Theorie der Berechenbarkeit (Teil 1) Slide 1

-

N

Theorie der Berechenbarkeit (Teil 1) \

Hans U. Simon (RUB)

Email: simon@Ilmi.rub.de

Homepage: http://www.ruhr-uni-bochum.de/lmi

/

Hans U. Simon, Ruhr-Universitdt Bochum, Germany TI WS 2007/2008

Theorie der Berechenbarkeit (Teil 1)

Slide 2

-

N

Intuitive und formale Berechenbarkeit
Church’sche These

/

Hans U. Simon, Ruhr-Universitdt Bochum, Germany

TI WS 2007/2008

Theorie der Berechenbarkeit (Teil 1) Slide 3

/ Partiell definierte Funktionen \
Wir betrachten im Folgenden partiell definierte Funktionen der Form
f:N¥ = Nbzw. f: 2% - ©* .
Fiir x auflerhalb des Definitionsbereiches gilt dann
f(x) = ,,undefiniert” .

Intuition: Rechenprogramme mit Eingaben aus N* bzw. ¥* werden

entweder nach endlich vielen Schritten mit einem (durch eine Ausgabekon-

vention festgelegten) Ergebnis stoppen,
oder in eine unendliche Schleife geraten.

Die von einem Programm berechnete Funktion ist also i.A. nur partiell definiert.

N /

Hans U. Simon, Ruhr-Universitdt Bochum, Germany TI WS 2007/2008

Theorie der Berechenbarkeit (Teil 1) Slide 4

/ Intuitive Berechenbarkeit \

Informelle Definition: Eine Funktion
f:N¥ - N bzw. f:T* - &*

heif}t ,, (intuitiv) berechenbar®, wenn es eine ,,mechanisch anwendbare* Rechen-
vorschrift gibt, die bei Eingabe x
e nach ,endlich vielen Schritten“ zur Ausgabe f(x) fiihrt, falls f(x) definiert
ist,

e in eine ,unendliche Schleife* fithrt, falls f(x) undefiniert ist.

N /

Hans U. Simon, Ruhr-Universitdt Bochum, Germany TI WS 2007/2008

Theorie der Berechenbarkeit (Teil 1)

Slide 5

-

N

Beispiele

Die total undefinierte Funktion

Q(n) = ,undefiniert”

fiir alle n € N ist berechenbar:

Eingabe) in eine Endlosschleife begibt !

Erstelle ein Programm (in Deiner Lieblingssprache), das sich (ungeachtet der

/

Hans U. Simon, Ruhr-Universitdt Bochum, Germany

TI WS 2007/2008

Theorie der Berechenbarkeit (Teil 1) Slide 6

/ Beispiele (fortgesetzt) \
Abkiirzung: DBE = Dezimalbruchentwicklung
Die Funktion

f(n) 1 falls die DBE von m mit den Ziffern der DBE von n beginnt
n) —=

0O sonst

ist berechenbar:

Benutze ein Verfahren, das beliebige genaue Approximationen von 7 erstellen
kann und jeweils eine Fehlerabschitzung mitliefert.

N /

Hans U. Simon, Ruhr-Universitdt Bochum, Germany TI WS 2007/2008

Theorie der Berechenbarkeit (Teil 1) Slide 7

/ Beispiele (fortgesetzt) \

Der Status (berechenbar versus nicht berechenbar) der Funktion

(n) 1 falls die DBE von 7 die DBE von n als Teilstring enthélt
g\n) =
0 sonst

ist ungeklart:

Unser bisheriges Wissen iiber die Zahl
7

reicht zur Beantwortung dieser Frage nicht aus.

Man kann nicht einmal ausschlieflen, dass jede endliche Ziffernfolge irgendwo
in 7 als Teilstring vorkommt. In diesem Falle wire g die konstante Einsfunktion
(undd dann trivialerweise berechenbar).

N /

Hans U. Simon, Ruhr-Universitdt Bochum, Germany TI WS 2007/2008

Theorie der Berechenbarkeit (Teil 1) Slide 8

/ Subtil, subtil ... \

Zu verlangen, dass eine mechanisch anwendbare Rechenvorschrift existiert,

bedeutet nicht, dass wir wissen, um welche Rechenvorschrift es sich handelt.

N /

Hans U. Simon, Ruhr-Universitdt Bochum, Germany TI WS 2007/2008

Theorie der Berechenbarkeit (Teil 1) Slide 9

/ Beispiele (fortgesetzt) \

Die Funktion

h(n) 1 falls die DBE von 7 den Teilstring 7" enthélt
n) —

0 sonst

ist berechenbar:

Fall 1: 7 enthélt beliebig lange 7er-Sequenzen als Teilstrings.
Dann ist h die (trivial berechenbare) konstante Finsfunktion.

Fall 2: Es gibt eine langste in 7 als Teilstring enthaltene Ter—Sequenz, sagen
wir der Lange ny.
Dann ist h die einfach berechenbare Funktion

1 falls n < ng
h(n) =
0 falls n > ng

Beim gegenwartigen Wissensstand iiber 7 ist unklar, welcher der beiden Fille

\vorliegt. /

Hans U. Simon, Ruhr-Universitdt Bochum, Germany TI WS 2007/2008

Theorie der Berechenbarkeit (Teil 1) Slide 10

/ Beispiele (fortgesetzt) \

Die Funktion

(n) 1 falls das LBA—Problem eine positive Antwort hat
1(n) =

0 sonst

ist berechenbar:

Fall 1: Jede kontextsensitive Sprache kann durch einen DLBA erkannt werden.
Dann ist ¢ die konstante Einsfunktion.

Fall 2: Es gibt eine kontextsensitive Sprache, die von keinem DLBA erkannt
wird.

Dann ist ¢ die konstante Nullfunktion.

Beim gegenwéartigen Wissensstand ist unklar, welcher der beiden F'élle vorliegt.

N /

Hans U. Simon, Ruhr-Universitdt Bochum, Germany TI WS 2007/2008

Theorie der Berechenbarkeit (Teil 1) Slide 11

/ Beispiele (fortgesetzt) \

Ahnlich wie bei 7 kénnen wir zu jeder reellen Zahl r € R die Funktion

£.(n) 1 falls die DBE von r mit den Ziffern der DBE von n beginnt
r\n) =

0 sonst

zuordnen.
Frage: Ist f, fiir jedes r € IR berechenbar 7
Antwort: Nein !

Begriindung: Eine Rechenvorschrift sollte durch einen endlichen Text {iber
einem endlichen Alphabet beschreibbar sein. Daher gibt es nur abzahlbar
viele Rechenvorschriften, wohingegen IR iiberabzihlbar unendlich ist.

Die Berechenbarkeit von f, ist demnach eher die Ausnahme.

N /

Hans U. Simon, Ruhr-Universitdt Bochum, Germany TI WS 2007/2008

Theorie der Berechenbarkeit (Teil 1) Slide 12

/ Wozu ein formales Rechenmodell ? \

e Zum Nachweis der Berechenbarkeit geniigt (in der Regel) die Angabe
einer konkreten Rechenvorschrift (und somit ein intuitives Verstdndnis des

Berechenbarkeitsbegriffes).

e Zum Nachweis der Unberechenbarkeit ist hingegen zu zeigen, dass kei-
ne passende Rechenvorschrift existiert. Dazu brauchen wir eine klare

Vorstellung iiber die Gesamtheit aller Rechenvorschriften.

N /

Hans U. Simon, Ruhr-Universitdt Bochum, Germany TI WS 2007/2008

Theorie der Berechenbarkeit (Teil 1) Slide 13

/ Ausblick: Formale Definitionen der Berechenbarkeit \

e durch Turing—Programme berechenbar

e durch WHILE-Programme berechenbar
e durch GOTO-Programme berechenbar

e [—Tekursiv

Alle diese Vorschldge (von Turing, Church und anderen Mathematikern
Mitte der 1930er unterbreitet) haben sich als dquivalent erwiesen. Zudem
wurde bislang keine intuitiv berechenbare Funktion gefunden, die nicht auch
Turing—berechenbar wére. Dies fithrte zur (formal nicht beweisbaren)

Church’schen These: Die Klasse der intuitiv berechenbaren Funktio-

nen stimmt iiberein mit der Klasse der durch Turing—berechenbaren
(bzw. WHILE-berechenbaren, GOTO-berechenbaren, u—rekursiven, ...)
Funktionen.

N /

Hans U. Simon, Ruhr-Universitdt Bochum, Germany TI WS 2007/2008

Theorie der Berechenbarkeit (Teil 1)

Slide 14

-

N

Turing-Berechenbarkeit

~

/

Hans U. Simon, Ruhr-Universitdt Bochum, Germany

TI WS 2007/2008

Theorie der Berechenbarkeit (Teil 1) Slide 15

/ Turing—Berechenbarkeit \

Eine Funktion
f¥ =X

heifit Turing—berechenbar gdw eine DTM M existiert mit folgenden Eigen-
schaften:

e Falls f(x) =y, dann gilt zqx F* zy fiir eine Endkonfiguration zy.

e Falls f(x) = ,undefiniert”, dann erreicht M bei der Rechnung auf Eingabe
x keine Stoppkonfiguration (Endlosrechnung).

N /

Hans U. Simon, Ruhr-Universitdt Bochum, Germany TI WS 2007/2008

Theorie der Berechenbarkeit (Teil 1) Slide 16

/ Turing—Berechenbarkeit (fortgesetzt) \

Die Turing-Berechenbarkeit von Funktionen der Form
f:NF >N
ist analog definiert, wobei wir im Falle von
f(z) =y mit x = (n1,n9,...,nk)
anstelle von zpx F* zy nun
zobin(ny)#bin(ng)# - - - #bin(ng) F* zbin(y)

fordern. Hierbei bezeichnet bin(-) die Bindrdarstellung ohne fithrende Nullen.

N /

Hans U. Simon, Ruhr-Universitdt Bochum, Germany TI WS 2007/2008

Theorie der Berechenbarkeit (Teil 1)

Slide 17

/ Beispiele

Die Nachfolgerfunktion
s(n)=n+1

ist Turing—berechenbar:

N

Siehe unsere friithere Implementierung eines Binérzéihlers.

~

/

Hans U. Simon, Ruhr-Universitdt Bochum, Germany

TI WS 2007/2008

Theorie der Berechenbarkeit (Teil 1) Slide 18

/ Beispiele (fortgesetzt) \

Die total undefinierte Funktion €2 ist Turing—berechenbar durch die DTM mit
5('207 CL) — (207 a, R))

die auf jeder Eingabe eine unendliche Schleife durchlauft.

N /

Hans U. Simon, Ruhr-Universitdt Bochum, Germany TI WS 2007/2008

Theorie der Berechenbarkeit (Teil 1) Slide 19

-

Beispiele (fortgesetzt) \

Zu einer Sprache L vom Typ 0 betrachte die Funktion

1 falls w € L
,undefiniert* falls w ¢ L

Die Turing-Berechenbarkeit von x’; kann folgendermaflen eingesehen werden:

e Es gibt eine Grammatik G vom Typ 0, welche L generiert.

e [is gibt eine NTM M, welche L erkennt, indem Ableitungen S=-5w geraten

werden. M kann so implementiert werden, dass

— nach Auffinden einer Ableitung Ausgabe 1 produziert und gestoppt

wird,

— bei Nicht—Auffinden einer Ableitung eine unendliche Schleife betreten

wird.

\o Dann wird x’;, berechnet durch die deterministische Simulation M’ von]\4/

Hans U. Simon, Ruhr-Universitdt Bochum, Germany TI WS 2007/2008

Theorie der Berechenbarkeit (Teil 1)

Slide 20

-

N

Eine ,,h6here Programmiersprache* fiir DTMs

~

/

Hans U. Simon, Ruhr-Universitdt Bochum, Germany

TI WS 2007/2008

Theorie der Berechenbarkeit (Teil 1) Slide 21

/ Mehrspurenmaschinen \

Zu einem gegebenen Alphabet I' kénnen wir ,, Supersymbole® aus I'* betrachten.
Wenn das Arbeitsalphabet einer TM ein Supersymbol (Aq,..., Ax) enthélt,

dann ist es anschaulich sich vorzustellen, dass
e das Band in k£ ,,Spuren® zerlegt werden kann,

e und beim Abspeichern von (Aq,..., A;) in einer Zelle, das Symbol A; in
der —ten Spur der Zelle steht.

Beachte: Mehrspurenmaschinen haben zwar ein unkonventionelles Arbeitsal-
phabet (welches k-Tupel enthélt), entsprechen aber unserer Standarddefinition
einer TM (kein neues Modell).

N /

Hans U. Simon, Ruhr-Universitdt Bochum, Germany TI WS 2007/2008

Theorie der Berechenbarkeit (Teil 1) Slide 22

/ Mehrbandmaschinen \

Definition: Unter einer k-Band TM verstehen wir eine TM mit k& Bédndern
und einem Kopf pro Band. Die insgesamt k£ Kopfe konnen sich in einem
Rechenschritt in verschiedene Richtungen bewegen. Die Uberfithrungsfunktion

d hat nun die Form
§:QxT* - QxT*x{R,L,N¥

mit der offensichtlichen Interpretation.

Mehrbandmaschinen sind nicht méchtiger als das Standardmodell wie der

folgende sogenannte Bandreduktionssatz zeigt:

Satz: Fine k-Band TM M kann von einer 1-Band TM M’ simuliert werden.
Ist dabei M eine DTM, so auch M.

N /

Hans U. Simon, Ruhr-Universitdt Bochum, Germany TI WS 2007/2008

Theorie der Berechenbarkeit (Teil 1) Slide 23

-

Si

N

Beweis \

e ' besitzt fiir jeden Zustand z von M einen entsprechenden Zustand 2z’
(und weitere Zusténde).

e /' simuliert
— elnen Schritt von M mit Zustandswechsel von z; nach zo

— durch eine Folge von Schritten, welche im Zustand 2| startet und im
Zustand z) endet

Nach diesem Schema verlaufende Simulationen heiflen ,,Schritt fiir Schritt

mulation®.

/

Hans U. Simon, Ruhr-Universitdt Bochum, Germany TI WS 2007/2008

Theorie der Berechenbarkeit (Teil 1) Slide 24

/ Beweis (fortgesetzt) \

Die wesentliche Schwierigkeit besteht darin, die Beschriftung der k-Band TM

M auf einem einzigen Band unterzubringen. M’ benutzt dazu ein Band mit &

Spuren. Dabei soll stets gelten:

(1) Spur ¢ des Bandes von M’ enthélt die Beschriftung von Band ¢ von M
(1 << k).

(2) Zelle 1 von M’ enthélt genau die k Symbole, auf denen die k Koépfe von M

positioniert sind.

(3) Zu Beginn der Simulation des nichsten Rechenschrittes von M befindet
sich der Kopf von M’ auf Zelle 1.

Bedingungen (2) und (3) sorgen dafiir, dal M’ die von M gelesenen k Symbole

kennt.

N /

Hans U. Simon, Ruhr-Universitdt Bochum, Germany TI WS 2007/2008

Theorie der Berechenbarkeit (Teil 1)

Slide 25

(a1,...,ax) durch (by,...,bg).

ist korrekt.

N

e Wenn M Symbole aq,...,a; durch bq,..

/ Beweis (fortgesetzt) \

Um einen Schritt von M zu simulieren, geht M’ vor wie folgt:

., by, ersetzt, ersetzt M’ in Zelle 1

e Wenn M Kopf i nach rechts (bzw. links) bewegt, so verschiebt M’ die
Inschrift von Spur 2 um eine Position in die entgegengesetzte Richtung

(positioniert aber im Anschluss den Kopf wieder auf Zelle 1).
e Wenn M in Zustand z iibergeht, geht M’ in Zustand 2z’ iiber.

Hierdurch bleiben Bedingungen (1), (2) und (3) erhalten und die Simulation

Offensichtlich arbeitet M’ deterministisch, falls M deterministisch arbeitet.

/

Hans U. Simon, Ruhr-Universitdt Bochum, Germany

TI WS 2007/2008

Theorie der Berechenbarkeit (Teil 1) Slide 26

/ Zusitzliche Beobachtung \

Wenn M auf Eingaben der Lange n
e maximal S(n) Zellen ihres Bandes besucht
e und maximal 7T'(n) Schritte rechnet,

dann
e besucht M’ ebenfalls maximal S(n) Zellen

e und rechnet maximal O(S(n)-T(n)) Schritte (da jeder Schritt von M in
O(S(n)) Schritten von M’ simuliert werden kann).

N /

Hans U. Simon, Ruhr-Universitdt Bochum, Germany TI WS 2007/2008

Theorie der Berechenbarkeit (Teil 1) Slide

27

-

N

Ein ,,Baukastensystem* fiir Turing—Maschinen

Ziel: Entwurf von DTMs zur Ausfithrung von Befehlen einer , hoheren

Programmiersprache“ (mit bedingten Anweisungen, while-Schleifen etc.)

Methode: Baukastensystem

~

/

Hans U. Simon, Ruhr-Universitdt Bochum, Germany TI WS 2007/20

08

Theorie der Berechenbarkeit (Teil 1) Slide 28

-

N

Verinderung des Inhaltes von einem der Binder \

Zu einer 1-Band—TM M bezeichne M (i, k), oder einfach M (i), die k—Band
TM, die das ,,Programm® von M auf ihrem i—ten Band simuliert (und auf

den anderen Béndern keine Modifikationen vornimmt).

,Band := Band +1“ bezeichne die frither bereits besprochene 1-Band
DTM zur Berechnung der Funktion s(n) =n + 1.

Statt ,Band := Band+1“(7) schreiben wir ,,Band i:= Band i +1*.

Definiere die ,,modifizierte Differenz* wie folgt:
n —m = max{0,n —m} .

Die Notationen

,Bandi := Bandi—1¢
,Band i := Band]
,Bandi := 0
sind dann analog zu verstehen. /

Hans U. Simon, Ruhr-Universitdt Bochum, Germany TI WS 2007/2008

Theorie der Berechenbarkeit (Teil 1)

Slide 29

-

wobel

Komposition von TMs

Die Komposition zweier TMs

Mi = (Zi,E,Fi,éi,zi,D,Ei),i = 1,2, Zl M Z2 — (Z)

ist definiert als die TM

M = (Zl U 22727F1 U F2767 217D7E2>)

6(z,A) = <

[51(2,A) fallsz € Z;\ By
(20, A, N) falls z € Ey

| 02(2,A) falls z € Z5

M fiihrt also zuerst das Programm von M; aus und (falls M7 einen Endzustand
erreicht) dann das Programm von M.

Notation als ,,Flussdiagramm*: start — M; — My — stop.

Qotation wie bei Programmiersprachen: M;; M,

~

/

Hans U. Simon, Ruhr-Universitdt Bochum, Germany

TI WS 2007/2008

Theorie der Berechenbarkeit (Teil 1) Slide 30

/ Beispiel \

Die DTM

start — ,Band := Band +1°
— ,Band := Band +1°
— ,Band := Band +1“ — stop

addiert zu einer gegebenen natiirlichen Zahl die Konstante 3 hinzu.

N /

Hans U. Simon, Ruhr-Universitdt Bochum, Germany TI WS 2007/2008

Theorie der Berechenbarkeit (Teil 1)

Slide 31

/ Bedingte Komposition von TMs

Eine TM, welche
e zunichst das Programm einer TM M austiihrt,
e hernach das Programm von M’ falls M im Endzustand z/ stoppt,
e bzw. das Programm M" falls M im Endzustand z stoppt,

notieren wir in der Form

start = M © = M’ = Stop

K Sstop

~

/

Hans U. Simon, Ruhr-Universitdt Bochum, Germany TI WS 2007/2008

Theorie der Berechenbarkeit (Teil 1) Slide 32

/ Die Abfrage—Maschine \

,Band=07" bezeichnet eine DTM mit folgenden Eigenschaften:
e Sie hat vier Zustinde zg, 21, JA, NEIN mit JA, NEIN als Endzustédnden.

e Sie verdndert den Bandinhalt nicht. Zu Beginn und am Ende der Rechnung
ist der Koptf auf dem ersten Zeichen der Eingabe positioniert.

e Ihre Hauptaufgabe ist zu testen, ob die Eingabe nur aus dem Zeichen 0
besteht. Falls dem so ist, stoppt sie im Endzustand JA; andernfalls stoppt
sie im Endzustand NEIN.

Eine solche D'TM ist einfach zu entwerfen:
%

(z1,a, R) falls a = 0

d(zp,a) = X
(NEIN, a, N) sonst

\
(

JA. a, L falls a = [
S(ra) = (a, L) alls a

\ <\ (NEIN, a, L) sonst /

Hans U. Simon, Ruhr-Universitdt Bochum, Germany TI WS 2007/2008

Theorie der Berechenbarkeit (Teil 1) Slide 33

/ Einbettung einer TM in eine WHILE—-Schleife \

Statt ,,Band=07“(¢) schreiben wir einfach
,Band i =0 7¢
Zu einer gegebenen TM M bezeichne

,WHILE Band i ## 0 DO M*
die durch folgendes Flussdiagramm gegebene TM:

Start = Bandi=07?"

-

N /

Hans U. Simon, Ruhr-Universitdt Bochum, Germany TI WS 2007/2008

JA

= SLOp

Theorie der Berechenbarkeit (Teil 1) Slide 34

/ Résumeée \

e Mit dem Baukastensystem lassen sich aus elementaren TMs komplexere

TMs zusammensetzen, die Strukturen héherer Programmiersprachen wie

zum Beipiel

— bedingte Anweisungen
— WHILE-Schleifen

— Prozedurkonzept

(ansatzweise) realisieren.

e Die Realisierung macht Gebrauch von Mehrband—TMs. Wie wir wissen
lasst sich aber jede Mehrband—TM durch eine Einband—TM simulieren.

N /

Hans U. Simon, Ruhr-Universitdt Bochum, Germany TI WS 2007/2008

Theorie der Berechenbarkeit (Teil 1)

Slide 35

-

N

LOOP- WHILE- und GOTO-Programme

/

Hans U. Simon, Ruhr-Universitdt Bochum, Germany

TI WS 2007/2008

Theorie der Berechenbarkeit (Teil 1) Slide 36

/ Zeichenvorrat fiir LOOP-Programme \
Variablen: To T1 X9
Konstanten: 0 1 2
Trennsymbole: ;=

Operationszeichen: | + —

Schliisselworter: LOOP DO END

N /

Hans U. Simon, Ruhr-Universitdt Bochum, Germany TI WS 2007/2008

Theorie der Berechenbarkeit (Teil 1) Slide 37

/ Syntax von LOOP-Programmen \

Induktive Definition:
1. Jede Wertzuweisung der Form
x; = xj+coder x; :=x; —c
(fiir eine Konstante ¢) ist ein LOOP-Programm.

2. Die Hintereinanderschaltung
Py Py

von LOOP-Programmen P;, P ist ein LOOP-Programm.

3. Das iterierte Durchlaufen

LOOP z; DO P END

\ eines LOOP-Programmes P ist ein LOOP-Programm. /

Hans U. Simon, Ruhr-Universitdt Bochum, Germany TI WS 2007/2008

Theorie der Berechenbarkeit (Teil 1) Slide 38

/ Semantik von LOOP-Programmen \

Kanonisch definiert bis autf:

e ,a— b“ wird interpretiert als ,modifizierte Differenz“ a — b := max{a —

b,0}.

e Bei einem LOOP-Programm der Form LOOP z; DO P END wird P so oft
ausgefiihrt wie der Wert der Variablen x; zu Beginn angibt. (Anderung des
Werte von x; im Innern von P haben auf die Anzahl der Wiederholungen
also keinen Einfluss.)

Folgerung: LOOP-Programme terminieren stets.

Konventionen beim Berechnen von f : N* — N durch ein LOOP-Programm:

e Eingabewerte nq,...,n; anfangs in x4, ..., x.
Restliche Variable initialisiert auf 0.

e Ausgabewert f(ni,...,n;) am Ende in x.

QOOP—Programme berechnen nur totale (= total definierte) Funktionen. /

Hans U. Simon, Ruhr-Universitdt Bochum, Germany TI WS 2007/2008

Theorie der Berechenbarkeit (Teil 1)

Slide 39

-

N

LOOP-Simulierbare Konstrukte

neues Konstrukt Simulation
Li = Ty xi::xj+0
T; = C x; :=y + c (fiir ein y mit Wert 0)

IF x =0 THEN A END

y =1
LOOP z DO y := 0 END;
LOOP y DO A END

Ti = Tj + Tk

Lj = Xy,

LOOP z,. DO z; :=z; + 1 END

Ti 1= Tj * Ty

x; = 0;

LOOP z;, DO z; := z; +x; END

x; = x; DIV
z; = x; MOD z}

s. Ubung (evtl.)
s. Ubung (evtl.)

/

Hans U. Simon, Ruhr-Universitdt Bochum, Germany

TI WS 2007/2008

Theorie der Berechenbarkeit (Teil 1) Slide 40

-

Programmen.

N

Syntax wie bei LOOP-Programmen, aufler dass die WHILE-Schleife an die
Stelle der LOOP-Schleife tritt:

Semantik der WHILE-Schleife: P wird iteriert solange ausgefiihrt wie x;
(mit ihrem aktuellen Wert!) ungleich Null ist. Endlosschleife ist moglich.

Konventionen zum Berechnen von Funktionen wie bei LOOP-

Berechnung partieller (= partiell definierter) Funktionen ist moglich.

WHILE-simulierbare LOOP-Schleife:

kann simuliert werden durch

WHILE-Programme \

WHILE z; # 0 DO P END

LOOP z DO P END

y:=x; WHILE y #0 DO y:=y —1; P END . /

Hans U. Simon, Ruhr-Universitdt Bochum, Germany TI WS 2007/2008

Theorie der Berechenbarkeit (Teil 1) Slide 41

/ Wechselseitige Simulationen

Da die LOOP-Schleife durch die WHILE-Schleife simulierbar ist, gilt der

Satz: Jede LOOP-berechenbare Funktion ist auch WHILE-berechenbar.

Weiter gilt:

Satz: (Beweis miindlich in der Vorlesung)
Jede WHILE-berechenbare Funktion ist auch Turing-berechenbar.

Wir werden (nach Einfithrung der GOTO-Programme) noch zeigen:
— Jede Turing-berechenbare Funktion ist auch GOTO-berechenbar.
— Jede GOTO-berechenbare Funktion ist auch WHILE-berechenbar.

berechnen dieselbe Klasse von Funktionen.

N

Folgerung: Turing-Maschinen, WHILE-Programme und GOTO-Programme

~

/

Hans U. Simon, Ruhr-Universitdt Bochum, Germany TI WS 2007/2008

Theorie der Berechenbarkeit (Teil 1) Slide 42

/ GOTO-Programme \

Syntax: GOTO-Programme haben (bis auf Fehlen von redundanten Marken)
die Form

My : Ay My : Ay -o- 0 M A .

Dabei ist A; eine ,, Anweisung” und M; eine sogenannte , Marke“ (eindeutige

Adresse fiir die Anweisung A;). Als Anweisungen sind zugelassen:

Wertzuweisungen: T =xjEc
unbedingter Sprung: GOTO M;
bedingter Sprung: IF' z; = ¢ THEN GOTO M;

Stoppanweisung: HALT

Semantik: — offensichtlich (oder?) —

Konventionen beim Berechnen von Funktionen:

@alog zu LOOP- oder WHILE-Programmen. /

Hans U. Simon, Ruhr-Universitdt Bochum, Germany TI WS 2007/2008

Theorie der Berechenbarkeit (Teil 1) Slide 43

/ Simulation von GOTO durch WHILE \

Satz: Jede GOTO-berechenbare Funktion ist auch WHILE-berechenbar.
My : Ay My:Ag s oo 5 My Ay
kann simuliert werden durch

y =1
WHILE y # 0 DO
[Fy=1THEN A} END: Idee: Identifiziere M; mit Nummer 1.
[Fy =2 THEN A, END; Wert von y = Nummer der aktuellen Marke
(bzw. 0 nach Erreichen von HALT).
[Fy=Fk THEN A, END A realisiert A; und aktualisiert y.
END

N /

Hans U. Simon, Ruhr-Universitdt Bochum, Germany TI WS 2007/2008

Theorie der Berechenbarkeit (Teil 1) Slide 44

/ Simulation von GOTO durch WHILE (fortgesetzt) \

Aj; Al
T =Xk C T = x; £ c; yi=y+1

IF' zj, = ¢ THEN GOTO M; | IF 2, = c THEN y :=j
ELSE y :=y+ 1 END
HALT y:=0

Beobachtung: Die Simulation benotigt nur eine WHILE-Schleife.

N /

Hans U. Simon, Ruhr-Universitdt Bochum, Germany TI WS 2007/2008

Theorie der Berechenbarkeit (Teil 1) Slide 45

/ Simulation von WHILE durch GOTO (fortgesetzt) \

Satz: Jede WHILE-berechenbare Funktion ist auch GOTO-berechenbar.
WHILE z; # 0 DO P END:;. ..

kann simuliert werden durch:

M;i: IF z; = 0 THEN GOTO Msj;
P;
GOTO M;

Ms: ...

Folgerung (Kleene-Normalform fiir WHILE-Programme):
Jede WHILE-berechenbare Funktion kann durch ein (um IF-THEN oder

LOOP-Anweisungen erweitertes) WHILE-Programm mit lediglich einer
WHILE-Schleife berechnet werden.

N /

Hans U. Simon, Ruhr-Universitdt Bochum, Germany TI WS 2007/2008

Theorie der Berechenbarkeit (Teil 1) Slide 46

/ Exkurs: DIV und MOD

DIV (ganzzahliger Quotient) und MOD (kleinster Rest) sind die folgenden

Operationen:

zDIVy = FJ
Y
xrMODy = x—y {gJ
Y
Zum Beispiel:
75
7B DIV20 = |—=|=1[3.75]=3.
20
75
75 MOD 20 = 75—20 {%J =75—-20-3=15.

N

~

/

Hans U. Simon, Ruhr-Universitdt Bochum, Germany TI WS 2007/2008

Theorie der Berechenbarkeit (Teil 1)

Slide 47

-

N

DIV und MOD (fortgesetzt) \

CUT und PASTE (Abschneiden und Ankleben) von Ziffern kann mit Hilfe von
DIV, MOD und *, + implementiert werden:

CUT und PASTE | Ergebnis

Simulation mit DIV, MOD,+,

CUT(1984) 1984 198 = 1984 DIV 10;4 = 1984 MOD 10
PASTE(198|5) 1985 1985 =198 x 10 + 5
Verallgemeinerung auf b-nére Zahlendarstellungen (Ziffern aus {0,1,...,b—1}):
CUT und PASTE Ergebnis Simulation mit DIV,MOD,+, %

x
A\

Va

CUT (i1 - - - ip_1ip)

/
x
A\

Va

. I .
i lp—1|ip | @

/

x DIV b;i, = x MOD b

PASTE(i1 - - - ip_1 |§)

Zl .../l/p_lj

Vv
z

T=a' xb+j

/

Hans U. Simon, Ruhr-Universitdt Bochum, Germany

TI WS 2007/2008

Theorie der Berechenbarkeit (Teil 1) Slide 48

/ Exkurs: Konfiguration als Zahlentripel \

e Zustandsmenge Z = {z1,...,zs}: 2z hat ,Nummer* [.
e Bandalphabet I' = {a1,...,a,,}: a; hat ,Nummer* i
Setze b := |I'| + 1. Eine Konfiguration

x Y

7\ 7\

Uiy) 2104, - aj, (,y b-nér kodiert)

(mit 2 als aktuellem Zustand, a;, ---a; als (nichtleere) Bandinschrift links
vom Kopf und a;, ---a;, als (nichtleere) Bandinschrift ab Kopfposition) kann

als Zahlentripel (x,y, z) kodiert werden:

p

q
z=1, $:Zipbp_p, y:ijbp_l

(Nummern der Symbole sind gleichsam die Ziffern der Zahlendarstellung.)

N /

Hans U. Simon, Ruhr-Universitdt Bochum, Germany TI WS 2007/2008

Theorie der Berechenbarkeit (Teil 1) Slide 49

/ Simulation von Turing-Maschine durch GOTO \

Satz Jede Turing-berechenbare Funktion ist auch GOTO-berechenbar.
DTM M berechne f : N*¥ — NN.

Aufbau der Simulation:

Phase 1 (Vorbereitung): Berechne aus den Werten nq, ..., n; der Eingabe-
variablen x1,...,x; das Zahlentripel (z,y, z), welches die Startkonfigura-
tion zobin(ny)# - - - #bin(ng) von M reprisentiert.

Phase 2 (Schritt-fiir-Schritt Simulation): Solange M nicht stoppt, be-
rechne aus dem Zahlentripel (x,y, 2) der aktuellen Konfiguration das

Zahlentripel fiir die direkte Folgekonfiguration.

Phase 3 (Nachbereitung) Extrahiere aus dem Zahlentripel (x,y, z), das
eine Endkonfiguration z.bin(f(ni,...,nx)) von M reprasentiert, den

K Ausgabewert f(nq,...,n;) und belege damit die Ausgabevariable x. /

Hans U. Simon, Ruhr-Universitdt Bochum, Germany TI WS 2007/2008

Theorie der Berechenbarkeit (Teil 1)

Slide 50

-

77(

N

Details zur Phase 2

[, 7)-Aktualisierung” von (z,y, z) bezeichne die Aktualisierung, die erfor-

derlich ist, wenn M im Zustand z; Symbol a; liest (und die durch 6(z;,a;)
beschriebene Aktion ausfiihrt).

Das GOTO-,Unterprogramm* (plus zugehoriger Marke), das die (I, j)-
Aktualisierung durchfithrt (und i.A. aus mehreren Anweisungen besteht)

bezeichnen wir mit

Ml,j . Al,j .

Wir présentieren im Folgenden:

e Das Grundgeriist eines Teilprogrammes P>, das die Verzweigung zum

richtigen Unterprogramm gewéhrleistet,

e cin Beispiel-Unterprogramm.

~

/

Hans U. Simon, Ruhr-Universitdt Bochum, Germany

TI WS 2007/2008

Theorie der Berechenbarkeit (Teil 1) Slide 51

/ Verzweigung zum richtigen Unterprogramm

Programmstiick M : P, fiir Phase 2 hat folgende Form:

Msy: a:=y MOD b; (CUT-Operation liefert Symbol unterm Lesekopf)
IF' 2 =1 AND a =1 THEN GOTO M, ; ;
IF' 2 =1 AND a =2 THEN GOTO M, 5 ;
USw.
— alle sm Zustands/Symbolkombinationen —
USW.
IF' 2 = s AND a = m THEN GOTO M, ,, ;
Miq: A11; GOTO My;
Mio: Ai2; GOTO My;
USw.
— alle sm Zustands/Symbolkombinationen —

USw.

sm Asm; GOTO Mos:
KM, m '

~

/

Hans U. Simon, Ruhr-Universitdt Bochum, Germany TI WS 2007/2008

Theorie der Berechenbarkeit (Teil 1) Slide 52

/ Ein Beispiel-Unterprogramm \

Programmzeile
6(z1,a;) = (21,04, L)

wiirde durch folgendes Unterprogramm realisiert:

M ; : z :==1"; (Aktualisiere z mit Nummer des neuen Zustands)
y:=y DIV b (CUT)
y:=bxy+ j" (PASTE)
Kommentar: fihrt y = (j jo -+ jo)p iny = (J' jo -+ jq)p Uber
y:=bxy+ (x MOD b) (PASTE)
x:=x DIV b (CUT)
Kommentar: fihrt © = (41 -+« ip—1 9p)s, y= (" J2 -+ Jo)b

inz= (1 lp-1)6, Y= (lp J J2 - Jg) Uber

Falls z;; ein Endzustand wére, dann wiirde dieses Unterprogramm noch um die

KAnweisung ,GOTO M;3* (Eintritt in Phase 3) erweitert. /

Hans U. Simon, Ruhr-Universitdt Bochum, Germany TI WS 2007/2008

Theorie der Berechenbarkeit (Teil 1)

Slide 53

-

N

Primitiv rekursive und p-rekursive Funktionen

/

Hans U. Simon, Ruhr-Universitdt Bochum, Germany

TI WS 2007/2008

Theorie der Berechenbarkeit (Teil 1) Slide

54

/ Primitiv rekursive Funktionen
Basisfunktionen:
konstante Funktionen: | c¢(ny,...,ng) =c
Projektionen: ™ (ny, ..., ng) = n;
Nachfolgerfunktion: s(n)=n+1

Beachte: 71 (n) = n ist die identische Funktion.

Die Basisfunktionen sind primitiv rekursiv sowie alle Funktionen, die sich
induktiv wie folgt ergeben:

rekursiven Funktionen entsteht, ist primitiv rekursiv.

primitives Rekursionsschema Jede Funktion, die sich durch ,,primitive
Rekursion (Induktion)“ aus primitiv rekursiven Funktionen ergibt, ist

\ primitiv rekursiv.

~

Einsetzungsschema Jede Funktion, die durch ,, Komposition® von primitiv

/

Hans U. Simon, Ruhr-Universitdt Bochum, Germany TI WS 2007/2008

Theorie der Berechenbarkeit (Teil 1) Slide 55

/ Komposition und primitive Rekursion \

Das Einsetzungsschema:
Gegeben seien primitiv rekursive Funktionen i : N™ — N und ¢; : N* — NN fiir
i =1,...,r. Dann ist auch die Funktion f : N* — N mit

flx) =h(gi(z),...,gr(x))

primitiv rekursiv.

Das Schema der primitiven Rekursion:
Gegeben seien primitiv rekursive Funktionen g : N*¥ — N und A : N**2 — N.
Dann ist die folgende (induktiv definierte) Funktion f : N**! — N primitiv

rekursiv:

f(O,.I) — g(il?)
fln+1l,z) = h(f(n,x),n,x)

N /

Hans U. Simon, Ruhr-Universitdt Bochum, Germany TI WS 2007/2008

Theorie der Berechenbarkeit (Teil 1) Slide 56

/ Vertauschen, Identifikation \
und Konstantsetzung von Variablen

In Verbindung mit den Projektionsabbildungen 7F und den konstanten
Funktionen kann das Einsetzungsschema benutzt werden, um Variablen zu
vertauschen, zu identifizieren oder konstant zu setzen, ohne die Klasse der

primitiv rekursiven Funktionen zu verlassen.

Beispiel: Wenn f(u,v,w,z,y) primitiv rekursiv ist, dann ist auch

g(CL, b, C) — f(b7 b7 ¢, a, 1)
= f(m3(a,b,¢),m5(a,b,¢), 75 (a,b,¢), 7} (a,b,c), 1)

primitiv rekursiv.

N /

Hans U. Simon, Ruhr-Universitdt Bochum, Germany TI WS 2007/2008

Theorie der Berechenbarkeit (Teil 1) Slide 57

/ Addition und Multiplikation sind primitiv rekursiv \
Addition Nutze aus, dass (n+ 1) +z = (n+) + 1:
add(0,2) = a
add(n+1,7) = s(add(n,x))

Dies entspricht dem primitiven Rekursionsschema mit g = 7 (identische

Funktion) und h = s o 77 wegen

s(add(n,z)) = s(m3(add(n,z),n,z)) .

Ab jetzt geben wir g und h bei Verwendung des primitiven Rekursionsschema
nicht immer explixit an.
Multiplikation Nutze aus, dass (n + 1)z = nx + x:
mult(0,z) = 0
mult(n +1,2) = add(mult(n,z),x)

N /

Hans U. Simon, Ruhr-Universitdt Bochum, Germany TI WS 2007/2008

Theorie der Berechenbarkeit (Teil 1) Slide 58

/ Modifizierte Differenz ist primitiv rekursiv \

Funktion sub(x,y) soll die modifizierte Differenz
r —y =max{0,z — y}

darstellen. Funktion
u(n) = max{0,n — 1}

ist entsprechend die modifizierte Vorgingerfunktion. Wegen

u(0) = 0
un+1) = n
ist u primitiv rekursiv. Wegen
sub(z,0) = «x
sub(z,y +1) = wu(sub(x,y))

Qt dann auch sub primitiv rekursiv. /

Hans U. Simon, Ruhr-Universitdt Bochum, Germany TI WS 2007/2008

Theorie der Berechenbarkeit (Teil 1)

Slide 59

/ Exkurs: Bijektion zwischen N? und N \

Folgende Funktion ¢(x,y), unten angegeben als Matrix, liefert eine (bijektive)
Abzéahlung aller Paare (x,y) € N x N:

0121|519 |14
1L (418 13119
3 | 7 | 12 | 18 | 25
6 | 11 | 17 | 24 | 32
10 | 16 | 23 | 31 | 40

N

xr+y+1

2

Nach diesem Schema gilt (Denksportaufgabe!)

c(z,y) = (

)+

/

Hans U. Simon, Ruhr-Universitdt Bochum, Germany

TI WS 2007/2008

Theorie der Berechenbarkeit (Teil 1) Slide 60

/ Primitive rekursive Zahlkodierung von Tupeln \

0
= 0
)
n—+1 n
(37) = @)+
ist die Funktion (%) primitiv rekursiv. Mit dem Einsetzungsschema folgt dann

r+y+1
o) = (7Y) 4

Wegen

leicht, dass erstens

und zweitens

(ng,n1,...,ng) = c(ng,c(ny,...,c(ng,0)...))

primitiv rekursiv ist. Abbildung (- --) bettet N *! (injektiv) in N ein.
K(Kodierung eines Zahlentupels durch eine Zahl). /

Hans U. Simon, Ruhr-Universitdt Bochum, Germany TI WS 2007/2008

Theorie der Berechenbarkeit (Teil 1) Slide 61

/ Riickgewinnung des Zahlentupels \
Wie kénnen wir aus der Zahl n = (ng,ni,...,ng) das Tupel (ng,n1,...,nk)

zuriickgewinnen (mathematisch die Frage nach der Umkehrfunktion)?

Als bijektive Abbildung hat c¢(x,y) eine Umkehrfunktion (e, f) mit

e(c(z,y)) =z und f(c(z,y) =y .

Wegen
n = (ng,ni,...,nk) = c(ng,c(ny,...,c(ng,0)...))
ergibt sich
do(n) := e(n) = nyg
di(n) = e(f(n)) = m

- /

Hans U. Simon, Ruhr-Universitdt Bochum, Germany TI WS 2007/2008

Theorie der Berechenbarkeit (Teil 1)

Slide 62

/ Primitive Rekursivitit der Dekodierung \

Hilfssatz: Funktionen e, f mit

e(c(z,y)) =z und f(c(z,y)) =y

sind primitiv rekursiv.

Den etwas kniffligen Beweis lassen wir aus.

Mit dem Einsetzungsschema ergibt sich dann sofort die
Folgerung Funktionen dg, dy, ..., d; mit

di(<n0, ceey nk>) = MN;

fiir - = 0,1...,k sind primitiv rekursiv.

N

/

Hans U. Simon, Ruhr-Universitdt Bochum, Germany

TI WS 2007/2008

Theorie der Berechenbarkeit (Teil 1) Slide 63

/ Primitive Rekursivitat LOOP—-berechenbarer Funktionen\

Wir betrachten ein LOOP-Programm P, das eine Teilmenge der Variablen
xo,T1,...,Tr verwendet. Das Verhalten von P ist vollstandig beschrieben
durch die Funktion gp : N — IN mit:

Endbelegung

7\

Anfangsbelegung

7\

gr({ Go,a1,nan V) = (bo,br,....bp) .

Satz Funktion gp zu einem LOOP-Programm P ist primitiv rekursiv.
Folgerung Jede LOOP-berechenbare Funktion ist primitiv rekursiv.
Denn: Wenn P mit Variablen zg,xq,...,x; die Funktion f : N — N

berechnet, dann gilt

fni,....,n.) =do(gp((0,n1,...,n0, 0,...,0))) .
(k—r)—mal

N /

Hans U. Simon, Ruhr-Universitdt Bochum, Germany TI WS 2007/2008

Theorie der Berechenbarkeit (Teil 1) Slide 64

/ Primitive Rekursivitit von gp \

() durchlaufe die ,, Teilprogramme® von P, beginnend bei einfachen Wertzuwei-
sungen und fortschreitend zu zunehmend komplexeren Teilprogrammen. Das

zuletzt durchlaufene ,, Teilprogramm® ist P selbst.

zu zeigen: Fir jedes Teilprogramm () ist gg eine primitiv rekursive Funktion.

Fall 1 () hat die Form z; := z; £ c.
Dann gilt go ((ap,a1,...,ax)) = (bo, b1, ..., b) mit

a; falls [# ¢
a; £c fallsl =1

by =

Wegen a; = d;({aop, a1, ...,ar)) folgt die primitive Rekursivitdt von gg unmit-

telbar aus dem Einsetzungsschema.

N /

Hans U. Simon, Ruhr-Universitdt Bochum, Germany TI WS 2007/2008

Theorie der Berechenbarkeit (Teil 1) Slide 65

/ Komplexere Teilprogramme

Fall 2 () hat die Form ,,Q"; Q"“
Da dann @)', Q" zuvor schon betrachtet wurden ist die primitive Rekursi-
vitdt von gg und gg~ schon geklart. Wegen go = gg~ o gg/ ist nach dem

Einsetzungsschema auch gg primitiv rekursiv.

N

~

/

Hans U. Simon, Ruhr-Universitdt Bochum, Germany TI WS 2007/2008

Theorie der Berechenbarkeit (Teil 1) Slide 66

/ Komplexere Teilprogramme (fortgesetzt) \

Fall 3 () hat die Form ,,LOOP z; DO Q" END*.
Da dann @)’ zuvor schon betrachtet wurde, ist die primitive Rekursivitat von
go' bereits gekléart. Betrachte Hilfsfunktion

h(n,z) = gq(9q (-~ (9q () ---) -

~"

n—mal

Mit dem Schema der primitiven Rekursion
h(0,z) = =
hin+1,2) = gg(h(n,z))

folgt die primitive Rekursivitdt von h. Die primitive Rekursivitdt von gg ergibt

sich dann mit dem Einsetzungsschema aus

QQ(<CL07 Ay, ..., CLk;>) — h(a'ia <a’07a17 R 7al€>) .

N /

Hans U. Simon, Ruhr-Universitdt Bochum, Germany TI WS 2007/2008

Theorie der Berechenbarkeit (Teil 1) Slide 67

/ LOOP-Berechenbarkeit \

von primitiv rekursiven Funktionen
Induktion iiber den Aufbau von primitiv rekursiven Funktionen:

1. Die Basisfunktionen (Konstanten, Projektionen, Nachfolgerfunktion) sind
offensichtlich LOOP-berechenbar.

2. Betrachte eine Funktion f der Form

flz) = nh(gi(x), ..., 9:(x)) ,

wobei geméf3 Induktionsvoraussetzung h, g1, ..., g, LOOP-berechenbar
sind. Dann kann ein LOOP-Programm f(z) nach folgendem Schema

berechnen:

v1:=g1(x) 5 -+ 5 Y= gr(x) 5 2o :=h(y1,. .., Yr)

N /

Hans U. Simon, Ruhr-Universitdt Bochum, Germany TI WS 2007/2008

Theorie der Berechenbarkeit (Teil 1) Slide 68

-

N

LOOP-Berechenbarkeit \
von primitiv rekursiven Funktionen (fortgesetzt)

3. Betrachte eine Funktion f der Form

f(0,2) = g(z) und f(n+1,2) = h(f(n,z),n,z) ,

wobei geméifl Induktionsvoraussetzung ¢ und h LOOP-berechenbar sind.
Dann kann ein LOOP-Programm f(n,z) nach folgendem Schema berech-

nen:
z2:=0; xg:=g(x); LOOP z; DO z:=2+4+1; x¢ := h(zg, 2z, x) END

Kommentare:
— Variable x; enthélt den Eingabeparameter n.

— Nach ¢ Iterationen hat xy den Wert f(i, x).

/

Hans U. Simon, Ruhr-Universitdt Bochum, Germany TI WS 2007/2008

Theorie der Berechenbarkeit (Teil 1) Slide 69

/ Hauptresultate \

Es ergibt sich der

Satz: Die Klasse der primitiv rekursiven Funktionen stimmt mit der Klasse

LOOP-berechenbaren Funktionen iiber ein.

Wir werden die Klasse der primitiv rekursiven Funktionen durch Einfiihrung

des sogenannten -Operators zur Klasse der p-rekursiven Funktionen erweitern.

Ziel: Die Klasse der p-rekursiven Funktionen stimmt mit der Klasse WHILE-

berechenbaren Funktionen iiber ein.

N /

Hans U. Simon, Ruhr-Universitdt Bochum, Germany TI WS 2007/2008

Theorie der Berechenbarkeit (Teil 1) Slide 70

/ Der u-Operator \

Fiir eine gegebene (evtl. partielle) Funktion f : N*T1 — N bezeichne ;1 f : N¥ — N

die Funktion

pf(x) :=min{n| f(n,z) =0,Ym < n: f(m,z) ist definiert}

verbunden mit der Konvention min () =, undefiniert*.

Intuitive Bemerkung Falls pf(x) definiert ist, dann liefert diese Funktion
eine Art ,kleinste Nullstelle“ fiir die Funktion f(n,x) (aufgefasst als Funktion

in n).

Definition Die Klasse der p-rekursiven Funktionen ist die kleinste Klasse
von (evtl. partiellen) Funktionen, die die Basisfunktionen enthélt und abge-
schlossen ist unter Einsetzung, primitiver Rekursion und der Anwendung des

p-Operators.

N /

Hans U. Simon, Ruhr-Universitdt Bochum, Germany TI WS 2007/2008

Theorie der Berechenbarkeit (Teil 1) Slide 71

/ u—Rekursivitit WHILE—berechenbarer Funktionen \

Wir betrachten ein WHILE-Programm P, das eine Teilmenge der Variablen
xo,T1,...,Tr verwendet. Das Verhalten von P ist vollstandig beschrieben
durch die (evtl. partielle) Funktion gp : N — IN mit:

Endbelegung

7\

Anfangsbelegung
gp({ ag,a1,...,ar)) = (bo,b1,...,bx)

verbunden mit der Konvention, dass gp undefiniert ist, wenn P nicht terminiert.
Satz Funktion gp zu einem WHILE-Programm P ist p-rekursiv.
Folgerung Jede WHILE-berechenbare Funktion ist p-rekursiv.

N /

Hans U. Simon, Ruhr-Universitdt Bochum, Germany TI WS 2007/2008

Theorie der Berechenbarkeit (Teil 1) Slide 72

/ u-Rekursivitiat von gp \

() durchlaufe die ,, Teilprogramme® von P, beginnend bei einfachen Wertzuwei-
sungen und fortschreitend zu zunehmend komplexeren Teilprogrammen. Das

zuletzt durchlaufene ,, Teilprogramm® ist P selbst.
zu zeigen: Iiir jedes Teilprogramm () ist gg eine p rekursive Funktion.

Die Falle der Wertzuweisung und der Komposition zweier WHILE-Programme
lassen sich abhandeln wie bei der analogen Uberlegung fiir LOOP-Programme.
Wesentlich neu ist nur der Fall der WHILE-Anweisung.

N /

Hans U. Simon, Ruhr-Universitdt Bochum, Germany TI WS 2007/2008

Theorie der Berechenbarkeit (Teil 1) Slide 73

/ WHILE-Anweisung und p-Operator \

Neuer Fall Q hat die Form ,, WHILE z; # 0 DO @’ END*.
Da dann ()’ zuvor schon betrachtet wurde, ist die p-Rekursivitdt von gg-

bereits geklirt. Betrachte die p-rekursive (!) Hilfsfunktion

h(n,z) = 9q/(9q/ (- (g9q' (x)---) -

"~

n—moal

Beachte: d;(h(n,z)) ist der Wert der Variablen x; nach n Ausfithrungen von
). Die WHILE-Anweisung fiihrt daher () insgesamt

min{n| d;(h(n,z)) =0} = u(d; o h)(x)
mal aus (sofern sie terminiert). Mit
9q(x) = h(p(ds o h)(x),)

\ergibt sich die p-Rekursivitdt von gg. /

Hans U. Simon, Ruhr-Universitdt Bochum, Germany TI WS 2007/2008

Theorie der Berechenbarkeit (Teil 1) Slide 74

/ WHILE-Berechenbarkeit von p-rekursiven Funktionen \

Induktion iiber den Aufbau von p-rekursiven Funktionen: Wegen
der Analogie zur LOOP-Berechenbarkeit von primitiv rekursiven Funktionen

beschranken wir uns auf den

Neuen Fall: Betrachte eine (evtl. partielle) Funktion der Form
pf(x) =min{n| f(n,z) =0,Ym < n: f(m,z) ist definiert} .

Geméaf Induktionsvoraussetzung ist f(n,x) WHILE-berechenbar. Dann kénnen

wir 1f () nach folgendem Schema berechnen:
rg:=0; y:= f(0,2) ; WHILE y 20 DO zg :== 29+ 1 ; y := f(x¢,z) END

Kommentar: Sofern pf(x) definiert ist, enthélt Variable zo am Ende die
kleinste Zahl n € N mit f(n,z) = 0 (kleinste Nullstelle).

N /

Hans U. Simon, Ruhr-Universitdt Bochum, Germany TI WS 2007/2008

Theorie der Berechenbarkeit (Teil 1)

Slide 75

-

N

Die Ackermannfunktion

/

Hans U. Simon, Ruhr-Universitdt Bochum, Germany

TI WS 2007/2008

Theorie der Berechenbarkeit (Teil 1) Slide 76

/ Eine Frage zu Anfang \

Ist jede intuitiv berechenbare totale (= total definierte) Funktion
f:NF >N
LOOP-berechenbar?

Im Jahre 1928 préasentierte Ackermann ein Gegenbeispiel.

Seine Idee: Entwerfe eine Funktion, die schneller wéchst als jede LOOP-
berechenbare Funktion.

N /

Hans U. Simon, Ruhr-Universitdt Bochum, Germany TI WS 2007/2008

Theorie der Berechenbarkeit (Teil 1) Slide 77

/ Die Ackermannfunktion \

Betrachte folgende induktiv definierte Funktion a : N? — N:

a(0,y) = y+1firalley>0
a(z,0) = a(x—1,1) fir alle z > 1
a(r,y) = alr—1,a(x,y—1)) fiir alle z,y > 1

Die Definition besteht zwar nur aus drei Gleichungen, ist aber nicht ganz leicht

zu durchschauen.

N /

Hans U. Simon, Ruhr-Universitdt Bochum, Germany TI WS 2007/2008

Theorie der Berechenbarkeit (Teil 1)

Slide 78

-

Ackermannfunktion (fortgesetzt) \

Az (y) == a(x,y)

und ,,schnuppern“ an Ag, A1, Ao,

Per ,Salami—Taktik“ zerlegen wir a(x,y) in ,,Scheiben* A, : N — IN:

Offensichtlich gilt Ag(y) = y + 1. Mit Induktion ergibt sich relativ leicht

(s. Ubung):
Aq(y) Y+ 2
As(y) 2y +3
A3 (y) 2y—|—3 —3
A4 (y) 22‘ —3
y+3 Zweien
\Die Folge beginnt harmlos, nimmt aber dann schnell an Fahrt auf. /

Hans U. Simon, Ruhr-Universitdt Bochum, Germany

TI WS 2007/2008

Theorie der Berechenbarkeit (Teil 1) Slide 79

/ Macht die Definition von Ackermann Sinn 7 \

Wir beweisen durch ,,doppelte Induktion®, dass alle Funktionen A, Werte aus
IN als Ergebnis liefern.

Induktionsanfang: Ag(y) =y + 1 € N fiir alle y € N.
Induktionsvoraussetzung: A, 1(y) € N fiir alle y € .

Induktionsschritt: Zum Studium von A, erfolgt erneut eine vollstandige
Induktion (diesmal nach y):

Induktionsanfang: A,(0) =a(z,0) =a(z —1,1) = A,_1(1) € N.
Induktionsvoraussetzung: A,(y — 1) € N.

Induktionsschritt:
EN

N\

Au(y) = a(z,y) = alz — La(e,y — 1)) = Au_1(Au(y — 1))

\ . 7
N~

€N

\Folgerung: a(z,y) = A.(y) € N fiir alle z,y € N. /

Hans U. Simon, Ruhr-Universitdt Bochum, Germany TI WS 2007/2008

Theorie der Berechenbarkeit (Teil 1)

Slide 80

-

N

0
3

Ist die Ackermannfunktion berechenbar ?

1
2

0
2
1

1
1
1

0
1
0
1

1
0
0
1

2
0
1

3
1

2
1
0

1
1
0
0

o o o = O

o o o o

2
0
0
0

3
0
0

Wir berechnen a(3,0) mit Hilfe eines Kellerspeichers (Stapels):

4
0

5

~

e Da wir mit ,,brain power* A3(y) = 2¥"3 — 3 herausgefunden hatten, hiitten

wir das Ergebnis auch einfacher bestimmen kénnen:

a(3,0) = A3(0) =23 —-3=8-3=5.

e Das Stapelverfahren (langsam wie es ist) funktioniert aber fiir alle

moglichen Eingaben (z,y) € N2

/

Hans U. Simon, Ruhr-Universitdt Bochum, Germany

TI WS 2007/2008

Theorie der Berechenbarkeit (Teil 1) Slide 81

/ Die allgemeine Vorgehensweise beim Stapelverfahren \

Wir erinnern an die Definitionsgleichungen fiir die Ackermannfunktion:

a(0,y) = y+1firalley>0
a(x,0) = a(x—1,1) fir alle x > 1
a(r,y) = alr—1,a(x,y—1)) fiir alle z,y > 1

Das Stapelverfahren interpretiert die zwei obersten Operanden x,y des Stapel

(y oben) als a(x,y) und manipuliert den Stapel wie folgt:
e Ersetze 0,y durch y 4+ 1 (Stapel wird niedriger).
e Fiir x > 1 ersetze x,0 durch x — 1, 1.
e Fiir z,y > 1 ersetze x,y durch x — 1, x,y — 1 (Stapel wird hoher).

Dadurch wird a(z,y) stets geméafl der Definitionsgleichungen ausgewertet.

N /

Hans U. Simon, Ruhr-Universitdt Bochum, Germany TI WS 2007/2008

Theorie der Berechenbarkeit (Teil 1) Slide 82

/ Berechenbarkeit der Ackermannfunktion \

Das Stapelverfahren ist leicht auf einer Mehrband-DTM implementierbar, die

eines ihrer Bander als Kellerspeicher verwendet.
Folgerung: Die Ackermannfunktion ist berechenbar.

In der Folge sagen wir einfach , berechenbar* statt , Turing—berechenbar* (oder
» WHILE“— bzw. , GOTO-berechenbar*).

N /

Hans U. Simon, Ruhr-Universitdt Bochum, Germany TI WS 2007/2008

Theorie der Berechenbarkeit (Teil 1) Slide 83

/ Monotonie—Eigenschaften der Ackermannfunktion \

Die folgenden Ungleichungen gelten fiir alle x,y € N:

y < a(z,y) (1)

a(z,y) < alz,y+1) (2)
a(z,y+1) < a(x+1,y) (3)
a(z,y) < alzx+1y) (4)

Insbesondere ist a(x,y) streng monoton wachsend in x und .

N /

Hans U. Simon, Ruhr-Universitdt Bochum, Germany TI WS 2007/2008

Theorie der Berechenbarkeit (Teil 1)

Slide 84

-

N

Beweis der 1. Ungleichung

Zum Beweis von a(x,y) > y verwenden wir doppelte Induktion:
Induktionsanfang: a(0,y) =y + 1 > y fiir alle y > 0.
Induktionsvoraussetzung: a(xz — 1,y) > y fiir alle y > 0.

Induktionsschritt: Analyse von a(x,y) erfolgt mit Induktion nach y.

Induktionsanfang: a(z,0) =a(x —1,1) > 1> 0.

Induktionsvoraussetzung: a(z,y — 1) > y — 1 und somit a(x,y — 1) > v.

Induktionsschritt: fiir alle y > 0 gilt dann

a(z,y) =a(lr —1a(z,y—1)) >a(x,y—1) >y .

~

/

Hans U. Simon, Ruhr-Universitdt Bochum, Germany

TI WS 2007/2008

Theorie der Berechenbarkeit (Teil 1) Slide 85

/ Beweis der 2. Ungleichung \

Der Beweis von a(x,y + 1) > a(x,y) erfolgt durch eine Fallunterscheidung:

Fall 1: x = 0.
a(0,y+1)=y+2>y+1=10a(0,y)

Fall 2: = > 1.

a(e,y+1) = alz — L az,y) > az,y)

N /

Hans U. Simon, Ruhr-Universitdt Bochum, Germany TI WS 2007/2008

Theorie der Berechenbarkeit (Teil 1) Slide 86

/ Beweis der 3. Ungleichung \

Zum Beweis von a(x + 1,y) > a(x,y + 1) verwenden wir Induktion nach y:
Induktionsanfang: a(x + 1,0) = a(x, 1).
Induktionsvoraussetzung: a(z + 1,y — 1) > a(z,y).

Induktionsschritt: Nun ergibt sich a(z 4+ 1,y) > a(x,y + 1) wie folgt:

a(x+1,y) = a(zr,a(x+1,y—1)) Definition der Ackermannfunktion
v e
> a(z,y)
> a(z,a(z,y)) Monotonie in y
N——
)
> y+1
> a(z,y+1) Monotonie in y

N /

Hans U. Simon, Ruhr-Universitdt Bochum, Germany TI WS 2007/2008

Theorie der Berechenbarkeit (Teil 1) Slide 87

/ Beweis der 4. Ungleichung \

Die Ungleichung a(x,y) < a(x + 1,y) ergibt sich direkt wie folgt:

(2) (3)
a(z,y) < alz,y+1) < alz+1,y)

N /

Hans U. Simon, Ruhr-Universitdt Bochum, Germany TI WS 2007/2008

Theorie der Berechenbarkeit (Teil 1) Slide 88

/ Wachstumsfunktion zu LOOP—-Programmen \

Betrachte ein LOOP—Programm P. P fiihrt Anfangswerte ng,n1,n9,... der

Variablen in Endwerte iiber, die wir mit ng, n},n5, ... bezeichnen.

Folgende Funktion misst gewissermaflen, wie stark die Werte der Variablen

durch Ausfithrung von P wachsen kénnnen:

fp(n) := max Zn; Znign

i>0 i>0

In Worten: fp(n) ist die grofitmogliche Summe der Variablenendwerte, wenn
die Summe der Variablenanfangswerte durch n beschrinkt ist.

N /

Hans U. Simon, Ruhr-Universitdt Bochum, Germany TI WS 2007/2008

Theorie der Berechenbarkeit (Teil 1) Slide 89

/ Wachstumsfunktion (fortgesetzt) \

Wenn P eine Funktion g : N — IN berechnet, dann gilt offensichtlich

g(”) < fP(n))

da die Anfangskonfiguration zu Eingabe n mit einer speziellen Wahl der

Variablenanfangswerte, ndmlich
no=0,n1 =nund n;, =0 firalle: > 2 ,

operiert, welche bei dem Maximum in der Definition von fp beriicksichtigt

wird.

N /

Hans U. Simon, Ruhr-Universitdt Bochum, Germany TI WS 2007/2008

Theorie der Berechenbarkeit (Teil 1) Slide 90

/ Verhaltnis von Ackermannfunktion und \
LOOP—-Programmen

Schliisselresultat: Fiir jedes LOOP—-Programm P gilt:

1k >0,Yn>0: fp(n) < Ax(n)

Die einem LOOP-Programm P zugeordnete Funktion fp wichst demnach
nicht schneller als die k—te ,,Schicht“ Ag(-) der Funktion a(-,-).

Folgerung: Die Ackermannfunktion ist nicht LOOP—berechenbar.

N /

Hans U. Simon, Ruhr-Universitdt Bochum, Germany TI WS 2007/2008

Theorie der Berechenbarkeit (Teil 1) Slide 91

/ Widerspruchsbeweis zur Folgerung \

(heuchlerische) Annahme: a(z,y) ist LOOP—berechenbar.
e Dann ist auch g(n) := a(n,n) LOOP-berechenbar, sagen wir mit LOOP—

Programm P.
e Ls gilt dann g(n) < fp(n) fir alle n > 0.
e Wihle dann £ so aus, dass fp(n) < Ag(n) fiir alle n > 0.

e L'iir n = k ergibt sich nun ein Widerspruch:

g(k) < fp(k)<Aw(k) = a(k, k) = g(k)

N /

Hans U. Simon, Ruhr-Universitdt Bochum, Germany TI WS 2007/2008

Theorie der Berechenbarkeit (Teil 1) Slide 92

/ Beweis des Schliisselresultates

Der Beweis ist aufgebaut wie folgt:

e Reduktion des Schliisselresultates auf sogenannte ,einfache* LOOP-

Programme.

von struktureller Induktion.

N

~

e Beweis des Schliisselresultates fiir einfache LOOP—-Programme mit Hilfe

/

Hans U. Simon, Ruhr-Universitdt Bochum, Germany TI WS 2007/2008

Theorie der Berechenbarkeit (Teil 1) Slide 93

/ Einfache LOOP—-Programme \

Ein LOOP—Programm heifit einfach gdw es die folgenden Bedingungen erfiillt:
e Anweisungen der Form ,,z; := x; & c¢* verwenden nur Konstanten c € {0, 1}.

e Bei Anweisungen der Form ,,LOOP z; DO () END* wird Variable x; nicht

innerhalb von () verwendet.

Jedes LOOP—-Programm ist in ein dquivalents einfaches LOOP—-Programm

transformierbar:

e Fine Anweisung ,,x; := z; &£ ¢* mit ¢ > 2 kann durch c-fache Hintereinan-

deraustithrung von ,x; := z; = 1“ simuliert werden.

e Eine Anweisung der Form ,,LOOP x; DO () END*, die x; innerhalb)
verwendet, kann statt x; eine bisher unbenutzte Variable y verwenden,

wobei der LOOP—Anweisung mit Laufvariable y die Wertzuweisung

y := x; + 0 vorangeschaltet wird.

N /

Hans U. Simon, Ruhr-Universitdt Bochum, Germany TI WS 2007/2008

Theorie der Berechenbarkeit (Teil 1) Slide 94

/ Induktionsanfang \

P hat die Form ,z; := x; £ ¢* mit ¢ € {0, 1}.

Das grofite Wachstum wird erzielt fiir Variablenanfangswerte
n; =0,n; =n
und die Anweisung ,,z; := z; + 1%, wobei sich Variablenendwerte
n; =n+1, n; —n

ergeben (restliche Variablen auf Null). Somit gilt:

fr(n) <2n+1<2n+3 = As(n) .

N /

Hans U. Simon, Ruhr-Universitdt Bochum, Germany TI WS 2007/2008

Theorie der Berechenbarkeit (Teil 1) Slide 95

/ 1. Induktionsschritt \

P hat die Form ,,P;; P>“.

Induktionsvoraussetzung: Es gibt Konstanten ki, ks so dass

fP1 (n) < Akl (n) und fPQ (n) < AkQ (n)
fiir alle n > 0.

Offensichtlich gilt
v v
fr(n) < fp, (fp(n)) < Ap, (fr(n)) < Ak, (A, (n)) = alke, a(ky,n)) .
Fall 1:]431 S kg + 1.
a(ko,a(ky,n))<a(ks,a(ka+1,n)) = a(ke+1,n+1) < a(ks+2,n) = Ak,12(n)
Fall 2: k& > ko + 1.
a(kso,a(ky,n))<a(ky —1,a(ki,n)) =a(ki,n+1) <alkt+1,n) = Ag,11(n)

Qﬁr k:= max{k; + 1, ko + 2} gilt dann fp(n) < Ax(n) fir alle n > 0. /

Hans U. Simon, Ruhr-Universitdt Bochum, Germany TI WS 2007/2008

Theorie der Berechenbarkeit (Teil 1) Slide 96

/ 2. Induktionsschritt \

P hat die Form ,,LOOP z; DO () END*, wobei x; in () nicht verwendet wird.

Induktionsvoraussetzung: Es gibt eine Konstante k so dass fg(n) < Ax(n)
fiir alle n > 0.

Wihle Variablenanfangswerte ng,n1,nso,... mit fp(n) = > >0 n; und setze

m := n; (Anfangswert von x;, der zu maximaler Summe der Variablenendwerte

fithrt).
Dann gilt

fr(n) < fo'(n—m)+m .
Erklare !

Ausgehend von dieser Ungleichung und fg(n) < Ax(n) werden wir

fp(n) < Agyi(n) ()

Qachweisen, was den Induktionsbeweis abschlieft. /

Hans U. Simon, Ruhr-Universitdt Bochum, Germany TI WS 2007/2008

Theorie der Berechenbarkeit (Teil 1) Slide 97

/ .High Noon* bei Familie Ackermann \
fp(n) < fgb(n —m)+m
< AT = m) + (m - 1)
< ALSE T —m) + (m—2)
< AP(n—m)

AZ‘_Q (a(k,a(k,n—m)))
< AP (alk,a(k +1,n—m)))

7

~"

:a(k—l—l,n—m—I—l)
= AP (a(k, (a(k + 1,n —m + 1)))

7

~"

=a(k+1,n—m+42)

= ak+1,n—-1)

\\ < alk+1,n) = Apii(n) //

Hans U. Simon, Ruhr-Universitdt Bochum, Germany TI WS 2007/2008

