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/ Entscheidbarkeit und Semi—Entscheidbarkeit \

xr(w) :==

von L berechenbar ist.

sche Funktion
1

,undefiniert*

von L berechenbar ist.

N

1 fallsw € L
0 fallsw ¢ L

falls w € L
falls w ¢ L

Eine Sprache L C X* heift entscheidbar gdw die charakteristische Funktion

Eine Sprache L C »* heiflit semi—entscheidbar gdw die , halbe® charakteristi-
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/ Erinnerung: Sprache und Haltebereich einer DTM

Wir erinnern an die Definition der Sprache T'(M) und des Haltebereiches
H(M) einer DTM M:

T(
H{(

) = {we¥ 3z cE aBel™: 2wt azb}

M
M) = {weX"

Hierbei setzen wir folgendes voraus:
® §(ze, A) =,undefiniert” fiir alle z, € E.

e §(z,A) mit z € Z\ E darf undefiniert sein (muss aber nicht).

Eingabe w € L gestartet wird (und evtl. bei Eingaben w ¢ L). Somit gilt

N

T(M) C H(M) C ¥ .

~

e Z, Ael,a,Be€l™: 2wt azApB,6(z, A) = ,undefiniert“}

Die DTM stoppt also stets nach endlich vielen Schritten, wenn sie auf einer

/
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/ Stoppzustinde \

Ein Zustand z € Z \ E heif3t nicht—akzeptierender Stoppzustand bzw. einfach
Stoppzustand gdw d(z, A) =, undefiniert* fiir alle A € I".

Intuition:
e In Endzustidnden stoppt die DTM akzeptierend.
e In Stoppzustdnden stoppt die DTM nicht-akzeptierend.

In der Folge nehmen wir o.E. an, dass DTMs nur in End— oder Stoppzustédnden
stoppen. (Jede DTM kann leicht so modifiziert werden, dass sie anschlielend
diese Figenschaft hat.)
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/ Entscheidbarkeit (fortgesetzt) \

Satz: L ist entscheidbar gdw es eine DTM M gibt mit

T(M)=Lund HM) =% .

Beweis: Eine DTM, die x,(w) berechnet, kann so modifiziert werden, dass sie

e sich in einen Stoppzustand begibt anstatt ,,0“ auszugeben.

Umgekehrt kann eine DTM M mit T (M) = M und H(M) = ¥* so modifiziert

werden, dass sie

e vor dem Wechsel in einen Endzustand die Ausgabe ,,1¢ auf das Band
schreibt,

e vor dem Wechsel in einen Stoppzustand die Ausgabe ,,0¢ auf das Band

K schreibt. /
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Semi—Entscheidbarkeit (fortgesetzt)

Satz: L ist semi—entscheidbar gdw es eine DTM M gibt mit T'(M) = L.
Beweis: Eine DTM, die x; (w) berechnet, ist auch ein Akzeptor von L, da sie

nur bei Ausgabe 1 in einen Endzustand gelangt.

Eine DTM M mit T'(M) = L kann so modifiziert werden, dass sie

e vor dem Wechsel in einen Endzustand die Ausgabe ,,1¢ auf das Band

schreibt.

~
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/ Sprachen und Entscheidungsprobleme \

(Bin&re) Entscheidungsprobleme sind Probleme, welche nur die Antworten JA
oder NEIN zulassen.

Sprachen und Entscheidungsprobleme sind zwei Seiten der gleichen Miinze:

e Ein Entscheidungsproblem kann auch aufgefasst werden als die Sprache

aller Eingabeinstanzen, welche zur Antwort JA fiihren.

e Eine Sprache kann auch als das Problem aufgefasst werden zu entscheiden,

ob eine Eingabeinstanz zur Sprache gehort (Wortproblem).

Wir werden daher im Folgenden ,,Sprache® und ,,Problem® zuweilen synonym

verwenden.
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/ Erinnerung: Abzahlbarkeit \

Erinnerung: Eine nichtleere Menge A ist abzdhlbar gdw wenn wir ihre
Elemente durchnummerieren kénnen, d.h., wenn die Elemente sich bijektiv
(I-zu—1) auf N oder (falls A endlich ist) auf eine endliche Teilmenge von IN
abbilden lassen.

Aquivalent hierzu konnen wir fordern, dass eine Abbildung f : N — A existiert,
so dass

A={r(0), f(1), f(2),...} .

Beachte, dass f(¢7) = f(j) fiir i # j zuléssig ist (sonst wiirden endliche Mengen
A ausgeschlossen).

e Jede Teilmenge einer abzihlbaren Menge ist ebenfalls abzahlbar.

e Da die Wortmenge X* iiber einem endlichen Alphabet > abzéhlbar ist, ist
jede formale Sprache L C »* eine abzidhlbare Menge. /

N

Hans U. Simon, Ruhr-Universitdt Bochum, Germany TI WS 2007/2008




Entscheidbare und unentscheidbare Probleme Slide 10

/ Aufzahlbarkeit \

intuitiv: ,, Aufzidhlbarkeit“ = ,,algorithmisch durchfiihrbare Abzéhlbarkeit®.

Formale Definition: Eine Sprache L heifit (rekursiv) aufzihlbar gdw L = ()
oder es gibt eine total berechenbare (= total definierte und berechenbare)
Abbildung f mit

L={f(0),r(1),f(2),...} .

Eine DTM zur Berechnung von f nennen wir im Folgenden eine ,,Abzihlma-

schine® fur L.
e ).* ist aufzahlbar.

e Es gibt nicht aufzéhlbare formale Sprachen (Beispiele hierfiir spéter).

e Die Teilmenge einer aufzdhlbaren Menge ist nicht notwendig aufzéhlbar.
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Eine Abzihlmaschine fiir {0,1}*

Betrachte die Abbildung f. : N — {0,1}*, die ¢ abbildet auf den i—ten

Binarstring der unendlichen Liste

£,0,1,00,01,10,11, 000, ... .

Also

£.(0) =&, fo(1) = 0, £(2) = 1, £o(3) = 00, fo(4) = 01, £.(5) = 10, f.(6) = 11, ...

Die Berechnung von f,(¢) (mit bin(i) auf Band 1) ist nicht schwer:

e Zihle auf Band 2 einen Zihler hoch, der die Binérstrings geméfl (1)
durchlauft.

e Zihle parallel dazu die Eingabe bin(i) auf Band 1 runter.

~

(1)

e Wenn der Zahler von Band 1 auf Null steht, gib den auf Band 2 stehenden

K String aus.
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/ Aquivalenz von Aufzihlbarkeit und \
Semi—Entscheidbarkeit

Satz Eine Sprache L ist aufzdhlbar gdw L semi—entscheidbar ist.

Wir haben zwei Beweisrichtungen:

1. Transformation einer Abzahlmaschine fiir L in eine DTM zur Berechnung

von X' .

2. Transformation einer DTM zur Berechnung von x’; in eine Abzidhlmaschine
fiir I (vorausgesetzt L # ().

N /
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1. Beweisrichtung

berechnet

Gesucht: eine DTM M’ zur Berechnung von x’(w)
Methode: Fiir : = 0,1, 2,... mache folgendes:

1. Berechne f(i) mit Hilfe von M.
2. Falls f(¢) = w, dann gib 1 aus und stoppe.

~

Gegeben: eine Abzihlmaschine M fiir L, die eine passende Funktion f

e Ein Eingabewort w € L taucht fiir mindestens einen Index ¢ als w = f(7)

in der Abzahlung auf und fiihrt zur Ausgabe 1.

o Fiir w ¢ L gerit M’ in eine Endlosschleife.
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/ 2. Beweisrichtung \

Erinnerung: berechenbare Bijektion ¢ : N? — IN mit berechenbarer Umkehr-

funktion
Gegeben: eine DTM M’ zur Berechnung von x’7, Abzéhlmaschine fiir {0, 1}*
Gesucht: eine Abzdhlmaschine M fiir L, die eine passende Funktion f(n)

berechnet
Naive Methode: 1. Simuliere M’ auf dem n-ten Binérstring f.(n).
2. Falls M’ mit Ausgabe ,1“ stoppt, dann gib f(n) := f.(n) aus;
andernfalls gib einen ,, Default—String® w € L aus.

Problem: Falls M’ auf Eingabe f.(n) endlos rechnet, dann wire f(n)
(verbotenerweise) undefiniert.

Idee (,,dove tailing*): Interpretiere Eingabe n als Paar (ni,ns), wobei
c(n1,n2) = n, und nutze no als Laufzeitschranke fiir die Simulation von

\ M’ angesetzt auf Eingabe f.(nq). /
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/ 2. Beweisrichtung (fortgesetzt) \

Resultierende Methode:
1. Zu Eingabe n berechne (n1,ns) € N? mit n = c¢(ny, ns).
2. Simuliere no Schritte von M’ angesetzt auf Eingabe f.(nq).
3. Falls M’ in dieser Zeit Ausgabe ,,1* produziert, dann gib f(n) := f.(n1)

aus; andernfalls gib einen ,,Default—String*“ w € L aus.

Korrektheit: Offensichtlich gilt f(n) € L fiir alle n € N, d.h., es werden

wirklich nur Worter aus L aufgezéihlt.
Zudem ist f surjektiv, d.h., jedes Wort x € L kommt in der Aufzédhlung

vor. Wieso 7 (Begriindung in der Vorlesung)

N /

Hans U. Simon, Ruhr-Universitdt Bochum, Germany TI WS 2007/2008




Entscheidbare und unentscheidbare Probleme Slide 16
Uberblick zur Semi—Entscheidbarkeit \

-

N

Folgende Aussagen zu einer Sprache L C X* sind &dquivalent:

e [ ist aufzahlbar.

e [ ist semi—entscheidbar.

e [ hat eine DTM als Akzeptor.
e [ hat eine NTM als Akzeptor.

e [ ist vom Typ 0.

/
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/ Abschluss—Eigenschaften \

Satz 1: Die Klasse der entscheidbaren Sprachen ist abgeschlossen unter den

¢

: ¢
Operationen ,,U, N, -, -, %,

Satz 2: Die Klasse der semi—entscheidbaren Sprachen ist abgeschlossen unter
den Operationen ,U,N, -, **“ aber (wie wir spiter noch zeigen werden) nicht

¢

unter der Operation ,,—“.

e Der Nachweis der Abschluss—FEigenschaften kann (relativ leicht) gefiihrt
werden, indem zwei gegebene DTMs fiir L; und L, benutzt werden, um
DTMs fiir

LiULy,LiNLy,Ly,Ly- Lo, L}

zusammenzubasteln (Syntheseprobleme).

e Bei Semi—Entscheidbarkeit konnte man alternativ auch iiber NTMs oder

Typ 0 Grammatiken argumentieren.

Q/Iehr Details evtl. in der Vorlesung. /
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Satz: Eine Sprache L ist entscheidbar gdw L und L semi-entscheidbar sind.
=

Wenn L entscheidbar ist, dann ist auch L entscheidbar.

Da jede entscheidbare Sprache erst recht semi—entscheidbar ist, sind folgerichtig

dann L und L semi—entscheidbar.

<~

Wenn L und L semi-entscheidbar sind, sagen wir X/E und 7 werden durch
DTMs My und My berechnet, dann ist y;, nach folgendem Muster berechenbar:
Fir t = 0,1, 2,... mache folgendes:

L.

2. Sowie eine der DTMs, sagen wir M;, eine 1 ausgibt und stoppt, dann gib ¢

Zweimal ,,halb* macht ,,ganz* \

Simuliere My und M, jeweils auf Eingabe w fiir ¢ Schritte.

aus und stoppe ebenfalls.
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/ Eine binire Kodierung von Turing—Maschinen \

Arbeitsalphabet und Zustandsmenge konnen stets so gewihlt werden, dass

jedes Symbol und jeder Zustand eine Nummer erhéalt:

' = {Ap,..., A}
Z = A{z0,--.,2s}

Ebenso konnen die Richtungsangaben nummeriert werden:

do=1L,d; = R,dy = N

N /
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/ Binire Kodierung von Turing—Maschinen (fortgesetzt) \

e Liin Hintrag
5(Zi7 AJ) — (Zi’7 Aj’) dk)
der Turing—Tafel kann dann durch den String
sttbin (i) #tbin(f)#ebin (' )#tbin(j')#bin (k)
kodiert werden.

e Die komplette Turing—Tafel ist dann kodiert durch die Konkatenation der
Kodewdorter ihrer Eintrédge (wobei diese, sagen wir, zeilenweise durchlaufen
werden).

e SchlieBlich erhalten wir ein bindres Kodewort durch die Substitutionen

0+ 00,1 01, # 11 .

N /
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/ Binire Kodierung von Turing—Maschinen (fortgesetzt) \

Es ist nicht schwer zu zeigen, dass
G :={w € {0,1}"| w ist Codewort einer DTM}

entscheidbar ist.
e Falls w € (G, dann bezeichne M, die von w kodierte DTM.

e Falls w ¢ GG, dann bezeichne M,, eine (beliebig aber fest ausgewéhlte)
,Default—-DTM*".

N /
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/ Universelle Turing—Maschine \

Die universelle Sprache ist definiert wie folgt:

U:={w#x| x € T(My)}

Eine DTM heif3t universelle Turing—Maschine gdw sie ein Akzeptor von U ist.

Eine universelle Turing—Maschine ist eine Art ,,General Purpose Computer®,

der auf Eingaben der Form w#x vorgeht wie folgt:
e Simuliere M,, auf z.

o Akzeptiere w#xz gdw M, ihre Eingabe x akzeptiert.

N /
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/ Und es gibt sie wirklich ... \

Das folgende Resultat ist nicht schwer zu zeigen:
Satz: Es gibt eine universelle Turing—Maschine.

Bezeichnung: UTM

Folgerung 1: U ist semi—entscheidbar.

N /

Hans U. Simon, Ruhr-Universitdt Bochum, Germany TI WS 2007/2008




Entscheidbare und unentscheidbare Probleme

Slide 24

-

N

Erste Beispiele unentscheidbarer Sprachen

~
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/ Eine nicht semi—entscheidbare Sprache \

Die sogenannte Diagonalsprache ist definiert wie folgt:

D:={w e {0,1}"| w ¢ T(Mu);

In Worten: D besteht aus allen (Kodierungen von) DTMs, die ihre eigene
Beschreibung (durch ein Kodewort) nicht akzeptieren.

Satz: D ist nicht semi—entscheidbar.

Beweis durch Widerspruch: Wir machen die (heuchlerische) Annahme, es
gibe eine DTM My mit T (M) = D. Betrachte das Kodewort wg von Mj. Die
folgenden Aussagen sind dquivalent:

(1) wo € T(Mo) (2 wo € D. (3) wo §é T(Mo)
nutze aus, dass T'(My) = D.
nutze die Definition von D aus.

ist ein WIDERSPRUCH. /

3
3

e Zur Aquivalenz von (2) un

)
e Zur Aquivalenz von (1) und (2)
d (3)

nd (3)

K. Die Aquivalenz von (1) u
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/ Reduzierbarkeit \

Definition: Betrachte zwei Sprachen Lq, Lo C X*.
L1 heifit reduzierbar auf L, gdw eine total berechenbare Abbildung

f¥ =X
existiert mit der Eigenschaft
VweX™ :wel < f(w) € Ly .

f nennen wir in diesem Zusammenhang eine Reduktionsabbildung.

Notation: L1 < L2.

N /
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Eigenschaften dieser Relation \

Reflexivitat: L < L.

Transitivitiat: Aus L1 < L2 und L2 < L3 fOlgt L1 < L3.

e Zum Nachweis der Reflexivitéit benutze die identische Reduktionsabbildung
F(w) = w.

e Zum Nachweis der Transitivitat setze die Reduktionsabbildungen f; und fs
fiir die Reduktionen L1 < Lo und Lo < Lg zu einer Reduktionsabbildung
f(w) := fa(f1(w)) fir die Reduktion L; < L3 zusammen:

w & L1 p— fl(w) - L2 p— fg(fl(’w)) c L3

/
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/ Eigenschaften (fortgesetzt) \
Voraussetzung: [; < Ly (Reduktionsabbildung f).

Behauptungen: 1. Falls L, (semi-)entscheidbar ist, dann ist auch L,
(semi—)entscheidbar.
2. Falls L; nicht (semi-)entscheidbar ist, dann ist auch Ly nicht

(semi—)entscheidbar.

Beweis: 1. Wegen w € L1 & f(w) € Lo gilt

X1, (W) = X1, (f(w)) .

Abbildung X7 (w) kann also berechnet werden, indem zunéchst f(w)
und anschlieend x_(f(w)) berechnet wird. Eine analoge Bemerkung

gilt fiir die Funktion xr,, (w).

2. Die zweite Behauptung ist logisch dquivalent zur ersten.

\ (Umkehrschluss: A = B ist logisch dquivalent zu =B = —A.) /
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/ Verbreitung ,.guter und schlechter Nachrichten*

Betrachte eine Reduktionskette

Salopp formuliert:

rechts nach links.

links nach rechts.

N

L1 <Lyg<---<Lp_1 <Ly .

e Wenn L (semi—)entscheidbar ist, so auch Lj_1,..

Lo, L.

e Wenn [; nicht (semi—)entscheidbar ist, so auch Lo, ..., Ly 1, L.

nicht entscheidbare bzw. nicht semi—entscheidbare Sprachen abzuleiten.

~

e ., Gute Nachrichten“ verbreiten sich entlang von Reduktionsketten von

e . Schlechte Nachrichten®“ verbreiten sich entlang von Reduktionsketten von

Wir werden diese Denkweise ausnutzen, um aus der Diagonalsprache D weitere

/
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/ Eine kleine Sammlung unentscheidbarer Sprachen \

Neben dem Komplement der Diagonalsprache
D ={wec{0,1}*| we T(My,)}
und der universellen Sprache
U=Aw#x| xc€T(My)}

betrachten wir noch die folgenden Sprachen:

H = {w#zx|xze HMy)} (Halteproblem)
Hy = {w|ee HMy)} (Halteproblem auf leerem Band)
K = {w|lweH(My)} (spezielles Halteproblem)

N /
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/ Kleine Sammlung (fortgesetzt) \

Bei diesen Sprachen geht es also um die folgenden Fragen:

Akzeptiert eine DTM ihre eigene Beschreibung ?
Akzeptiert eine DTM ihre Eingabe 7

T oD

Stoppt eine DTM auf ihrer Eingabe nach endlich vielen Schritten 7
Hy:  Stoppt eine auf das leere Band angesetzte DTM

nach endlich vielen Schritten 7
K: Stoppt eine auf ihre eigene Beschreibung angesetzte DTM

nach endlich vielen Schritten 7

Alle diese Fragen werden sich als unentscheidbar erweisen.

N /
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/ Kleine Sammlung (fortgesetzt) \

Satz: D ist unentscheidbar.

Beweis: Wire D entscheidbar, so wire auch D entscheidbar.

D ist aber noch nicht einmal semi—entscheidbar.
Satz: K = {w| w € H(M,)} ist semi—entscheidbar.

Beweis: Verwende eine (vereinfachte) Variante UTM’ der UTM, die folgendes

macht:
1. Simuliere (Schritt fiir Schritt) die DTM M,, auf Eingabe w.
2. Falls M, irgendwann stoppt, dann produziere Ausgabe ,,1“ und stoppe

ebenfalls.

Offensichtlich berechnet UTM’ die Funktion x/ (w).

N /
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/ Kleine Sammlung (fortgesetzt) \

Wir werden die folgende Reduktionskette nachweisen:
D<U<H<H;<K

Wegen der Art, wie sich gute und schlechte Nachrichten verbreiten, erhalten
wir die

Folgerung

D.,U, H, Hy, K sind zwar semi-entscheidbar aber unentscheidbar.

Bleibt der Nachweis der obigen Reduktionskette.

N /
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/ Reduktion 1 \

Lemma: D < U.

Verwende Reduktionsabbildung
w— WHW .
Offensichtlich gilt:

weDesweT(M,, < wHwelU .

N /
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/ Reduktion 2 \

Lemma: U < H.

Verwende Reduktionsabbildung
wH#r — w'Hx .

Ziel: wH#Hr e U s xeT(My)ex e H M, ) < w#x € H.
Andere dazu das ,,Programm“ w von M,, zu einem neuen ,, Programm® w’
einer DTM M, ab:

e M, simuliert M,, Schritt-fiir-Schritt,

e auller dass M, sich in eine Endlosschleife begibt, falls M,, nicht—
akzeptierend stoppt.

N /
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/ Reduktion 3 \

Lemma: H < H,.

Verwende Reduktionsabbildung
wH#r — w' .

Ziel: wH#Hx € H < x e HM,y)=e € H My ) < w' € Hp.

Andere dazu das ,,Programm® w von M, zu einem neuen (auch von x

abhéngigen) ,Programm* w’ einer TM M, ab:
e M, , angesetzt auf das leere Band, schreibt zunéchst den String x auf

e und simuliert dann Schritt-fiir-Schritt M, auf Eingabe x.

N /
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/ Reduktion 4 \

Lemma: Hy < K.

Verwende Reduktionsabbildung

/
W rFH— w

Ziel: we Hysee HMy)ew €e HMy) < w' € K.

Andere dabei das ,,Programm® w von M, zu einem neuen Programm w’ einer
™™ M, ab:

o M, loscht zunéchst ihre Eingabe

e und simuliert dann Schritt-fiir-Schritt M,, angesetzt auf das leere Band.

N /
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N

Das Post’sche Korrespondenzproblem

/
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/ PKP und MPKP \

Postsches Korrespondenzproblem (PKP)

Entscheide zu einer gegeben Folge
K =[(z1,51), -, (@, y)]
von Wortpaaren iiber einem endlichen Alphabet X, ob es eine Folge
11y vestn € |11 K]
von Indizes, genannt ,,Losung®, gibt, so dass

Liy oo Lj, = Yiq ---Yi, -

Modifiziertes Postsches Korrespondenzproblem (MPKP)
\ Wie PKP, aufler dass die Indexfolge mit 71 = 1 beginnen muss. /
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/ Beispiel 1 \

Zu

K =(1,111), (10111, 10), (10, 0)]

ist (2,1,1,3) eine passende Indexfolge:

X2 X1 X1 X3 Y2 Y1 Y1 Y3
P S P e P P R e
10111 1 1 10 =101111110= 10 111 111 O

N /
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/ Beispiel 2 \

Zu

K = [(10,101), (011, 11), (101, 011)]

gibt es keine passende Indexfolge (Zugzwangargument):

1. Jede potenzielle Losung miifite beginnen mit 7; = 1:
r1 — 10, Yy = 101

2. Wann immer die y-Sequenz eine 1 Vorsprung hat, ist die einzig aussichts-

reiche Fortsetzung
rs3

=

r-Sequenz : ... 101

y-Sequenz : ... 1011 ,
Y3

was den Vorsprung von der y-Sequenz auf ewig reproduziert.

/
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/ Beispiel 3 \

Zu

K = [(001,0), (01,011), (01, 101), (10,001)]

gibt es eine passende Indexfolge 71,...,1,, aber erst ab n = 66.

Wer findet die Losung 7

N /
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/ Hauptresultat \

Wir werden die Reduktionskette

H < MPKP < PKP

nachweisen.
Folgerung MPKP und PKP sind unentscheidbar.

Bemerkungen:

1. Die Unentscheidbarkeit ergibt sich bereits fiir bindres Alphabet (wie sich

zeigen wird).

2. Bei undrem Alphabet hingegen sind MPKP und PKP entscheidbar
(s. Ubung).

N /
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/ Reduktion von MPKP auf PKP \

Die Eingabeinstanz von MPKP iiber Alphabet X sei

K=\(z1,y1),---, (K, yx)] -
Seien #,$ ¢ 3 zwei neue Symbole. Dann soll
f(K) — [(1136, y(/))7 (xlla yll)v c ety (ZE%, yllc)a (x;c—l—lv yllc—|—1)]
die folgende Eingabe von PKP sein:

e Fiir i = 1,...,k entsteht z}, indem hinter jedem Buchstaben von z;
Symbol # eingefiigt wird; y; entsteht aus y;, indem vor jedem Buchstaben

von 1; Symbol # eingefiigt wird.

/ / / / / / _
o 1o =F#x, Tp 1 =98, Yo =Y1, Ypi1 = #3.

N /
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/ Reduktionsabbildung f an einem Beispiel \
v = 10111 | 2}, = 1H#O#IHLIH#IH | ) = H1H0HIH1IH#1IH
y1. = 10 yi = #1#0 yo = #1#0
ro = 1 ro = 1#
y2 = 111 | yy = #1#1#1
rs = 10 xh = 1#0# x, = 3
y3 = 0 ys = #0 Yo = ##9

(1,2, 2,3) ist eine passende Indexfolge fiir K = [(x1,¥y1), (X2, ¥y2), (3, y3)]:

X1 X2 ) X3 Y1 Y2 Y2 Y3
P A W N P P R e
10111 1 1 10 =101111110= 10 111 111 O

(0,2,2,3,4) ist eine passende Indexfolge fiir f(K), die folgenden ,,gepolsterten
Losungsstring liefert:

K H1H0H1H 1414141413043 /
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Aus dem Design von f(K) ergibt sich leicht:

1. Fiir alle n und alle io, ... i, € [1: k]:

{1,...,k}.
Es folgt:

Da f auflerdem berechenbar ist, ergibt sich MPKP<PKP.

N

/ Reduktion von MPKP auf PKP (fortgesetzt) \

1,io,...,1, Losung fir K < 0,14s,...,i,,k + 1 Losung fiir f(K) .

2. Jede Losung (= passende Indexfolge) kiirzester Lénge fiir f(K) startet mit
Index 0, endet mit Index k£ + 1 und verwendet dazwischen nur Indizes aus

K besitzt eine passende Indexfolge gdw f(K') besitzt eine passende Indexfolge.

/
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/ Reduktion von H auf MPKP \

Ziel:
Entwurf einer Reduktionsabbildung f, die Eingaben von H der Form M #x,
so auf Eingaben von MPKP abbildet, dass gilt:

r € H(M)< f(M#zx) hat eine Losung . (2)

Idee:

Um (2) zu erzwingen, werden die x- und y-Sequenzen Konfigurationsfolgen
von M entsprechen, wobei die y-Sequenz immer eine Konfiguration Vorsprung
hat. Der z-Sequenz erlauben wir erst nach Stoppen von M diesen Vorsprung

einzuholen.

N /
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/ Normierung der Turing-Maschine M \

Indem wir (falls n6tig) die TM M leicht normieren (ohne ihr Stoppverhalten

auf Eingabe x zu veréndern), kénnen wir o.E. voraussetzen:

1. Wie friiher bereits vereinbart, stoppt M gdw sie sich in einem Zustand

aus einer Menge S (End- plus Stoppzustidnde) befindet.
2. M hat ein einseitig unendliches Band.
3. M bewegt in jedem Schritt den Kopf.
4. M druckt niemals ihr Leerzeichen B.

Diese Normierung vereinfacht die folgende Konstruktion der MPKP-Eingabe-
instanz f(M#zx).

N /
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Die MPKP-Eingabeinstanz K=f(M#x) \

Die Stringpaare von K zerfallen in fiinf Gruppen:
e das Anfangspaar (#, #zox#)

e Kopierpaare (X, X) fiir alle X € I' U {#}

e Uberfithrungspaare

(zY,Y'Z)
(Xz2Y, 2/ XY")
(z#,Y'2'4#)

firalle z€ Z\ S, 2/ € Z, X,Y,Y' e T\ {B}.

o Loschpaare (XsY,s), (Xs#,s#), (#sY,#s)
fiir alle s € S, X, Y e '\ {B}.

\o Abschlusspaare (s##, #) fiir alle s € S.

, falls 0
, falls 0(z, B
(X z#, 2/ XY'#), falls §(z, B

/
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N

Intuition hinter diesem Design \

e Das Anfangspaar dient dazu, der y-Sequenz eine Konfiguration (hier die

Anfangskonfiguration) Vorsprung zu geben.

e Die Kopier- und Uberfithrungspaare dienen dazu, beide Sequenzen um eine

Konfiguration zu verlangern.

e Die Losch- und Abschluf3paare sollen die x-Sequenz den Vorsprung aufholen

lassen, sofern einen Zustand aus S erreicht wurde.

Um zu verifizieren, dass dieser Plan aufgeht, benétigen wir das folgende

Konzept der partiellen Losung fir K.

/
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/ Partielle Losung fiir K=f(M#x)

Stringpaar (x,y) € X% x X* heifit eine partielle Losung fiir K ist, wenn gilt:

1. x ist Anfangswort von y.

x die x-Sequenz und y die y-Sequenz zu iq, ..., 1, ist.

Zentrale Beobachtung:
Falls M aus Startkonfiguration zgx die Folgekonfigurationen

0512:1617 0522:2627 SR O‘kzkﬁk mit 205+ -y Rk—1 §é S

produziert, dann besitzt K eine partielle Losung der Form

(z,y) = (FrowHFHonz101# .. #Fog_12k—10k—1# ,
#HzowHFHon 11 - . HAk—12k—1Br—1F 02k P H)

N

~

2. Es existiert ein n > 1 und 4y, ...,4, mit iy = 1 (das Anfangspaar), so dass

(3)

/
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/ Induktiver Beweis der zentralen Beobachtung \

Der Beweis erfolgt durch Induktion nach k.
k = 0: (z,y) = (#, #zow+#) realisiert durch das Anfangspaar.

Schritt von k auf k41: Sei per Induktionsvoraussetzung eine partielle
Losung der Form (3) gegeben und zx ¢ S. Wir kénnen die x-Sequenz um
a2k Ok 7 und die y-Sequenz um a1 2k410k4-17 verldngern, indem wir

e die identischen Teile von Konfigurationen k& und £+ 1 mit den Kopierpaaren
aufbauen,

e die verschiedenen Teile (lokale Umgebung der Zustandssymbole zy, 2511,
weil dort jeweils der Kopf von M positioniert ist) mit dem eindeutig
bestimmten Uberfithrungspaar aufbauen.

Auf diese Weise erhalten wir die partielle Losung

(513/7?/) = (yayoékﬂzkﬂﬁkﬂ#) :

\Damit ist der induktive Beweis abgeschlossen. /
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/ Illustration des Induktionsschrittes \

Es sei ABCzDEF# die Konfiguration, welche den Vorsprung der y-Sequenz

ausmacht. Wir nehmen an, dass die Turing-Tafel von M die Aktion
6(z,D) = (z',D', L) (4)

vorschreibt. Wir machen drei ,,Schnappschiisse” der x- und y-Sequenz:

z-Sequenz (Einsatz Kopierpaare): ... AB

y-Sequenz (Einsatz Kopierpaare): ... ABCzDFEF+#AB

r-Sequenz (Einsatz Uberfithrungspaar): ... ABCzD

y-Sequenz (Einsatz Uberfithrungspaar: ... ABCzDEF#ABZ'CD’
z-Sequenz (Einsatz Kopierpaare): ... ABCzDEF4#

y-Sequenz (Einsatz Kopierpaare): ... ABCzDEF+#ABZ'CD'EF#

N /
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/ Nachweis der Reduktionseigenschaften von f \
Behauptung 1 Falls x € H(M), dann besitzt K eine Losung.

Falls z € H(M), erhalten wir irgendwann eine partielle Losung der Form
(y, yasf#) mit s € S,a, B € T'" .

Nun konnen wir die Kopierpaare und die Loschpaare einsetzen, um den
Vorsprung a.s34# zu vermindern:

e Jede Anwendung eines Loschpaares vermindert den Vorsprung um ein -

oder 3-Symbol.

e Irgendwann ist der Vorsprung auf s# zusammengeschmolzen und die
Sequenzen haben die Form

(v, y's#) .

Anwendung des Abschluflpaares fiir s egalisiert die Sequenzen:

(' s##, y s##)
N /
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/ Illustration der ,,Aufholjagd* \
r-Sequenz:
y-Sequenz (Endkonfiguration als Vorsprung): ABsD#
z-Sequenz (Einsatz Kopierpaar): A
y-Sequenz (Einsatz Kopierpaar): ABsD#A
z-Sequenz (Einsatz Loschpaar): ABsD
y-Sequenz (Einsatz Loéschpaar): ABsD#As
z-Sequenz (Einsatz Kopierpaar): ABsDH#
y-Sequenz (Einsatz Kopierpaar): ABsD+H# As#
z-Sequenz (Einsatz Loschpaar): ABsD# As#
x-Sequenz (Einsatz Loschpaar): ABsD+H# As#s#
z-Sequenz (Einsatz Abschlusspaar): ABsDH# AsHsHH
(

K x-Sequenz (Einsatz Abschlusspaar):

ABsD+# As#sH4 /
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/N achweis der Reduktionseigenschaften von f (fortgesetzt)\

Behauptung 2 Falls K eine Losung besitzt, dann gilt x € H(M).
Indirekter Beweis: Wir zeigen, dass K keine Losung besitzt, falls x ¢ H(M).

Da wir bei der Produktion von partiellen Losungen keine Freiheiten hatten
(Anwendung von anderen Paaren als die beschriebenen fithrt immer direkt in
eine Sackgasse), besteht der einzige Losungsversuch im Produzieren partieller
Losungen der Form (3), wobei (solange kein Zustand aus S erreicht wird), die
Loschpaare nicht zum Einsatz kommen und die y-Sequenz daher stets eine
Konfiguration Vorsprung hat. Eine Egalisierung der Sequenzen kann nicht
stattfinden.

N /
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/ PKP mit binidrem Alphabet \

01-PKP sei das PKP iiber dem Alphabet ¥ = {0, 1}.
Satz: PKP<01-PKP.

Beweis: Sei K eine PKP-Eingabeinstanz iiber einem beliebigen Alphabet der

Form ¥ = {a1,...,a,}. Wihle als f(K) die 01-PKP-Eingabeinstanz, die aus
K durch die Substitutionsregel

a; — 107

hervorgeht. Die Losungen (sofern vorhanden) fiir K und f(K) entsprechen
sich (in der offensichtlichen Weise) 1-zu-1. Insbesondere besitzt K eine Losung

gdw f(K) eine Losung besitzt.
Folgerung: 01-PKP ist unentscheidbar.

N /
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4 N

Unentscheidbare Probleme
mit Grammatiken und Automaten

N /
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/ Zu 01-PKP assoziierte kontextfreie Sprachen \

Zu einem Wort w = w;y - - - w,, bezeichne w = w,, - - - w; sein ,,Spiegelbild“. Zu
der Eingabeinstanz

K =[(z1,91)- -, (Tk, ys)]
von 01-PKP assoziieren wir die folgenden Sprachen iiber dem Alphabet
{0,1,%,a1,...,ak, }:

Li|K] = Aai, i@y 20,895, Ui a0 ag, | mon > 1}
Lo|K] = {wv$oa| u € {ay,...,ax}",v € {0,1}1}
Erinnerung: i,...,%, ist eine Losung fiir K gdw z;, ---x;, = yi, - Yi,, -

Zentrale Beobachtung: L,[K] N Ly|K] ist identisch zu

{a;, - a; @i - xi $Y;i - Yi @iy QG | 11, -, Gy 1St eine Losung fir K} .

N /
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/ (Deterministische) Kontextfreiheit dieser Sprachen \
Wir geben hier kfG’s G1[K], G| K] fiir L1 |K], Lo|K]| an:
1. G1|K] enthilt die Regeln
S1 — A$B , A — a;Ax; | a;x; , B — §;Ba; | g;a;
fire=1,...,k.
2. G3|K] enthélt die Regeln
So — a;52a; | a;Ra; , R— 0RO | 1R1 | 00 | 11
fire=1,...,k.

Ubung: Grammatiken G; und G5 sind eindeutig und es lassen sich auch
DPDA’s M;[K] und Ms|K] fiir L1[K] und Lo|K] angeben.

Folgerung: L|K], L3;[K] sind eindeutige deterministisch kontextfreie Spra-

K chen. /

Hans U. Simon, Ruhr-Universitdt Bochum, Germany TI WS 2007/2008




Entscheidbare und unentscheidbare Probleme Slide 61
/ Beispiel \

Zu K ={(1,111), (10111, 10), (10,0)] erhalten wir bei G; die Regeln

Sl — A$B
A — a1A1]a2A10111\a3A10|a11]&210111|a310
B — 1llBa1|OlBCL2’OB|CL3|1116L1’OlCLQ’O

und bei G5 die Regeln

Sg — a,lsga,l|a,252a2|a35'2a3]a,1Ra1]agRa2|a3Ra3

R — ORO|1R1|00[11 .

N /
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/ Zwei sehr unterschiedliche Szenarios \
K hat eine Losung K hat keine Losung
1. L1[K|N Lo [K] #£ 0 . L1[K|N Ly [K] =10
2. |L1[K|N Ly |[K]| = 2. |L1|K| N Ly |[K]| < o0
3. L1|K| N Ly|K] ist nicht kontextfrei | 3’. Li[K|N Ly|K] ist kontextfrei
4. L1 |K]| U Lo|K] ist nicht regulér 4’. [1|K|U Lo | K] ist regular
5. L1 |K|U Ly|K] ist 5. L1|K|U Ly[K] ist
nicht deterministisch kontextfrei deterministisch kontextirei

N /
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-

N

Begriindungen \

Unsere ,,zentrale Beobachtung® liefert 1. und 1’.

Aus Ll[K] M LQ[K] = @ (und somit Ll[K] U LQ[K] = Ll[K] M LQ[K] = Z*)

ergeben sich unmittelbar die Aussagen 2’. bis 5’.

Zu Aussage 2. nutze aus, dass K unendlich viele Losungen hat, sofern es

mindestens eine Losung hat.
Aussage 3. ergibt sich leicht mit dem Pumping—Lemma, (Ubung).

Aussage 5. ergibt sich mit einem Beweis durch Widerspruch:
Wire L1[K] U Ls[K] deterministisch kontextfrei, dann miisste auch
L1 [K] N Ly | K| deterministisch kontextfrei sein im Widerspruch zu 3.

Aussage 4. ergibt sich direkt aus 5.

/
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/ Folgerungen \

Die folgenden Probleme sind unentscheidbar (Reduktion jeweils von PKP

bzw. dem Komplement von PKP):

1. Ist der Durchschnitt zweier (durch DPDAs oder kfGs gegebener) deter-
ministisch kontextfreier Sprachen leer (Schnittproblem fiir deterministisch
kontextfreie Sprachen) ?

2. Ist der Durchschnitt zweier (durch DPDAs oder kfGs gegebener) determi-
nistisch kontextfreier Sprachen endlich 7

3. Ist der Durchschnitt zweier (durch DPDAs oder kfGs gegebener) de-
terministisch kontextfreier Sprachen kontextfrei (Kontextfreiheit des
Durchschnittes) ?

4. Ist eine (durch eine kfG gegebene) kontextfreie Sprache regulér 7

5. Ist eine (durch eine kfG gegebene) kontextfreie Sprache deterministisch

K kontextfrei 7 /
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/ Zugehorige Reduktionsabbildungen \

e Fiir die ersten drei Reduktionen verwende die Reduktionsabbildung
K — (M1|K], M5|K]) bzw. K — (G1|K]|, G3|K]) .

e Fiir die letzten zwei Reduktionen verwende die Reduktionsabbildung
K — G'|K], wobei G'[K] eine (aus K berechenbare !) kfG fiir die
(kontextfreie !) Sprache L [K|U Lo|K] ist.

Da die kfGs G1|K], G2| K] eindeutig sind, bleiben die ersten drei Probleme der
obigen Liste unentscheidbar, selbst wenn die beteiligten kontextifreien Sprachen

durch eindeutige kfGs gegeben sind.

N /
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/ Weitere Folgerungen \

Die folgenden Probleme sind unentscheidbar:

Inklusionsproblem: Gilt fiir zwei (durch DPDAs oder kfGs gegebene)
deterministisch kontextfreie Sprachen Lq, Lo die Beziehung L1 C Lo 7

Eindeutigkeitsproblem: Ist eine gegebene kfG eindeutig 7

Kontextfreiheit des Komplementes: Ist das Komplement einer (durch

eine kfG gegebenen) kontextfreien Sprache ebenfalls kontextfrei ?

Leerheit des Komplementes: Stimmt eine (durch eine kfG gegebene)

kontextfreie Sprache mit >* iiberein (d.h., sind alle Terminalstrings
ableitbar) ?

Aquivalenzproblem: Sind zwei gegebene kfGs dquivalent (d.h., sind die von

ihnen erzeugten Sprachen identisch) 7

N /
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/ Zugehorige Reduktionen \

Das Schnittproblem fiir deterministisch kontextireie Sprachen
N(M{)NN(Msy)=107?

1st wegen

auf das Inklusionsproblem reduzierbar.

Als Reduktionsabbildung verwende

(My, M) — (My, M3) |

wobei M/ ein (aus My berechenbarer ) DPDA fiir N (M) ist.

N /
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/ Zugehorige Reduktionen (fortgesetzt) \

Das Schnittproblem fiir eindeutige kontextfreie Sprachen
L(G1) N L(G3) =0 (G1, G eindeutige kfGs) 7

ist auf das Eindeutigkeitsproblem reduzierbar.

Als Reduktionsabbildung verwende
(G17 GQ) = G3 )

wobei G3 die (aus G1,G2 mit der Standardtechnik berechenbare) kfG fiir
die Sprache L(G1) U L(G3) bezeichnet. Da G; und G2 eindeutige kfGs
sind, gibt es ein Wort mit zwei verschiedenen Syntaxb&dumen iiber G3 gdw

L(G1) N L(G2y) # 0.

N /
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/ Zugehorige Reduktionen (fortgesetzt) \
Das Problem der Kontextfreiheit des Durchschnittes

N(My) N N(Ms) kontextfrei (M7, Ma DPDAs) ?

ist auf das Problem der Kontextfreiheit des Komplementes reduzierbar.

Verwende Reduktionsabbildung
(M17 MQ) = Gé )
wobei G5 die (aus M7, M5 berechenbare) kfG fiir

N(My) N"NN(My) = N(M;) U N(Ms)

bezeichne.

Dieselbe Reduktionsabbildung reduziert das Schnittproblem fiir deterministisch
kontextfreie Sprachen

N(M)NN(Mz) =07
kauf das Problem der Leerheit des Komplementes. /
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/ Zugehorige Reduktionen (fortgesetzt) \

Reduktionsabbildung

verwendet werden.

N

Schliefflich ist das Problem der Leerheit des Komplementes

L(G) = % 7

auf das Aquivalenzproblem reduzierbar.

Wenn G, eine (leicht zu berechnende) kfG fiir 3* bezeichnet, dann kann als

G — (G,G.)

/
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/ Unentscheidbare Probleme fiir kontextsensitive Sprachen\

~Meta—Satz*: Jedes Problem, das fiir den Durchschnitt zweier kontextfreier
Sprachen unentscheidbar ist, ist auch fiir eine einzelne kontextsensitive

Sprache unentscheidbar.

Beweis: e Die gegebenen kontextfreien Grammatiken G1,Go sind (erst

recht) kontextsensitive Grammatiken.

Daher sind sie (mit der Methode der Vorlesung) in dquivalente LBAs
M, M5 transformierbar.

Aus My, M5 lisst sich leicht ein LBA Mj fiir
T(Ms3)=T(M,)NT(Ms) =L(G1) N L(G2)

zusammenbasteln.

Daher hat die zu L(G1) N L(G2) gestellte Frage (wie immer sie lautet)
dieselbe Antwort wie die zu T'(M3) gestellte Frage (Reduktionsabbildung

(G1,Ga — Ms3). /
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/ Folgerungen \

Die folgenden Probleme zu einer (durch einen LBA gegebenen) kontextsensiti-

ven Sprache sind unentscheidbar:
e Ist die Sprache leer 7

e Ist die Sprache endlich 7

e Ist die Sprache kontextirei 7

N /
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