
Theorie der Berechenbarkeit (Teil 1) Slide 1'

&

$

%

Theorie der Berechenbarkeit (Teil 1)

Hans U. Simon (RUB)

Email: simon@lmi.rub.de

Homepage: http://www.ruhr-uni-bochum.de/lmi

Hans U. Simon, Ruhr-Universität Bochum, Germany TI WS 2007/2008

Theorie der Berechenbarkeit (Teil 1) Slide 2'

&

$

%

Intuitive und formale Berechenbarkeit

Church’sche These

Hans U. Simon, Ruhr-Universität Bochum, Germany TI WS 2007/2008

Theorie der Berechenbarkeit (Teil 1) Slide 3'

&

$

%

Partiell definierte Funktionen

Wir betrachten im Folgenden partiell definierte Funktionen der Form

f : �

k → � bzw. f : Σ∗ → Σ∗ .

Für x außerhalb des Definitionsbereiches gilt dann

f(x) =
”
undefiniert“ .

Intuition: Rechenprogramme mit Eingaben aus � k bzw. Σ∗ werden

entweder nach endlich vielen Schritten mit einem (durch eine Ausgabekon-

vention festgelegten) Ergebnis stoppen,

oder in eine unendliche Schleife geraten.

Die von einem Programm berechnete Funktion ist also i.A. nur partiell definiert.

Hans U. Simon, Ruhr-Universität Bochum, Germany TI WS 2007/2008

Theorie der Berechenbarkeit (Teil 1) Slide 4'

&

$

%

Intuitive Berechenbarkeit

Informelle Definition: Eine Funktion

f : �

k → � bzw. f : Σ∗ → Σ∗

heißt
”
(intuitiv) berechenbar“, wenn es eine

”
mechanisch anwendbare“ Rechen-

vorschrift gibt, die bei Eingabe x

• nach
”
endlich vielen Schritten“ zur Ausgabe f(x) führt, falls f(x) definiert

ist,

• in eine
”
unendliche Schleife“ führt, falls f(x) undefiniert ist.

Hans U. Simon, Ruhr-Universität Bochum, Germany TI WS 2007/2008

Theorie der Berechenbarkeit (Teil 1) Slide 5'

&

$

%

Beispiele

Die total undefinierte Funktion

Ω(n) =
”
undefiniert“

für alle n ∈ � ist berechenbar:

Erstelle ein Programm (in Deiner Lieblingssprache), das sich (ungeachtet der

Eingabe) in eine Endlosschleife begibt !

Hans U. Simon, Ruhr-Universität Bochum, Germany TI WS 2007/2008

Theorie der Berechenbarkeit (Teil 1) Slide 6'

&

$

%

Beispiele (fortgesetzt)

Abkürzung: DBE = Dezimalbruchentwicklung

Die Funktion

f(n) =







1 falls die DBE von π mit den Ziffern der DBE von n beginnt

0 sonst

ist berechenbar:

Benutze ein Verfahren, das beliebige genaue Approximationen von π erstellen

kann und jeweils eine Fehlerabschätzung mitliefert.

Hans U. Simon, Ruhr-Universität Bochum, Germany TI WS 2007/2008

Theorie der Berechenbarkeit (Teil 1) Slide 7'

&

$

%

Beispiele (fortgesetzt)

Der Status (berechenbar versus nicht berechenbar) der Funktion

g(n) =







1 falls die DBE von π die DBE von n als Teilstring enthält

0 sonst

ist ungeklärt:

Unser bisheriges Wissen über die Zahl

π

reicht zur Beantwortung dieser Frage nicht aus.

Man kann nicht einmal ausschließen, dass jede endliche Ziffernfolge irgendwo

in π als Teilstring vorkommt. In diesem Falle wäre g die konstante Einsfunktion

(undd dann trivialerweise berechenbar).

Hans U. Simon, Ruhr-Universität Bochum, Germany TI WS 2007/2008

Theorie der Berechenbarkeit (Teil 1) Slide 8'

&

$

%

Subtil, subtil ...

Zu verlangen, dass eine mechanisch anwendbare Rechenvorschrift existiert,

bedeutet nicht, dass wir wissen, um welche Rechenvorschrift es sich handelt.

Hans U. Simon, Ruhr-Universität Bochum, Germany TI WS 2007/2008

Theorie der Berechenbarkeit (Teil 1) Slide 9'

&

$

%

Beispiele (fortgesetzt)
Die Funktion

h(n) =







1 falls die DBE von π den Teilstring 7n enthält

0 sonst

ist berechenbar:

Fall 1: π enthält beliebig lange 7er–Sequenzen als Teilstrings.

Dann ist h die (trivial berechenbare) konstante Einsfunktion.

Fall 2: Es gibt eine längste in π als Teilstring enthaltene 7er–Sequenz, sagen

wir der Länge n0.

Dann ist h die einfach berechenbare Funktion

h(n) =







1 falls n ≤ n0

0 falls n > n0

Beim gegenwärtigen Wissensstand über π ist unklar, welcher der beiden Fälle

vorliegt.

Hans U. Simon, Ruhr-Universität Bochum, Germany TI WS 2007/2008

Theorie der Berechenbarkeit (Teil 1) Slide 10'

&

$

%

Beispiele (fortgesetzt)

Die Funktion

i(n) =







1 falls das LBA–Problem eine positive Antwort hat

0 sonst

ist berechenbar:

Fall 1: Jede kontextsensitive Sprache kann durch einen DLBA erkannt werden.

Dann ist i die konstante Einsfunktion.

Fall 2: Es gibt eine kontextsensitive Sprache, die von keinem DLBA erkannt

wird.

Dann ist i die konstante Nullfunktion.

Beim gegenwärtigen Wissensstand ist unklar, welcher der beiden Fälle vorliegt.

Hans U. Simon, Ruhr-Universität Bochum, Germany TI WS 2007/2008

Theorie der Berechenbarkeit (Teil 1) Slide 11'

&

$

%

Beispiele (fortgesetzt)

Ähnlich wie bei π können wir zu jeder reellen Zahl r ∈ � die Funktion

fr(n) =







1 falls die DBE von r mit den Ziffern der DBE von n beginnt

0 sonst

zuordnen.

Frage: Ist fr für jedes r ∈ � berechenbar ?

Antwort: Nein !

Begründung: Eine Rechenvorschrift sollte durch einen endlichen Text über

einem endlichen Alphabet beschreibbar sein. Daher gibt es nur abzählbar

viele Rechenvorschriften, wohingegen � überabzählbar unendlich ist.

Die Berechenbarkeit von fr ist demnach eher die Ausnahme.

Hans U. Simon, Ruhr-Universität Bochum, Germany TI WS 2007/2008

Theorie der Berechenbarkeit (Teil 1) Slide 12'

&

$

%

Wozu ein formales Rechenmodell ?

• Zum Nachweis der Berechenbarkeit genügt (in der Regel) die Angabe

einer konkreten Rechenvorschrift (und somit ein intuitives Verständnis des

Berechenbarkeitsbegriffes).

• Zum Nachweis der Unberechenbarkeit ist hingegen zu zeigen, dass kei-

ne passende Rechenvorschrift existiert. Dazu brauchen wir eine klare

Vorstellung über die Gesamtheit aller Rechenvorschriften.

Hans U. Simon, Ruhr-Universität Bochum, Germany TI WS 2007/2008

Theorie der Berechenbarkeit (Teil 1) Slide 13'

&

$

%

Ausblick: Formale Definitionen der Berechenbarkeit

• durch Turing–Programme berechenbar

• durch WHILE–Programme berechenbar

• durch GOTO–Programme berechenbar

• µ–rekursiv

Alle diese Vorschläge (von Turing, Church und anderen Mathematikern

Mitte der 1930er unterbreitet) haben sich als äquivalent erwiesen. Zudem

wurde bislang keine intuitiv berechenbare Funktion gefunden, die nicht auch

Turing–berechenbar wäre. Dies führte zur (formal nicht beweisbaren)

Church’schen These: Die Klasse der intuitiv berechenbaren Funktio-

nen stimmt überein mit der Klasse der durch Turing–berechenbaren

(bzw. WHILE–berechenbaren, GOTO–berechenbaren, µ–rekursiven, . . .)

Funktionen.

Hans U. Simon, Ruhr-Universität Bochum, Germany TI WS 2007/2008

Theorie der Berechenbarkeit (Teil 1) Slide 14'

&

$

%

Turing-Berechenbarkeit

Hans U. Simon, Ruhr-Universität Bochum, Germany TI WS 2007/2008

Theorie der Berechenbarkeit (Teil 1) Slide 15'

&

$

%

Turing–Berechenbarkeit

Eine Funktion

f : Σ∗ → Σ∗

heißt Turing–berechenbar gdw eine DTM M existiert mit folgenden Eigen-

schaften:

• Falls f(x) = y, dann gilt z0x `∗ zy für eine Endkonfiguration zy.

• Falls f(x) =
”
undefiniert“, dann erreicht M bei der Rechnung auf Eingabe

x keine Stoppkonfiguration (Endlosrechnung).

Hans U. Simon, Ruhr-Universität Bochum, Germany TI WS 2007/2008

Theorie der Berechenbarkeit (Teil 1) Slide 16'

&

$

%

Turing–Berechenbarkeit (fortgesetzt)

Die Turing–Berechenbarkeit von Funktionen der Form

f : �

k → �

ist analog definiert, wobei wir im Falle von

f(x) = y mit x = (n1, n2, . . . , nk)

anstelle von z0x `∗ zy nun

z0bin(n1)#bin(n2)# · · ·#bin(nk) `∗ zbin(y)

fordern. Hierbei bezeichnet bin(·) die Binärdarstellung ohne führende Nullen.

Hans U. Simon, Ruhr-Universität Bochum, Germany TI WS 2007/2008

Theorie der Berechenbarkeit (Teil 1) Slide 17'

&

$

%

Beispiele

Die Nachfolgerfunktion

s(n) = n + 1

ist Turing–berechenbar:

Siehe unsere frühere Implementierung eines Binärzählers.

Hans U. Simon, Ruhr-Universität Bochum, Germany TI WS 2007/2008

Theorie der Berechenbarkeit (Teil 1) Slide 18'

&

$

%

Beispiele (fortgesetzt)

Die total undefinierte Funktion Ω ist Turing–berechenbar durch die DTM mit

δ(z0, a) = (z0, a, R) ,

die auf jeder Eingabe eine unendliche Schleife durchläuft.

Hans U. Simon, Ruhr-Universität Bochum, Germany TI WS 2007/2008

Theorie der Berechenbarkeit (Teil 1) Slide 19'

&

$

%

Beispiele (fortgesetzt)

Zu einer Sprache L vom Typ 0 betrachte die Funktion

χ′
L(w) =







1 falls w ∈ L

”
undefiniert“ falls w /∈ L

Die Turing–Berechenbarkeit von χ′
L kann folgendermaßen eingesehen werden:

• Es gibt eine Grammatik G vom Typ 0, welche L generiert.

• Es gibt eine NTM M , welche L erkennt, indem Ableitungen S⇒∗
Gw geraten

werden. M kann so implementiert werden, dass

– nach Auffinden einer Ableitung Ausgabe 1 produziert und gestoppt

wird,

– bei Nicht–Auffinden einer Ableitung eine unendliche Schleife betreten

wird.

• Dann wird χ′
L berechnet durch die deterministische Simulation M ′ von M .

Hans U. Simon, Ruhr-Universität Bochum, Germany TI WS 2007/2008

Theorie der Berechenbarkeit (Teil 1) Slide 20'

&

$

%

Eine
”
höhere Programmiersprache“ für DTMs

Hans U. Simon, Ruhr-Universität Bochum, Germany TI WS 2007/2008

Theorie der Berechenbarkeit (Teil 1) Slide 21'

&

$

%

Mehrspurenmaschinen

Zu einem gegebenen Alphabet Γ können wir
”
Supersymbole“ aus Γk betrachten.

Wenn das Arbeitsalphabet einer TM ein Supersymbol (A1, . . . , Ak) enthält,

dann ist es anschaulich sich vorzustellen, dass

• das Band in k
”
Spuren“ zerlegt werden kann,

• und beim Abspeichern von (A1, . . . , Ak) in einer Zelle, das Symbol Ai in

der i–ten Spur der Zelle steht.

Beachte: Mehrspurenmaschinen haben zwar ein unkonventionelles Arbeitsal-

phabet (welches k-Tupel enthält), entsprechen aber unserer Standarddefinition

einer TM (kein neues Modell).

Hans U. Simon, Ruhr-Universität Bochum, Germany TI WS 2007/2008

Theorie der Berechenbarkeit (Teil 1) Slide 22'

&

$

%

Mehrbandmaschinen

Definition: Unter einer k-Band TM verstehen wir eine TM mit k Bändern

und einem Kopf pro Band. Die insgesamt k Köpfe können sich in einem

Rechenschritt in verschiedene Richtungen bewegen. Die Überführungsfunktion

δ hat nun die Form

δ : Q × Γk → Q × Γk × {R, L, N}k

mit der offensichtlichen Interpretation.

Mehrbandmaschinen sind nicht mächtiger als das Standardmodell wie der

folgende sogenannte Bandreduktionssatz zeigt:

Satz: Eine k-Band TM M kann von einer 1-Band TM M ′ simuliert werden.

Ist dabei M eine DTM, so auch M ′.

Hans U. Simon, Ruhr-Universität Bochum, Germany TI WS 2007/2008

Theorie der Berechenbarkeit (Teil 1) Slide 23'

&

$

%

Beweis

• M ′ besitzt für jeden Zustand z von M einen entsprechenden Zustand z′

(und weitere Zustände).

• M ′ simuliert

– einen Schritt von M mit Zustandswechsel von z1 nach z2

– durch eine Folge von Schritten, welche im Zustand z′
1 startet und im

Zustand z′2 endet

Nach diesem Schema verlaufende Simulationen heißen
”
Schritt für Schritt

Simulation“.

Hans U. Simon, Ruhr-Universität Bochum, Germany TI WS 2007/2008

Theorie der Berechenbarkeit (Teil 1) Slide 24'

&

$

%

Beweis (fortgesetzt)

Die wesentliche Schwierigkeit besteht darin, die Beschriftung der k-Band TM

M auf einem einzigen Band unterzubringen. M ′ benutzt dazu ein Band mit k

Spuren. Dabei soll stets gelten:

(1) Spur i des Bandes von M ′ enthält die Beschriftung von Band i von M

(1 ≤ i ≤ k).

(2) Zelle 1 von M ′ enthält genau die k Symbole, auf denen die k Köpfe von M

positioniert sind.

(3) Zu Beginn der Simulation des nächsten Rechenschrittes von M befindet

sich der Kopf von M ′ auf Zelle 1.

Bedingungen (2) und (3) sorgen dafür, daß M ′ die von M gelesenen k Symbole

kennt.

Hans U. Simon, Ruhr-Universität Bochum, Germany TI WS 2007/2008

Theorie der Berechenbarkeit (Teil 1) Slide 25'

&

$

%

Beweis (fortgesetzt)

Um einen Schritt von M zu simulieren, geht M ′ vor wie folgt:

• Wenn M Symbole a1, . . . , ak durch b1, . . . , bk ersetzt, ersetzt M ′ in Zelle 1

(a1, . . . , ak) durch (b1, . . . , bk).

• Wenn M Kopf i nach rechts (bzw. links) bewegt, so verschiebt M ′ die

Inschrift von Spur i um eine Position in die entgegengesetzte Richtung

(positioniert aber im Anschluss den Kopf wieder auf Zelle 1).

• Wenn M in Zustand z übergeht, geht M ′ in Zustand z′ über.

Hierdurch bleiben Bedingungen (1), (2) und (3) erhalten und die Simulation

ist korrekt.

Offensichtlich arbeitet M ′ deterministisch, falls M deterministisch arbeitet.

Hans U. Simon, Ruhr-Universität Bochum, Germany TI WS 2007/2008

Theorie der Berechenbarkeit (Teil 1) Slide 26'

&

$

%

Zusätzliche Beobachtung

Wenn M auf Eingaben der Länge n

• maximal S(n) Zellen ihres Bandes besucht

• und maximal T (n) Schritte rechnet,

dann

• besucht M ′ ebenfalls maximal S(n) Zellen

• und rechnet maximal O(S(n) · T (n)) Schritte (da jeder Schritt von M in

O(S(n)) Schritten von M ′ simuliert werden kann).

Hans U. Simon, Ruhr-Universität Bochum, Germany TI WS 2007/2008

Theorie der Berechenbarkeit (Teil 1) Slide 27'

&

$

%

Ein
”
Baukastensystem“ für Turing–Maschinen

Ziel: Entwurf von DTMs zur Ausführung von Befehlen einer
”
höheren

Programmiersprache“ (mit bedingten Anweisungen, while-Schleifen etc.)

Methode: Baukastensystem

Hans U. Simon, Ruhr-Universität Bochum, Germany TI WS 2007/2008

Theorie der Berechenbarkeit (Teil 1) Slide 28'

&

$

%

Veränderung des Inhaltes von einem der Bänder

• Zu einer 1–Band–TM M bezeichne M(i, k), oder einfach M(i), die k–Band

TM, die das
”
Programm“ von M auf ihrem i–ten Band simuliert (und auf

den anderen Bändern keine Modifikationen vornimmt).

•
”
Band := Band +1“ bezeichne die früher bereits besprochene 1–Band

DTM zur Berechnung der Funktion s(n) = n + 1.

• Statt
”
Band := Band+1“(i) schreiben wir

”
Band i:= Band i +1“.

• Definiere die
”
modifizierte Differenz“ wie folgt:

n
.
− m = max{0, n − m} .

Die Notationen

”
Band i := Band i

.
−1“

”
Band i := Band j

”
Band i := 0

sind dann analog zu verstehen.

Hans U. Simon, Ruhr-Universität Bochum, Germany TI WS 2007/2008

Theorie der Berechenbarkeit (Teil 1) Slide 29'

&

$

%

Komposition von TMs

Die Komposition zweier TMs

Mi = (Zi, Σ, Γi, δi, zi, �, Ei), i = 1, 2, Z1 ∩ Z2 = ∅

ist definiert als die TM

M = (Z1 ∪ Z2, Σ, Γ1 ∪ Γ2, δ, z1, �, E2) ,

wobei

δ(z, A) =







δ1(z, A) falls z ∈ Z1 \ E1

(z2, A, N) falls z ∈ E1

δ2(z, A) falls z ∈ Z2

.

M führt also zuerst das Programm von M1 aus und (falls M1 einen Endzustand

erreicht) dann das Programm von M2.

Notation als
”
Flussdiagramm“: start → M1 → M2 → stop.

Notation wie bei Programmiersprachen: M1; M2

Hans U. Simon, Ruhr-Universität Bochum, Germany TI WS 2007/2008

Theorie der Berechenbarkeit (Teil 1) Slide 30'

&

$

%

Beispiel

Die DTM

start →
”
Band := Band +1“

→
”
Band := Band +1“

→
”
Band := Band +1“ → stop

addiert zu einer gegebenen natürlichen Zahl die Konstante 3 hinzu.

Hans U. Simon, Ruhr-Universität Bochum, Germany TI WS 2007/2008

Theorie der Berechenbarkeit (Teil 1) Slide 31'

&

$

%

Bedingte Komposition von TMs

Eine TM, welche

• zunächst das Programm einer TM M ausführt,

• hernach das Programm von M ′, falls M im Endzustand z′
e stoppt,

• bzw. das Programm M ′′, falls M im Endzustand z′′
e stoppt,

notieren wir in der Form

start M M’

M"

stop

stop

z’

z"

e

e

Hans U. Simon, Ruhr-Universität Bochum, Germany TI WS 2007/2008

Theorie der Berechenbarkeit (Teil 1) Slide 32'

&

$

%

Die Abfrage–Maschine

”
Band=0?“ bezeichnet eine DTM mit folgenden Eigenschaften:

• Sie hat vier Zustände z0, z1, JA, NEIN mit JA, NEIN als Endzuständen.

• Sie verändert den Bandinhalt nicht. Zu Beginn und am Ende der Rechnung

ist der Kopf auf dem ersten Zeichen der Eingabe positioniert.

• Ihre Hauptaufgabe ist zu testen, ob die Eingabe nur aus dem Zeichen 0

besteht. Falls dem so ist, stoppt sie im Endzustand JA; andernfalls stoppt

sie im Endzustand NEIN.

Eine solche DTM ist einfach zu entwerfen:

δ(z0, a) =







(z1, a, R) falls a = 0

(NEIN, a, N) sonst

δ(z1, a) =







(JA, a, L) falls a = �

(NEIN, a, L) sonst

Hans U. Simon, Ruhr-Universität Bochum, Germany TI WS 2007/2008

Theorie der Berechenbarkeit (Teil 1) Slide 33'

&

$

%

Einbettung einer TM in eine WHILE–Schleife

Statt
”
Band=0?“(i) schreiben wir einfach

”
Band i = 0 ?“

Zu einer gegebenen TM M bezeichne

”
WHILE Band i 6= 0 DO M“

die durch folgendes Flussdiagramm gegebene TM:

start Band i = 0 ? stop
"

" JA

M

NEIN

Hans U. Simon, Ruhr-Universität Bochum, Germany TI WS 2007/2008

Theorie der Berechenbarkeit (Teil 1) Slide 34'

&

$

%

Résumée

• Mit dem Baukastensystem lassen sich aus elementaren TMs komplexere

TMs zusammensetzen, die Strukturen höherer Programmiersprachen wie

zum Beipiel

– bedingte Anweisungen

– WHILE–Schleifen

– Prozedurkonzept

(ansatzweise) realisieren.

• Die Realisierung macht Gebrauch von Mehrband–TMs. Wie wir wissen

lässt sich aber jede Mehrband–TM durch eine Einband–TM simulieren.

Hans U. Simon, Ruhr-Universität Bochum, Germany TI WS 2007/2008

Theorie der Berechenbarkeit (Teil 1) Slide 35'

&

$

%

LOOP- WHILE- und GOTO-Programme

Hans U. Simon, Ruhr-Universität Bochum, Germany TI WS 2007/2008

Theorie der Berechenbarkeit (Teil 1) Slide 36'

&

$

%

Zeichenvorrat für LOOP-Programme

Variablen: x0 x1 x2 · · ·

Konstanten: 0 1 2 · · ·

Trennsymbole: ; :=

Operationszeichen: + −

Schlüsselwörter: LOOP DO END

Hans U. Simon, Ruhr-Universität Bochum, Germany TI WS 2007/2008

Theorie der Berechenbarkeit (Teil 1) Slide 37'

&

$

%

Syntax von LOOP-Programmen

Induktive Definition:

1. Jede Wertzuweisung der Form

xi := xj + c oder xi := xj − c

(für eine Konstante c) ist ein LOOP-Programm.

2. Die Hintereinanderschaltung

P1 ; P2

von LOOP-Programmen P1, P2 ist ein LOOP-Programm.

3. Das iterierte Durchlaufen

LOOP xi DO P END

eines LOOP-Programmes P ist ein LOOP-Programm.

Hans U. Simon, Ruhr-Universität Bochum, Germany TI WS 2007/2008

Theorie der Berechenbarkeit (Teil 1) Slide 38'

&

$

%

Semantik von LOOP-Programmen

Kanonisch definiert bis auf:

•
”
a − b“ wird interpretiert als

”
modifizierte Differenz“ a

.
− b := max{a −

b, 0}.

• Bei einem LOOP-Programm der Form LOOP xi DO P END wird P so oft

ausgeführt wie der Wert der Variablen xi zu Beginn angibt. (Änderung des

Werte von xi im Innern von P haben auf die Anzahl der Wiederholungen

also keinen Einfluss.)

Folgerung: LOOP-Programme terminieren stets.

Konventionen beim Berechnen von f : � k → � durch ein LOOP-Programm:

• Eingabewerte n1, . . . , nk anfangs in x1, . . . , xk.

Restliche Variable initialisiert auf 0.

• Ausgabewert f(n1, . . . , nk) am Ende in x0.

LOOP-Programme berechnen nur totale (= total definierte) Funktionen.

Hans U. Simon, Ruhr-Universität Bochum, Germany TI WS 2007/2008

Theorie der Berechenbarkeit (Teil 1) Slide 39'

&

$

%

LOOP-Simulierbare Konstrukte

neues Konstrukt Simulation

xi := xj xi := xj + 0

xi := c xi := y + c (für ein y mit Wert 0)

IF x = 0 THEN A END y := 1;

LOOP x DO y := 0 END;

LOOP y DO A END

xi := xj + xk xi := xj ;

LOOP xk DO xi := xi + 1 END

xi := xj ∗ xk xi := 0;

LOOP xk DO xi := xi + xj END

xi := xj DIV xk s. Übung (evtl.)

xi := xj MOD xk s. Übung (evtl.)

Hans U. Simon, Ruhr-Universität Bochum, Germany TI WS 2007/2008

Theorie der Berechenbarkeit (Teil 1) Slide 40'

&

$

%

WHILE-Programme

Syntax wie bei LOOP-Programmen, außer dass die WHILE-Schleife an die

Stelle der LOOP-Schleife tritt:

WHILE xi 6= 0 DO P END

Semantik der WHILE-Schleife: P wird iteriert solange ausgeführt wie xi

(mit ihrem aktuellen Wert!) ungleich Null ist. Endlosschleife ist möglich.

Konventionen zum Berechnen von Funktionen wie bei LOOP-

Programmen.

Berechnung partieller (= partiell definierter) Funktionen ist möglich.

WHILE-simulierbare LOOP-Schleife:

LOOP x DO P END

kann simuliert werden durch

y := x; WHILE y 6= 0 DO y := y − 1; P END .

Hans U. Simon, Ruhr-Universität Bochum, Germany TI WS 2007/2008

Theorie der Berechenbarkeit (Teil 1) Slide 41'

&

$

%

Wechselseitige Simulationen

Da die LOOP-Schleife durch die WHILE-Schleife simulierbar ist, gilt der

Satz: Jede LOOP-berechenbare Funktion ist auch WHILE-berechenbar.

Weiter gilt:

Satz: (Beweis mündlich in der Vorlesung)

Jede WHILE-berechenbare Funktion ist auch Turing-berechenbar.

Wir werden (nach Einführung der GOTO-Programme) noch zeigen:

– Jede Turing-berechenbare Funktion ist auch GOTO-berechenbar.

– Jede GOTO-berechenbare Funktion ist auch WHILE-berechenbar.

Folgerung: Turing-Maschinen, WHILE-Programme und GOTO-Programme

berechnen dieselbe Klasse von Funktionen.

Hans U. Simon, Ruhr-Universität Bochum, Germany TI WS 2007/2008

Theorie der Berechenbarkeit (Teil 1) Slide 42'

&

$

%

GOTO-Programme

Syntax: GOTO-Programme haben (bis auf Fehlen von redundanten Marken)

die Form

M1 : A1 ; M2 : A2 ; · · · ; Mk : Ak .

Dabei ist Ai eine
”
Anweisung“ und Mi eine sogenannte

”
Marke“ (eindeutige

Adresse für die Anweisung Ai). Als Anweisungen sind zugelassen:

Wertzuweisungen: xi := xj ± c

unbedingter Sprung: GOTO Mi

bedingter Sprung: IF xi = c THEN GOTO Mj

Stoppanweisung: HALT

Semantik: — offensichtlich (oder?) —

Konventionen beim Berechnen von Funktionen:

analog zu LOOP- oder WHILE-Programmen.

Hans U. Simon, Ruhr-Universität Bochum, Germany TI WS 2007/2008

Theorie der Berechenbarkeit (Teil 1) Slide 43'

&

$

%

Simulation von GOTO durch WHILE

Satz: Jede GOTO-berechenbare Funktion ist auch WHILE-berechenbar.

M1 : A1 ; M2 : A2 ; · · · ; Mk : Ak

kann simuliert werden durch

y := 1;

WHILE y 6= 0 DO

IF y = 1 THEN A′
1 END; Idee: Identifiziere Mi mit Nummer i.

IF y = 2 THEN A′
2 END; Wert von y = Nummer der aktuellen Marke

· · · (bzw. 0 nach Erreichen von HALT).

IF y = k THEN A′
k END A′

i realisiert Ai und aktualisiert y.

END

Hans U. Simon, Ruhr-Universität Bochum, Germany TI WS 2007/2008

Theorie der Berechenbarkeit (Teil 1) Slide 44'

&

$

%

Simulation von GOTO durch WHILE (fortgesetzt)

Ai A′
i

xk := xl ± c xk := xl ± c; y:=y+1

GOTO Mj y := j

IF xk = c THEN GOTO Mj IF xk = c THEN y := j

ELSE y := y + 1 END

HALT y := 0

Beobachtung: Die Simulation benötigt nur eine WHILE-Schleife.

Hans U. Simon, Ruhr-Universität Bochum, Germany TI WS 2007/2008

Theorie der Berechenbarkeit (Teil 1) Slide 45'

&

$

%

Simulation von WHILE durch GOTO (fortgesetzt)

Satz: Jede WHILE-berechenbare Funktion ist auch GOTO-berechenbar.

WHILE xi 6= 0 DO P END; . . .

kann simuliert werden durch:

M1: IF xi = 0 THEN GOTO M2;

P;

GOTO M1

M2: . . .

Folgerung (Kleene-Normalform für WHILE-Programme):

Jede WHILE-berechenbare Funktion kann durch ein (um IF-THEN oder

LOOP-Anweisungen erweitertes) WHILE-Programm mit lediglich einer

WHILE-Schleife berechnet werden.

Hans U. Simon, Ruhr-Universität Bochum, Germany TI WS 2007/2008

Theorie der Berechenbarkeit (Teil 1) Slide 46'

&

$

%

Exkurs: DIV und MOD

DIV (ganzzahliger Quotient) und MOD (kleinster Rest) sind die folgenden

Operationen:

x DIV y =

⌊
x

y

⌋

.

x MOD y = x − y

⌊
x

y

⌋

Zum Beispiel:

75 DIV 20 =

⌊
75

20

⌋

= b3.75c = 3 .

75 MOD 20 = 75 − 20

⌊
75

20

⌋

= 75 − 20 · 3 = 15 .

Hans U. Simon, Ruhr-Universität Bochum, Germany TI WS 2007/2008

Theorie der Berechenbarkeit (Teil 1) Slide 47'

&

$

%

DIV und MOD (fortgesetzt)

CUT und PASTE (Abschneiden und Ankleben) von Ziffern kann mit Hilfe von

DIV, MOD und ∗, + implementiert werden:

CUT und PASTE Ergebnis Simulation mit DIV,MOD,+, ∗

CUT(1984) 198|4 198 = 1984 DIV 10; 4 = 1984 MOD 10

PASTE(198|5) 1985 1985 = 198 ∗ 10 + 5

Verallgemeinerung auf b-näre Zahlendarstellungen (Ziffern aus {0, 1, . . . , b−1}):

CUT und PASTE Ergebnis Simulation mit DIV,MOD,+, ∗

CUT

x
︷ ︸︸ ︷

(i1 · · · ip−1ip)

x′

︷ ︸︸ ︷

i1 · · · ip−1 |ip x′ = x DIV b; ip = x MOD b

PASTE(i1 · · · ip−1
︸ ︷︷ ︸

x′

|j) i1 · · · ip−1j
︸ ︷︷ ︸

x̂

x̂ = x′ ∗ b + j

Hans U. Simon, Ruhr-Universität Bochum, Germany TI WS 2007/2008

Theorie der Berechenbarkeit (Teil 1) Slide 48'

&

$

%

Exkurs: Konfiguration als Zahlentripel

• Zustandsmenge Z = {z1, . . . , zs}: zl hat
”
Nummer“ l.

• Bandalphabet Γ = {a1, . . . , am}: ai hat
”
Nummer“ i

Setze b := |Γ| + 1. Eine Konfiguration

x
︷ ︸︸ ︷
ai1 · · · aip

zl

y
︷ ︸︸ ︷
aj1 · · · ajq

(x, y b-när kodiert)

(mit zl als aktuellem Zustand, ai1 · · ·aip
als (nichtleere) Bandinschrift links

vom Kopf und aj1 · · ·ajq
als (nichtleere) Bandinschrift ab Kopfposition) kann

als Zahlentripel (x, y, z) kodiert werden:

z = l , x =

p
∑

ρ=1

iρb
p−ρ , y =

q
∑

ρ=1

jρb
ρ−1

(Nummern der Symbole sind gleichsam die Ziffern der Zahlendarstellung.)

Hans U. Simon, Ruhr-Universität Bochum, Germany TI WS 2007/2008

Theorie der Berechenbarkeit (Teil 1) Slide 49'

&

$

%

Simulation von Turing-Maschine durch GOTO

Satz Jede Turing-berechenbare Funktion ist auch GOTO-berechenbar.

DTM M berechne f : � k → � .

Aufbau der Simulation:

Phase 1 (Vorbereitung): Berechne aus den Werten n1, . . . , nk der Eingabe-

variablen x1, . . . , xk das Zahlentripel (x, y, z), welches die Startkonfigura-

tion z0bin(n1)# · · ·#bin(nk) von M repräsentiert.

Phase 2 (Schritt-für-Schritt Simulation): Solange M nicht stoppt, be-

rechne aus dem Zahlentripel (x, y, z) der aktuellen Konfiguration das

Zahlentripel für die direkte Folgekonfiguration.

Phase 3 (Nachbereitung) Extrahiere aus dem Zahlentripel (x, y, z), das

eine Endkonfiguration zebin(f(n1, . . . , nk)) von M repräsentiert, den

Ausgabewert f(n1, . . . , nk) und belege damit die Ausgabevariable x0.

Hans U. Simon, Ruhr-Universität Bochum, Germany TI WS 2007/2008

Theorie der Berechenbarkeit (Teil 1) Slide 50'

&

$

%

Details zur Phase 2

”
(l, j)-Aktualisierung“ von (x, y, z) bezeichne die Aktualisierung, die erfor-

derlich ist, wenn M im Zustand zl Symbol aj liest (und die durch δ(zl, aj)

beschriebene Aktion ausführt).

Das GOTO-
”
Unterprogramm“ (plus zugehöriger Marke), das die (l, j)-

Aktualisierung durchführt (und i.A. aus mehreren Anweisungen besteht)

bezeichnen wir mit

Ml,j : Al,j .

Wir präsentieren im Folgenden:

• Das Grundgerüst eines Teilprogrammes P2, das die Verzweigung zum

richtigen Unterprogramm gewährleistet,

• ein Beispiel-Unterprogramm.

Hans U. Simon, Ruhr-Universität Bochum, Germany TI WS 2007/2008

Theorie der Berechenbarkeit (Teil 1) Slide 51'

&

$

%

Verzweigung zum richtigen Unterprogramm

Programmstück M2 : P2 für Phase 2 hat folgende Form:

M2: a := y MOD b; (CUT-Operation liefert Symbol unterm Lesekopf)

IF z = 1 AND a = 1 THEN GOTO M1,1 ;

IF z = 1 AND a = 2 THEN GOTO M1,2 ;

usw.

— alle sm Zustands/Symbolkombinationen —

usw.

IF z = s AND a = m THEN GOTO Ms,m ;

M1,1 : A1,1; GOTO M2;

M1,2 : A1,2; GOTO M2;

usw.

— alle sm Zustands/Symbolkombinationen —

usw.

Ms,m :As,m; GOTO M2;

Hans U. Simon, Ruhr-Universität Bochum, Germany TI WS 2007/2008

Theorie der Berechenbarkeit (Teil 1) Slide 52'

&

$

%

Ein Beispiel-Unterprogramm

Programmzeile

δ(zl, aj) = (zl′ , aj′ , L)

würde durch folgendes Unterprogramm realisiert:

Ml,j : z := l′; (Aktualisiere z mit Nummer des neuen Zustands)

y := y DIV b (CUT)

y := b ∗ y + j′ (PASTE)

Kommentar: führt y = 〈j j2 · · · jq〉b in y = 〈j′ j2 · · · jq〉b über

y := b ∗ y + (x MOD b) (PASTE)

x := x DIV b (CUT)

Kommentar: führt x = 〈i1 · · · ip−1 ip〉b, y = 〈j′ j2 · · · jq〉b
in x = 〈i1 · · · ip−1〉b, y = 〈ip j′ j2 · · · jq〉 über

Falls zl′ ein Endzustand wäre, dann würde dieses Unterprogramm noch um die

Anweisung
”
GOTO M3“ (Eintritt in Phase 3) erweitert.

Hans U. Simon, Ruhr-Universität Bochum, Germany TI WS 2007/2008

Theorie der Berechenbarkeit (Teil 1) Slide 53'

&

$

%

Primitiv rekursive und µ-rekursive Funktionen

Hans U. Simon, Ruhr-Universität Bochum, Germany TI WS 2007/2008

Theorie der Berechenbarkeit (Teil 1) Slide 54'

&

$

%

Primitiv rekursive Funktionen

Basisfunktionen:

konstante Funktionen: c(n1, . . . , nk) = c

Projektionen: πk
i (n1, . . . , nk) = ni

Nachfolgerfunktion: s(n) = n + 1

Beachte: π1
1(n) = n ist die identische Funktion.

Die Basisfunktionen sind primitiv rekursiv sowie alle Funktionen, die sich

induktiv wie folgt ergeben:

Einsetzungsschema Jede Funktion, die durch
”
Komposition“ von primitiv

rekursiven Funktionen entsteht, ist primitiv rekursiv.

primitives Rekursionsschema Jede Funktion, die sich durch
”
primitive

Rekursion (Induktion)“ aus primitiv rekursiven Funktionen ergibt, ist

primitiv rekursiv.

Hans U. Simon, Ruhr-Universität Bochum, Germany TI WS 2007/2008

Theorie der Berechenbarkeit (Teil 1) Slide 55'

&

$

%

Komposition und primitive Rekursion

Das Einsetzungsschema:

Gegeben seien primitiv rekursive Funktionen h : � r → � und gi : � k → � für

i = 1, . . . , r. Dann ist auch die Funktion f : � k → � mit

f(x) = h (g1(x), . . . , gr(x))

primitiv rekursiv.

Das Schema der primitiven Rekursion:

Gegeben seien primitiv rekursive Funktionen g : � k → � und h : � k+2 → � .

Dann ist die folgende (induktiv definierte) Funktion f : � k+1 → � primitiv

rekursiv:

f(0, x) = g(x)

f(n + 1, x) = h(f(n, x), n, x)

Hans U. Simon, Ruhr-Universität Bochum, Germany TI WS 2007/2008

Theorie der Berechenbarkeit (Teil 1) Slide 56'

&

$

%

Vertauschen, Identifikation

und Konstantsetzung von Variablen

In Verbindung mit den Projektionsabbildungen πk
i und den konstanten

Funktionen kann das Einsetzungsschema benutzt werden, um Variablen zu

vertauschen, zu identifizieren oder konstant zu setzen, ohne die Klasse der

primitiv rekursiven Funktionen zu verlassen.

Beispiel: Wenn f(u, v, w, x, y) primitiv rekursiv ist, dann ist auch

g(a, b, c) = f(b, b, c, a, 1)

= f
(
π3

2(a, b, c), π3
2(a, b, c), π3

3(a, b, c), π3
1(a, b, c), 1

)

primitiv rekursiv.

Hans U. Simon, Ruhr-Universität Bochum, Germany TI WS 2007/2008

Theorie der Berechenbarkeit (Teil 1) Slide 57'

&

$

%

Addition und Multiplikation sind primitiv rekursiv

Addition Nutze aus, dass (n + 1) + x = (n + x) + 1:

add(0, x) = x

add(n + 1, x) = s(add(n, x))

Dies entspricht dem primitiven Rekursionsschema mit g = π1
1 (identische

Funktion) und h = s ◦ π3
1 wegen

s(add(n, x)) = s(π3
1(add(n, x), n, x)) .

Ab jetzt geben wir g und h bei Verwendung des primitiven Rekursionsschema

nicht immer explixit an.

Multiplikation Nutze aus, dass (n + 1)x = nx + x:

mult(0, x) = 0

mult(n + 1, x) = add(mult(n, x), x)

Hans U. Simon, Ruhr-Universität Bochum, Germany TI WS 2007/2008

Theorie der Berechenbarkeit (Teil 1) Slide 58'

&

$

%

Modifizierte Differenz ist primitiv rekursiv

Funktion sub(x, y) soll die modifizierte Differenz

x
.
− y = max{0, x − y}

darstellen. Funktion

u(n) = max{0, n − 1}

ist entsprechend die modifizierte Vorgängerfunktion. Wegen

u(0) = 0

u(n + 1) = n

ist u primitiv rekursiv. Wegen

sub(x, 0) = x

sub(x, y + 1) = u(sub(x, y))

ist dann auch sub primitiv rekursiv.

Hans U. Simon, Ruhr-Universität Bochum, Germany TI WS 2007/2008

Theorie der Berechenbarkeit (Teil 1) Slide 59'

&

$

%

Exkurs: Bijektion zwischen � 2 und �

Folgende Funktion c(x, y), unten angegeben als Matrix, liefert eine (bijektive)

Abzählung aller Paare (x, y) ∈ � × � :

0 2 5 9 14 · · ·

1 4 8 13 19 · · ·

3 7 12 18 25 · · ·

6 11 17 24 32 · · ·

10 16 23 31 40 · · ·

· · ·

Nach diesem Schema gilt (Denksportaufgabe!)

c(x, y) =

(
x + y + 1

2

)

+ x .

Hans U. Simon, Ruhr-Universität Bochum, Germany TI WS 2007/2008

Theorie der Berechenbarkeit (Teil 1) Slide 60'

&

$

%

Primitive rekursive Zahlkodierung von Tupeln

Wegen
(

0

2

)

= 0

(
n + 1

2

)

=

(
n

2

)

+ n

ist die Funktion
(
n
2

)
primitiv rekursiv. Mit dem Einsetzungsschema folgt dann

leicht, dass erstens

c(x, y) =

(
x + y + 1

2

)

+ x

und zweitens

〈n0, n1, . . . , nk〉 = c(n0, c(n1, . . . , c(nk, 0) . . .))

primitiv rekursiv ist. Abbildung 〈· · · 〉 bettet � k+1 (injektiv) in � ein.

(Kodierung eines Zahlentupels durch eine Zahl).

Hans U. Simon, Ruhr-Universität Bochum, Germany TI WS 2007/2008

Theorie der Berechenbarkeit (Teil 1) Slide 61'

&

$

%

Rückgewinnung des Zahlentupels

Wie können wir aus der Zahl n = 〈n0, n1, . . . , nk〉 das Tupel (n0, n1, . . . , nk)

zurückgewinnen (mathematisch die Frage nach der Umkehrfunktion)?

Als bijektive Abbildung hat c(x, y) eine Umkehrfunktion (e, f) mit

e(c(x, y)) = x und f(c(x, y)) = y .

Wegen

n = 〈n0, n1, . . . , nk〉 = c(n0, c(n1, . . . , c(nk, 0) . . .))

ergibt sich

d0(n) := e(n) = n0

d1(n) := e(f(n)) = n1

· · ·

dk(n) := e(f(f(· · · f
︸ ︷︷ ︸

k−mal

(n) · · ·)) = nk

Hans U. Simon, Ruhr-Universität Bochum, Germany TI WS 2007/2008

Theorie der Berechenbarkeit (Teil 1) Slide 62'

&

$

%

Primitive Rekursivität der Dekodierung

Hilfssatz: Funktionen e, f mit

e(c(x, y)) = x und f(c(x, y)) = y

sind primitiv rekursiv.

Den etwas kniffligen Beweis lassen wir aus.

Mit dem Einsetzungsschema ergibt sich dann sofort die

Folgerung Funktionen d0, d1, . . . , dk mit

di(〈n0, . . . , nk〉) = ni

für i = 0, 1 . . . , k sind primitiv rekursiv.

Hans U. Simon, Ruhr-Universität Bochum, Germany TI WS 2007/2008

Theorie der Berechenbarkeit (Teil 1) Slide 63'

&

$

%

Primitive Rekursivität LOOP–berechenbarer Funktionen

Wir betrachten ein LOOP-Programm P , das eine Teilmenge der Variablen

x0, x1, . . . , xk verwendet. Das Verhalten von P ist vollständig beschrieben

durch die Funktion gP : � → � mit:

gP (〈

Anfangsbelegung
︷ ︸︸ ︷
a0, a1, . . . , ak 〉) = 〈

Endbelegung
︷ ︸︸ ︷

b0, b1, . . . , bk 〉 .

Satz Funktion gP zu einem LOOP-Programm P ist primitiv rekursiv.

Folgerung Jede LOOP-berechenbare Funktion ist primitiv rekursiv.

Denn: Wenn P mit Variablen x0, x1, . . . , xk die Funktion f : � r → �

berechnet, dann gilt

f(n1, . . . , nr) = d0(gP (〈0, n1, . . . , nr, 0, . . . , 0
︸ ︷︷ ︸

(k−r)−mal

〉)) .

Hans U. Simon, Ruhr-Universität Bochum, Germany TI WS 2007/2008

Theorie der Berechenbarkeit (Teil 1) Slide 64'

&

$

%

Primitive Rekursivität von gP

Q durchlaufe die
”
Teilprogramme“ von P , beginnend bei einfachen Wertzuwei-

sungen und fortschreitend zu zunehmend komplexeren Teilprogrammen. Das

zuletzt durchlaufene
”
Teilprogramm“ ist P selbst.

zu zeigen: Für jedes Teilprogramm Q ist gQ eine primitiv rekursive Funktion.

Fall 1 Q hat die Form xi := xj ± c.

Dann gilt gQ(〈a0, a1, . . . , ak〉) = 〈b0, b1, . . . , bk〉 mit

bl =







al falls l 6= i

aj ± c falls l = i
.

Wegen al = dl(〈a0, a1, . . . , ak〉) folgt die primitive Rekursivität von gQ unmit-

telbar aus dem Einsetzungsschema.

Hans U. Simon, Ruhr-Universität Bochum, Germany TI WS 2007/2008

Theorie der Berechenbarkeit (Teil 1) Slide 65'

&

$

%

Komplexere Teilprogramme

Fall 2 Q hat die Form
”
Q′; Q′′“

Da dann Q′, Q′′ zuvor schon betrachtet wurden ist die primitive Rekursi-

vität von gQ′ und gQ′′ schon geklärt. Wegen gQ = gQ′′ ◦ gQ′ ist nach dem

Einsetzungsschema auch gQ primitiv rekursiv.

Hans U. Simon, Ruhr-Universität Bochum, Germany TI WS 2007/2008

Theorie der Berechenbarkeit (Teil 1) Slide 66'

&

$

%

Komplexere Teilprogramme (fortgesetzt)

Fall 3 Q hat die Form
”
LOOP xi DO Q′ END“.

Da dann Q′ zuvor schon betrachtet wurde, ist die primitive Rekursivität von

gQ′ bereits geklärt. Betrachte Hilfsfunktion

h(n, x) = gQ′(gQ′(· · · (gQ′

︸ ︷︷ ︸

n−mal

(x) · · ·) .

Mit dem Schema der primitiven Rekursion

h(0, x) = x

h(n + 1, x) = gQ′(h(n, x))

folgt die primitive Rekursivität von h. Die primitive Rekursivität von gQ ergibt

sich dann mit dem Einsetzungsschema aus

gQ(〈a0, a1, . . . , ak〉) = h(ai, 〈a0, a1, . . . , ak〉) .

Hans U. Simon, Ruhr-Universität Bochum, Germany TI WS 2007/2008

Theorie der Berechenbarkeit (Teil 1) Slide 67'

&

$

%

LOOP-Berechenbarkeit

von primitiv rekursiven Funktionen

Induktion über den Aufbau von primitiv rekursiven Funktionen:

1. Die Basisfunktionen (Konstanten, Projektionen, Nachfolgerfunktion) sind

offensichtlich LOOP-berechenbar.

2. Betrachte eine Funktion f der Form

f(x) = h(g1(x), . . . , gr(x)) ,

wobei gemäß Induktionsvoraussetzung h, g1, . . . , gr LOOP-berechenbar

sind. Dann kann ein LOOP-Programm f(x) nach folgendem Schema

berechnen:

y1 := g1(x) ; · · · ; yr := gr(x) ; x0 := h(y1, . . . , yr)

Hans U. Simon, Ruhr-Universität Bochum, Germany TI WS 2007/2008

Theorie der Berechenbarkeit (Teil 1) Slide 68'

&

$

%

LOOP-Berechenbarkeit

von primitiv rekursiven Funktionen (fortgesetzt)

3. Betrachte eine Funktion f der Form

f(0, x) = g(x) und f(n + 1, x) = h(f(n, x), n, x) ,

wobei gemäß Induktionsvoraussetzung g und h LOOP-berechenbar sind.

Dann kann ein LOOP-Programm f(n, x) nach folgendem Schema berech-

nen:

z := 0 ; x0 := g(x) ; LOOP x1 DO z := z + 1 ; x0 := h(x0, z, x) END

Kommentare:

– Variable x1 enthält den Eingabeparameter n.

– Nach i Iterationen hat x0 den Wert f(i, x).

Hans U. Simon, Ruhr-Universität Bochum, Germany TI WS 2007/2008

Theorie der Berechenbarkeit (Teil 1) Slide 69'

&

$

%

Hauptresultate

Es ergibt sich der

Satz: Die Klasse der primitiv rekursiven Funktionen stimmt mit der Klasse

LOOP-berechenbaren Funktionen über ein.

Wir werden die Klasse der primitiv rekursiven Funktionen durch Einführung

des sogenannten µ-Operators zur Klasse der µ-rekursiven Funktionen erweitern.

Ziel: Die Klasse der µ-rekursiven Funktionen stimmt mit der Klasse WHILE-

berechenbaren Funktionen über ein.

Hans U. Simon, Ruhr-Universität Bochum, Germany TI WS 2007/2008

Theorie der Berechenbarkeit (Teil 1) Slide 70'

&

$

%

Der µ-Operator

Für eine gegebene (evtl. partielle) Funktion f : � k+1 → � bezeichne µf : � k → �

die Funktion

µf(x) := min{n| f(n, x) = 0, ∀m < n : f(m, x) ist definiert}

verbunden mit der Konvention min ∅ =
”
undefiniert“.

Intuitive Bemerkung Falls µf(x) definiert ist, dann liefert diese Funktion

eine Art
”
kleinste Nullstelle“ für die Funktion f(n, x) (aufgefasst als Funktion

in n).

Definition Die Klasse der µ-rekursiven Funktionen ist die kleinste Klasse

von (evtl. partiellen) Funktionen, die die Basisfunktionen enthält und abge-

schlossen ist unter Einsetzung, primitiver Rekursion und der Anwendung des

µ-Operators.

Hans U. Simon, Ruhr-Universität Bochum, Germany TI WS 2007/2008

Theorie der Berechenbarkeit (Teil 1) Slide 71'

&

$

%

µ–Rekursivität WHILE–berechenbarer Funktionen

Wir betrachten ein WHILE-Programm P , das eine Teilmenge der Variablen

x0, x1, . . . , xk verwendet. Das Verhalten von P ist vollständig beschrieben

durch die (evtl. partielle) Funktion gP : � → � mit:

gP (〈

Anfangsbelegung
︷ ︸︸ ︷
a0, a1, . . . , ak 〉) = 〈

Endbelegung
︷ ︸︸ ︷

b0, b1, . . . , bk 〉

verbunden mit der Konvention, dass gP undefiniert ist, wenn P nicht terminiert.

Satz Funktion gP zu einem WHILE-Programm P ist µ-rekursiv.

Folgerung Jede WHILE-berechenbare Funktion ist µ-rekursiv.

Hans U. Simon, Ruhr-Universität Bochum, Germany TI WS 2007/2008

Theorie der Berechenbarkeit (Teil 1) Slide 72'

&

$

%

µ-Rekursivität von gP

Q durchlaufe die
”
Teilprogramme“ von P , beginnend bei einfachen Wertzuwei-

sungen und fortschreitend zu zunehmend komplexeren Teilprogrammen. Das

zuletzt durchlaufene
”
Teilprogramm“ ist P selbst.

zu zeigen: Für jedes Teilprogramm Q ist gQ eine µ rekursive Funktion.

Die Fälle der Wertzuweisung und der Komposition zweier WHILE-Programme

lassen sich abhandeln wie bei der analogen Überlegung für LOOP-Programme.

Wesentlich neu ist nur der Fall der WHILE-Anweisung.

Hans U. Simon, Ruhr-Universität Bochum, Germany TI WS 2007/2008

Theorie der Berechenbarkeit (Teil 1) Slide 73'

&

$

%

WHILE-Anweisung und µ-Operator

Neuer Fall Q hat die Form
”
WHILE xi 6= 0 DO Q′ END“.

Da dann Q′ zuvor schon betrachtet wurde, ist die µ-Rekursivität von gQ′

bereits geklärt. Betrachte die µ-rekursive (!) Hilfsfunktion

h(n, x) = gQ′(gQ′(· · · (gQ′

︸ ︷︷ ︸

n−mal

(x) · · ·) .

Beachte: di(h(n, x)) ist der Wert der Variablen xi nach n Ausführungen von

Q. Die WHILE-Anweisung führt daher Q insgesamt

min{n| di(h(n, x)) = 0} = µ(di ◦ h)(x)

mal aus (sofern sie terminiert). Mit

gQ(x) = h (µ(di ◦ h)(x), x)

ergibt sich die µ-Rekursivität von gQ.

Hans U. Simon, Ruhr-Universität Bochum, Germany TI WS 2007/2008

Theorie der Berechenbarkeit (Teil 1) Slide 74'

&

$

%

WHILE-Berechenbarkeit von µ-rekursiven Funktionen

Induktion über den Aufbau von µ-rekursiven Funktionen: Wegen

der Analogie zur LOOP-Berechenbarkeit von primitiv rekursiven Funktionen

beschränken wir uns auf den

Neuen Fall: Betrachte eine (evtl. partielle) Funktion der Form

µf(x) = min{n| f(n, x) = 0, ∀m < n : f(m, x) ist definiert} .

Gemäß Induktionsvoraussetzung ist f(n, x) WHILE-berechenbar. Dann können

wir µf(x) nach folgendem Schema berechnen:

x0 := 0 ; y := f(0, x) ; WHILE y 6= 0 DO x0 := x0 + 1 ; y := f(x0, x) END

Kommentar: Sofern µf(x) definiert ist, enthält Variable x0 am Ende die

kleinste Zahl n ∈ � mit f(n, x) = 0 (kleinste Nullstelle).

Hans U. Simon, Ruhr-Universität Bochum, Germany TI WS 2007/2008

Theorie der Berechenbarkeit (Teil 1) Slide 75'

&

$

%

Die Ackermannfunktion

Hans U. Simon, Ruhr-Universität Bochum, Germany TI WS 2007/2008

Theorie der Berechenbarkeit (Teil 1) Slide 76'

&

$

%

Eine Frage zu Anfang

Ist jede intuitiv berechenbare totale (= total definierte) Funktion

f : �

k → �

LOOP–berechenbar?

Im Jahre 1928 präsentierte Ackermann ein Gegenbeispiel.

Seine Idee: Entwerfe eine Funktion, die schneller wächst als jede LOOP-

berechenbare Funktion.

Hans U. Simon, Ruhr-Universität Bochum, Germany TI WS 2007/2008

Theorie der Berechenbarkeit (Teil 1) Slide 77'

&

$

%

Die Ackermannfunktion

Betrachte folgende induktiv definierte Funktion a : � 2 → � :

a(0, y) = y + 1 für alle y ≥ 0

a(x, 0) = a(x − 1, 1) für alle x ≥ 1

a(x, y) = a(x − 1, a(x, y − 1)) für alle x, y ≥ 1

Die Definition besteht zwar nur aus drei Gleichungen, ist aber nicht ganz leicht

zu durchschauen.

Hans U. Simon, Ruhr-Universität Bochum, Germany TI WS 2007/2008

Theorie der Berechenbarkeit (Teil 1) Slide 78'

&

$

%

Ackermannfunktion (fortgesetzt)

Per
”
Salami–Taktik“ zerlegen wir a(x, y) in

”
Scheiben“ Ax : � → � :

Ax(y) := a(x, y)

und
”
schnuppern“ an A0, A1, A2,

Offensichtlich gilt A0(y) = y + 1. Mit Induktion ergibt sich relativ leicht

(s. Übung):

A1(y) = y + 2

A2(y) = 2y + 3

A3(y) = 2y+3 − 3

A4(y) = 22·
·
·
2

︸ ︷︷ ︸

y+3 Zweien

−3

Die Folge beginnt harmlos, nimmt aber dann schnell an Fahrt auf.

Hans U. Simon, Ruhr-Universität Bochum, Germany TI WS 2007/2008

Theorie der Berechenbarkeit (Teil 1) Slide 79'

&

$

%

Macht die Definition von Ackermann Sinn ?

Wir beweisen durch
”
doppelte Induktion“, dass alle Funktionen Ax Werte aus

� als Ergebnis liefern.

Induktionsanfang: A0(y) = y + 1 ∈ � für alle y ∈ � .

Induktionsvoraussetzung: Ax−1(y) ∈ � für alle y ∈ � .

Induktionsschritt: Zum Studium von Ax erfolgt erneut eine vollständige

Induktion (diesmal nach y):

Induktionsanfang: Ax(0) = a(x, 0) = a(x − 1, 1) = Ax−1(1) ∈ � .

Induktionsvoraussetzung: Ax(y − 1) ∈ � .

Induktionsschritt:

Ax(y) = a(x, y) = a(x − 1, a(x, y − 1)) =

∈�

︷ ︸︸ ︷

Ax−1(Ax(y − 1)
︸ ︷︷ ︸

∈�

)

Folgerung: a(x, y) = Ax(y) ∈ � für alle x, y ∈ � .

Hans U. Simon, Ruhr-Universität Bochum, Germany TI WS 2007/2008

Theorie der Berechenbarkeit (Teil 1) Slide 80'

&

$

%

Ist die Ackermannfunktion berechenbar ?

Wir berechnen a(3, 0) mit Hilfe eines Kellerspeichers (Stapels):

0 1

0 1 1 1 0 2

0 1 1 0 2 2 1 0 0 0 3

0 1 2 1 0 0 0 3 1 0 0 0 0 0 4

3 2 1 1 1 1 1 1 0 0 0 0 0 0 0 5

• Da wir mit
”
brain power“ A3(y) = 2y+3 − 3 herausgefunden hatten, hätten

wir das Ergebnis auch einfacher bestimmen können:

a(3, 0) = A3(0) = 20+3 − 3 = 8 − 3 = 5 .

• Das Stapelverfahren (langsam wie es ist) funktioniert aber für alle

möglichen Eingaben (x, y) ∈ � 2.

Hans U. Simon, Ruhr-Universität Bochum, Germany TI WS 2007/2008

Theorie der Berechenbarkeit (Teil 1) Slide 81'

&

$

%

Die allgemeine Vorgehensweise beim Stapelverfahren

Wir erinnern an die Definitionsgleichungen für die Ackermannfunktion:

a(0, y) = y + 1 für alle y ≥ 0

a(x, 0) = a(x − 1, 1) für alle x ≥ 1

a(x, y) = a(x − 1, a(x, y − 1)) für alle x, y ≥ 1

Das Stapelverfahren interpretiert die zwei obersten Operanden x, y des Stapel

(y oben) als a(x, y) und manipuliert den Stapel wie folgt:

• Ersetze 0, y durch y + 1 (Stapel wird niedriger).

• Für x ≥ 1 ersetze x, 0 durch x − 1, 1.

• Für x, y ≥ 1 ersetze x, y durch x − 1, x, y − 1 (Stapel wird höher).

Dadurch wird a(x, y) stets gemäß der Definitionsgleichungen ausgewertet.

Hans U. Simon, Ruhr-Universität Bochum, Germany TI WS 2007/2008

Theorie der Berechenbarkeit (Teil 1) Slide 82'

&

$

%

Berechenbarkeit der Ackermannfunktion

Das Stapelverfahren ist leicht auf einer Mehrband–DTM implementierbar, die

eines ihrer Bänder als Kellerspeicher verwendet.

Folgerung: Die Ackermannfunktion ist berechenbar.

In der Folge sagen wir einfach
”
berechenbar“ statt

”
Turing–berechenbar“ (oder

”
WHILE“– bzw.

”
GOTO–berechenbar“).

Hans U. Simon, Ruhr-Universität Bochum, Germany TI WS 2007/2008

Theorie der Berechenbarkeit (Teil 1) Slide 83'

&

$

%

Monotonie–Eigenschaften der Ackermannfunktion

Die folgenden Ungleichungen gelten für alle x, y ∈ � :

y < a(x, y) (1)

a(x, y) < a(x, y + 1) (2)

a(x, y + 1) ≤ a(x + 1, y) (3)

a(x, y) < a(x + 1, y) (4)

Insbesondere ist a(x, y) streng monoton wachsend in x und y.

Hans U. Simon, Ruhr-Universität Bochum, Germany TI WS 2007/2008

Theorie der Berechenbarkeit (Teil 1) Slide 84'

&

$

%

Beweis der 1. Ungleichung

Zum Beweis von a(x, y) > y verwenden wir doppelte Induktion:

Induktionsanfang: a(0, y) = y + 1 > y für alle y ≥ 0.

Induktionsvoraussetzung: a(x − 1, y) > y für alle y ≥ 0.

Induktionsschritt: Analyse von a(x, y) erfolgt mit Induktion nach y.

Induktionsanfang: a(x, 0) = a(x − 1, 1) > 1 > 0.

Induktionsvoraussetzung: a(x, y − 1) > y − 1 und somit a(x, y − 1) ≥ y.

Induktionsschritt: für alle y ≥ 0 gilt dann

a(x, y) = a(x − 1, a(x, y − 1)) > a(x, y − 1) ≥ y .

Hans U. Simon, Ruhr-Universität Bochum, Germany TI WS 2007/2008

Theorie der Berechenbarkeit (Teil 1) Slide 85'

&

$

%

Beweis der 2. Ungleichung

Der Beweis von a(x, y + 1) > a(x, y) erfolgt durch eine Fallunterscheidung:

Fall 1: x = 0.

a(0, y + 1) = y + 2>y + 1 = a(0, y)

Fall 2: x ≥ 1.

a(x, y + 1) = a(x − 1, a(x, y))
(1)
> a(x, y)

Hans U. Simon, Ruhr-Universität Bochum, Germany TI WS 2007/2008

Theorie der Berechenbarkeit (Teil 1) Slide 86'

&

$

%

Beweis der 3. Ungleichung

Zum Beweis von a(x + 1, y) ≥ a(x, y + 1) verwenden wir Induktion nach y:

Induktionsanfang: a(x + 1, 0) = a(x, 1).

Induktionsvoraussetzung: a(x + 1, y − 1) ≥ a(x, y).

Induktionsschritt: Nun ergibt sich a(x + 1, y) ≥ a(x, y + 1) wie folgt:

a(x + 1, y) = a(x, a(x + 1, y − 1)
︸ ︷︷ ︸

IV

≥ a(x,y)

) Definition der Ackermannfunktion

≥ a(x, a(x, y)
︸ ︷︷ ︸

(1)

≥ y+1

) Monotonie in y

≥ a(x, y + 1) Monotonie in y

Hans U. Simon, Ruhr-Universität Bochum, Germany TI WS 2007/2008

Theorie der Berechenbarkeit (Teil 1) Slide 87'

&

$

%

Beweis der 4. Ungleichung

Die Ungleichung a(x, y) < a(x + 1, y) ergibt sich direkt wie folgt:

a(x, y)
(2)
< a(x, y + 1)

(3)

≤ a(x + 1, y)

Hans U. Simon, Ruhr-Universität Bochum, Germany TI WS 2007/2008

Theorie der Berechenbarkeit (Teil 1) Slide 88'

&

$

%

Wachstumsfunktion zu LOOP–Programmen

Betrachte ein LOOP–Programm P . P führt Anfangswerte n0, n1, n2, . . . der

Variablen in Endwerte über, die wir mit n′
0, n

′
1, n

′
2, . . . bezeichnen.

Folgende Funktion misst gewissermaßen, wie stark die Werte der Variablen

durch Ausführung von P wachsen könnnen:

fP (n) := max







∑

i≥0

n′
i

∣
∣
∣
∣
∣
∣

∑

i≥0

ni ≤ n







In Worten: fP (n) ist die größtmögliche Summe der Variablenendwerte, wenn

die Summe der Variablenanfangswerte durch n beschränkt ist.

Hans U. Simon, Ruhr-Universität Bochum, Germany TI WS 2007/2008

Theorie der Berechenbarkeit (Teil 1) Slide 89'

&

$

%

Wachstumsfunktion (fortgesetzt)

Wenn P eine Funktion g : � → � berechnet, dann gilt offensichtlich

g(n) ≤ fP (n) ,

da die Anfangskonfiguration zu Eingabe n mit einer speziellen Wahl der

Variablenanfangswerte, nämlich

n0 = 0, n1 = n und ni = 0 für alle i ≥ 2 ,

operiert, welche bei dem Maximum in der Definition von fP berücksichtigt

wird.

Hans U. Simon, Ruhr-Universität Bochum, Germany TI WS 2007/2008

Theorie der Berechenbarkeit (Teil 1) Slide 90'

&

$

%

Verhältnis von Ackermannfunktion und

LOOP–Programmen

Schlüsselresultat: Für jedes LOOP–Programm P gilt:

∃k ≥ 0, ∀n ≥ 0 : fP (n) < Ak(n)

Die einem LOOP–Programm P zugeordnete Funktion fP wächst demnach

nicht schneller als die k–te
”
Schicht“ Ak(·) der Funktion a(·, ·).

Folgerung: Die Ackermannfunktion ist nicht LOOP–berechenbar.

Hans U. Simon, Ruhr-Universität Bochum, Germany TI WS 2007/2008

Theorie der Berechenbarkeit (Teil 1) Slide 91'

&

$

%

Widerspruchsbeweis zur Folgerung

(heuchlerische) Annahme: a(x, y) ist LOOP–berechenbar.

• Dann ist auch g(n) := a(n, n) LOOP–berechenbar, sagen wir mit LOOP–

Programm P .

• Es gilt dann g(n) ≤ fP (n) für alle n ≥ 0.

• Wähle dann k so aus, dass fP (n) < Ak(n) für alle n ≥ 0.

• Für n = k ergibt sich nun ein Widerspruch:

g(k) ≤ fP (k)<Ak(k) = a(k, k) = g(k)

Hans U. Simon, Ruhr-Universität Bochum, Germany TI WS 2007/2008

Theorie der Berechenbarkeit (Teil 1) Slide 92'

&

$

%

Beweis des Schlüsselresultates

Der Beweis ist aufgebaut wie folgt:

• Reduktion des Schlüsselresultates auf sogenannte
”
einfache“ LOOP–

Programme.

• Beweis des Schlüsselresultates für einfache LOOP–Programme mit Hilfe

von struktureller Induktion.

Hans U. Simon, Ruhr-Universität Bochum, Germany TI WS 2007/2008

Theorie der Berechenbarkeit (Teil 1) Slide 93'

&

$

%

Einfache LOOP–Programme

Ein LOOP–Programm heißt einfach gdw es die folgenden Bedingungen erfüllt:

• Anweisungen der Form
”
xi := xj ± c“ verwenden nur Konstanten c ∈ {0, 1}.

• Bei Anweisungen der Form
”
LOOP xi DO Q END“ wird Variable xi nicht

innerhalb von Q verwendet.

Jedes LOOP–Programm ist in ein äquivalents einfaches LOOP–Programm

transformierbar:

• Eine Anweisung
”
xi := xj ± c“ mit c ≥ 2 kann durch c–fache Hintereinan-

derausführung von
”
xi := xj ± 1“ simuliert werden.

• Eine Anweisung der Form
”
LOOP xi DO Q END“, die xi innerhalb Q

verwendet, kann statt xi eine bisher unbenutzte Variable y verwenden,

wobei der LOOP–Anweisung mit Laufvariable y die Wertzuweisung

y := xi + 0 vorangeschaltet wird.

Hans U. Simon, Ruhr-Universität Bochum, Germany TI WS 2007/2008

Theorie der Berechenbarkeit (Teil 1) Slide 94'

&

$

%

Induktionsanfang

P hat die Form
”
xi := xj ± c“ mit c ∈ {0, 1}.

Das größte Wachstum wird erzielt für Variablenanfangswerte

ni = 0, nj = n

und die Anweisung
”
xi := xj + 1“, wobei sich Variablenendwerte

n′
i = n + 1, n′

j = n

ergeben (restliche Variablen auf Null). Somit gilt:

fP (n) ≤ 2n + 1<2n + 3 = A2(n) .

Hans U. Simon, Ruhr-Universität Bochum, Germany TI WS 2007/2008

Theorie der Berechenbarkeit (Teil 1) Slide 95'

&

$

%

1. Induktionsschritt
P hat die Form

”
P1; P2“.

Induktionsvoraussetzung: Es gibt Konstanten k1, k2 so dass

fP1(n) < Ak1(n) und fP2(n) < Ak2(n)

für alle n ≥ 0.

Offensichtlich gilt

fP (n) ≤ fP2 (fP1(n))
IV
< Ak2 (fP1(n))

IV
< Ak2 (Ak1(n)) = a(k2, a(k1, n)) .

Fall 1: k1 ≤ k2 + 1.

a(k2, a(k1, n))≤a(k2, a(k2+1, n)) = a(k2+1, n+1) ≤ a(k2+2, n) = Ak2+2(n)

Fall 2: k1 > k2 + 1.

a(k2, a(k1, n))<a(k1 − 1, a(k1, n)) = a(k1, n + 1) ≤ a(k1 + 1, n) = Ak1+1(n)

Für k := max{k1 + 1, k2 + 2} gilt dann fP (n) < Ak(n) für alle n ≥ 0.

Hans U. Simon, Ruhr-Universität Bochum, Germany TI WS 2007/2008

Theorie der Berechenbarkeit (Teil 1) Slide 96'

&

$

%

2. Induktionsschritt

P hat die Form
”
LOOP xi DO Q END“, wobei xi in Q nicht verwendet wird.

Induktionsvoraussetzung: Es gibt eine Konstante k so dass fQ(n) < Ak(n)

für alle n ≥ 0.

Wähle Variablenanfangswerte n0, n1, n2, . . . mit fP (n) =
∑

j≥0 n′
i und setze

m := ni (Anfangswert von xi, der zu maximaler Summe der Variablenendwerte

führt).

Dann gilt

fP (n) ≤ fm
Q (n − m) + m .

Erkläre !

Ausgehend von dieser Ungleichung und fQ(n) < Ak(n) werden wir

fP (n) < Ak+1(n) , (5)

nachweisen, was den Induktionsbeweis abschließt.

Hans U. Simon, Ruhr-Universität Bochum, Germany TI WS 2007/2008

Theorie der Berechenbarkeit (Teil 1) Slide 97'

&

$

%

”
High Noon“ bei Familie Ackermann

fP (n) ≤ fm
Q (n − m) + m

≤ Ak(fm−1
Q (n − m) + (m − 1)

≤ A2
k(fm−2

Q (n − m)) + (m − 2)

· · ·

≤ Am
k (n − m)

= Am−2
k (a(k, a(k, n − m)))

< Am−2
k (a(k, a(k + 1, n − m))

︸ ︷︷ ︸

=a(k+1,n−m+1)

)

= Am−3
k (a(k, (a(k + 1, n − m + 1))

︸ ︷︷ ︸

=a(k+1,n−m+2)

)

· · ·

= a(k + 1, n − 1)

< a(k + 1, n) = Ak+1(n)

Hans U. Simon, Ruhr-Universität Bochum, Germany TI WS 2007/2008

