeln

S2 → aiS2ai | aiRai , R → 0R0 | 1R1 | 00 | 11

für i = 1, . . . , k.

Übung: Grammatiken G1 und G2 sind eindeutig und es lassen sich auch

DPDA’s M1[K] und M2[K] für L1[K] und L2[K] angeben.

Folgerung: L1[K], L2[K] sind eindeutige deterministisch kontextfreie Spra-

chen.
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Beispiel

Zu K = [(1, 111), (10111, 10), (10, 0)] erhalten wir bei G1 die Regeln

S1 → A$B

A → a1A1|a2A10111|a3A10|a11|a210111|a310

B → 111Ba1|01Ba2|0B|a3|111a1|01a2|0

und bei G2 die Regeln

S2 → a1S2a1|a2S2a2|a3S2a3|a1Ra1|a2Ra2|a3Ra3

R → 0R0|1R1|00|11 .
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Zwei sehr unterschiedliche Szenarios

K hat eine Lösung K hat keine Lösung

1. L1[K] ∩ L2[K] 6= ∅ 1’. L1[K] ∩ L2[K] = ∅

2. |L1[K] ∩ L2[K]| = ∞ 2’. |L1[K] ∩ L2[K]| < ∞

3. L1[K] ∩ L2[K] ist nicht kontextfrei 3’. L1[K] ∩ L2[K] ist kontextfrei

4. L1[K] ∪ L2[K] ist nicht regulär 4’. L1[K] ∪ L2[K] ist regulär

5. L1[K] ∪ L2[K] ist 5’. L1[K] ∪ L2[K] ist

nicht deterministisch kontextfrei deterministisch kontextfrei
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Begründungen

• Unsere
”
zentrale Beobachtung“ liefert 1. und 1’.

• Aus L1[K] ∩ L2[K] = ∅ (und somit L1[K] ∪ L2[K] = L1[K] ∩ L2[K] = Σ∗)

ergeben sich unmittelbar die Aussagen 2’. bis 5’.

• Zu Aussage 2. nutze aus, dass K unendlich viele Lösungen hat, sofern es

mindestens eine Lösung hat.

• Aussage 3. ergibt sich leicht mit dem Pumping–Lemma (Übung).

• Aussage 5. ergibt sich mit einem Beweis durch Widerspruch:

Wäre L1[K] ∪ L2[K] deterministisch kontextfrei, dann müsste auch

L1[K] ∩ L2[K] deterministisch kontextfrei sein im Widerspruch zu 3.

• Aussage 4. ergibt sich direkt aus 5.
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Folgerungen

Die folgenden Probleme sind unentscheidbar (Reduktion jeweils von PKP

bzw. dem Komplement von PKP):

1. Ist der Durchschnitt zweier (durch DPDAs oder kfGs gegebener) deter-

ministisch kontextfreier Sprachen leer (Schnittproblem für deterministisch

kontextfreie Sprachen) ?

2. Ist der Durchschnitt zweier (durch DPDAs oder kfGs gegebener) determi-

nistisch kontextfreier Sprachen endlich ?

3. Ist der Durchschnitt zweier (durch DPDAs oder kfGs gegebener) de-

terministisch kontextfreier Sprachen kontextfrei (Kontextfreiheit des

Durchschnittes) ?

4. Ist eine (durch eine kfG gegebene) kontextfreie Sprache regulär ?

5. Ist eine (durch eine kfG gegebene) kontextfreie Sprache deterministisch

kontextfrei ?
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Zugehörige Reduktionsabbildungen

• Für die ersten drei Reduktionen verwende die Reduktionsabbildung

K 7→ (M1[K], M2[K]) bzw. K 7→ (G1[K], G2[K]) .

• Für die letzten zwei Reduktionen verwende die Reduktionsabbildung

K 7→ G′[K], wobei G′[K] eine (aus K berechenbare !) kfG für die

(kontextfreie !) Sprache L1[K] ∪ L2[K] ist.

Da die kfGs G1[K], G2[K] eindeutig sind, bleiben die ersten drei Probleme der

obigen Liste unentscheidbar, selbst wenn die beteiligten kontextfreien Sprachen

durch eindeutige kfGs gegeben sind.
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Weitere Folgerungen

Die folgenden Probleme sind unentscheidbar:

Inklusionsproblem: Gilt für zwei (durch DPDAs oder kfGs gegebene)

deterministisch kontextfreie Sprachen L1, L2 die Beziehung L1 ⊆ L2 ?

Eindeutigkeitsproblem: Ist eine gegebene kfG eindeutig ?

Kontextfreiheit des Komplementes: Ist das Komplement einer (durch

eine kfG gegebenen) kontextfreien Sprache ebenfalls kontextfrei ?

Leerheit des Komplementes: Stimmt eine (durch eine kfG gegebene)

kontextfreie Sprache mit Σ∗ überein (d.h., sind alle Terminalstrings

ableitbar) ?

Äquivalenzproblem: Sind zwei gegebene kfGs äquivalent (d.h., sind die von

ihnen erzeugten Sprachen identisch) ?
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Zugehörige Reduktionen

Das Schnittproblem für deterministisch kontextfreie Sprachen

N(M1) ∩ N(M2) = ∅ ?

ist wegen

N(M1) ∩ N(M2) = ∅ ⇔ N(M1) ⊆ N(M2)

auf das Inklusionsproblem reduzierbar.

Als Reduktionsabbildung verwende

(M1, M2) 7→ (M1, M
′

2) ,

wobei M ′

2 ein (aus M2 berechenbarer ) DPDA für N(M2) ist.
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Zugehörige Reduktionen (fortgesetzt)

Das Schnittproblem für eindeutige kontextfreie Sprachen

L(G1) ∩ L(G2) = ∅ (G1, G2 eindeutige kfGs) ?

ist auf das Eindeutigkeitsproblem reduzierbar.

Als Reduktionsabbildung verwende

(G1, G2) 7→ G3 ,

wobei G3 die (aus G1, G2 mit der Standardtechnik berechenbare) kfG für

die Sprache L(G1) ∪ L(G2) bezeichnet. Da G1 und G2 eindeutige kfGs

sind, gibt es ein Wort mit zwei verschiedenen Syntaxbäumen über G3 gdw

L(G1) ∩ L(G2) 6= ∅.
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Zugehörige Reduktionen (fortgesetzt)

Das Problem der Kontextfreiheit des Durchschnittes

N(M1) ∩ N(M2) kontextfrei (M1, M2 DPDAs) ?

ist auf das Problem der Kontextfreiheit des Komplementes reduzierbar.

Verwende Reduktionsabbildung

(M1, M2) 7→ G′

3 ,

wobei G′

3 die (aus M1, M2 berechenbare) kfG für

N(M1) ∩ N(M2) = N(M1) ∪ N(M2)

bezeichne.

Dieselbe Reduktionsabbildung reduziert das Schnittproblem für deterministisch

kontextfreie Sprachen

N(M1) ∩ N(M2) = ∅ ?

auf das Problem der Leerheit des Komplementes.
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Zugehörige Reduktionen (fortgesetzt)

Schließlich ist das Problem der Leerheit des Komplementes

L(G) = Σ∗ ?

auf das Äquivalenzproblem reduzierbar.

Wenn G∗ eine (leicht zu berechnende) kfG für Σ∗ bezeichnet, dann kann als

Reduktionsabbildung

G 7→ (G, G∗)

verwendet werden.
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Unentscheidbare Probleme für kontextsensitive Sprachen

”
Meta–Satz“: Jedes Problem, das für den Durchschnitt zweier kontextfreier

Sprachen unentscheidbar ist, ist auch für eine einzelne kontextsensitive

Sprache unentscheidbar.

Beweis: • Die gegebenen kontextfreien Grammatiken G1, G2 sind (erst

recht) kontextsensitive Grammatiken.

• Daher sind sie (mit der Methode der Vorlesung) in äquivalente LBAs

M1, M2 transformierbar.

• Aus M1, M2 lässt sich leicht ein LBA M3 für

T (M3) = T (M1) ∩ T (M2) = L(G1) ∩ L(G2)

zusammenbasteln.

• Daher hat die zu L(G1) ∩ L(G2) gestellte Frage (wie immer sie lautet)

dieselbe Antwort wie die zu T (M3) gestellte Frage (Reduktionsabbildung

(G1, G2 7→ M3).
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Folgerungen

Die folgenden Probleme zu einer (durch einen LBA gegebenen) kontextsensiti-

ven Sprache sind unentscheidbar:

• Ist die Sprache leer ?

• Ist die Sprache endlich ?

• Ist die Sprache kontextfrei ?
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