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Die Turingmaschine

• DTM = Deterministische Turingmaschine

• NTM = Nichtdeterministische Turingmaschine

• TM = DTM oder NTM

Intuitiv gilt:

• DTM = (DFA + dynamischer Speicher)

• NTM = (NFA + dynamischer Speicher)

• Der dynamische Speicher ist ein (in Zellen unterteiltes) zweiseitig unend-

liches Band versehen mit einem Lese–Schreibkopf. Es enthält anfangs die

Eingabe, dient aber auch als Arbeitsspeicher.

Diesmal ist aber der Zugriff auf den dynamischen Speicher nicht durch

kellerartige Organisation eingeschränkt !!

Hans U. Simon, Ruhr-Universität Bochum, Germany TI WS 2007/2008
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DTM (formale Definition)

Eine DTM M besteht aus den folgenden Komponenten:

• Z, die Zustandsmenge (eine endliche Menge)

• Σ, das Eingabealphabet (ebenfalls endlich)

• Γ ⊃ Σ, das Arbeitsalphabet (ebenfalls endlich)

• δ : Z×Γ → Z×Γ×{L, R, N}, die partiell definierte Überführungsfunktion

• z0 ∈ Z, der Startzustand

• � ∈ Γ \ Σ, das Blank (auch Leerzeichen genannt)

• E ⊆ Z die Menge der Endzustände:

δ(ze, A) ist undefiniert für alle ze ∈ E und alle A ∈ Γ.

Hans U. Simon, Ruhr-Universität Bochum, Germany TI WS 2007/2008
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Arbeitsweise der DTM

• Anfangs befindet sich M im Startzustand z0, ihr Band enthält das

Eingabewort w ∈ Σ∗ (umrahmt von Blanks) und der Kopf steht auf dem

ersten Zeichen von w (bzw. auf einem Blank, falls w = ε).

• Falls sich M im Zustand z ∈ Z befindet, der Kopf das Zeichen A ∈ Γ liest

und

δ(z, A) = (z′, A′, d) ∈ Z × Γ × {L, R, N} ,

dann geht M in den Zustand z′ über und ersetzt A durch A′. Für d = L

bzw. d = R erfolgt zusätzlich eine Kopfbewegung auf die linke bzw. rechte

Nachbarzelle des Bandes.

• M stoppt gdw M in einem Zustand z ist, ein Symbol A liest und δ(z, A)

undefiniert ist.

• Die Eingabe wird akzeptiert gdw M im Laufe der Rechnung in einen

Endzustand gerät (und dann automatisch stoppt).

Hans U. Simon, Ruhr-Universität Bochum, Germany TI WS 2007/2008
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NTMs

Eine NTM M ist analog definiert.

Unterschied: Die Überführungsfunktion δ einer NTM hat die Form

δ : Z × Γ → P(Z × Γ × {L, R, N}) ,

wobei (in Analogie zu DTMs)

∀ze ∈ E, A ∈ Γ : δ(ze, A) = ∅ .

Hans U. Simon, Ruhr-Universität Bochum, Germany TI WS 2007/2008
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Arbeitsweise von NTMs

Wie bei nicht-deterministischen Maschinen üblich hat aber die NTM die
”
Qual

der Wahl“ (i.A. mehrere mögliche nächste Rechenschritte):

• Anfangs befindet sich M im Startzustand z0, ihr Band enthält das

Eingabewort w ∈ Σ∗ (umrahmt von Blanks) und der Kopf steht auf dem

ersten Zeichen von w (bzw. auf einem Blank, falls w = ε).

• Falls sich M im Zustand z ∈ Z befindet, der Kopf das Zeichen A ∈ Γ liest

und

(z′, A′, d) ∈ δ(z, A) ⊆ Z × Γ × {L, R, N} ,

dann darf M in den Zustand z′ übergehen, A durch A′ ersetzen und die

d ∈ {L, R, N} entsprechende Kopfbewegung ausführen.

• Die Eingabe wird akzeptiert gdw M durch geeignete Wahl der möglichen

Rechenschritte in einen Endzustand geraten kann.

Hans U. Simon, Ruhr-Universität Bochum, Germany TI WS 2007/2008
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Konfigurationen einer TM

Die Konfiguration einer TM besteht aus

• dem aktuellen Zustand z ∈ Z,

• der Position des Kopfes auf dem Band.

• dem Bandinhalt γ ∈ Γ∗ (inklusive des Eingabebereiches und den bereits

während der Rechnung besuchten Zellen)

Notation: αzβ, wobei γ = αβ der aktuelle Bandinhalt und der Kopf auf dem

ersten Zeichen von β positioniert ist

Anfangskonfiguration bei Eingabe w: z0w (hier: α = ε, β = w)

Akzeptierende Endkonfiguration: αzβ für jedes z ∈ E, α, β ∈ Γ∗

Stoppkonfiguration: αzAβ′ für jedes z ∈ Z, α, β′ ∈ Γ∗, A ∈ Γ mit δ(z, A) ist

undefiniert.

Beobachtung: Da δ auf Endzuständen undefiniert ist, ist jede akzeptierende

Endkonfiguration auch eine Stoppkonfiguration.

Hans U. Simon, Ruhr-Universität Bochum, Germany TI WS 2007/2008
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Folgekonfigurationen

Eine
”
Rechnung“ einer TM lässt sich als Folge von Konfigurationen beschreiben.

Definition:

1. α′z′β′ heißt unmittelbare Folgekonfiguration von αzβ gdw α′z′β′ aus αzβ

durch einen
”
Rechenschritt“ (einmalige Verwendung der Überführungs-

funktion) resultieren kann.

Notation: αzβ ` α′z′β′.

2. α′z′β′ heißt Folgekonfiguration von αzβ gdw α′z′β′ aus αzβ durch eine

(evtl. leere) Folge von Rechenschritten resultieren kann.

Notation: αzβ `∗ α′z′β′.

Formal ist
”
`∗” die reflexive–transitive Hülle von

”
`“.

Im Falle einer DTM ist die unmittelbare Folgekonfiguration stets eindeutig

bestimmt und es gibt nur eine mögliche Rechnung auf der Eingabe.

Hans U. Simon, Ruhr-Universität Bochum, Germany TI WS 2007/2008
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Beispiel

bin(n) bezeichne die Binärdarstellung einer Zahl n ≥ 0.

Aufgabe: Implementiere einen Binärzähler, der, gestartet auf bin(n),

• bin(n + 1) berechnet,

• den Kopf auf dem ersten Zeichen von bin(n + 1) positioniert

• und sich dann in einen Endzustand begibt und stoppt.

Idee: Verwende vier Zustände für folgende Phasen der Berechnung:

• z0: Suche das Bit am weitesten rechts.

• z1: Inkrementiere den Zähler (unter Beachtung des Übertrages).

• z2: Suche das Bit am weitesten links.

• ze: Stoppe.

Hans U. Simon, Ruhr-Universität Bochum, Germany TI WS 2007/2008
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Beispiel (fortgesetzt)

Komponenten der
”
Binärzähler“–DTM:

• Zustandsmenge {z0, z1, z2, ze}

• Eingabealphabet {0, 1}

• Arbeitsalphabet {0, 1, �}

• Überführungsfunktion δ (weiter unten spezifizierrt)

• Startzustand z0

• Blank �

• Menge {ze} der Endzustände

Hans U. Simon, Ruhr-Universität Bochum, Germany TI WS 2007/2008
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Beispiel (fortgesetzt)

”
Turing–Tafel“ von M (tabellarische Angabe von δ):

δ 0 1 �

z0 (z0, 0, R) (z0, 1, R) (z1, �, L)

z1 (z2, 1, L) (z1, 0, L) (ze, 1, N)

z2 (z2, 0, L) (z2, 1, L) (ze, �, R)

--- Macht das Sinn ?? Erläutere !! ---

Hans U. Simon, Ruhr-Universität Bochum, Germany TI WS 2007/2008
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Sprache einer TM

Die folgende Definition der von der TM M erkannten Sprache T (M) entspricht

unserer Vereinbarung über das Akzeptieren mit Endzustand:

T (M) := {w ∈ Σ∗| ∃z ∈ E, α, β ∈ Γ∗ : z0w `∗ αzβ}

In Worten: Wort w gehört zur Sprache T (M) gdw M durch Verarbeitung

der Eingabe w aus der Anfangskonfiguration in eine akzeptierende Endkonfi-

guration gelangen kann.

Hans U. Simon, Ruhr-Universität Bochum, Germany TI WS 2007/2008



Kontextsensitive und Typ 0 Sprachen Slide 13'

&

$

%

Haltebereich einer DTM

Wir definieren den Haltebereich einer DTM M wie folgt:

H(M) :=

{w ∈ Σ∗| ∃z ∈ Z, α, β′ ∈ Γ∗, A ∈ Γ : z0w `∗ αzAβ′, δ(z, A) ist undefiniert}

In Worten: Wort w gehört zum Haltebereich H(M) gdw M durch Verarbei-

tung der Eingabe w aus der Anfangskonfiguration in eine Stoppkonfiguration

gelangt.

Beobachtung: Da jede Endkonfiguration auch eine Stoppkonfiguration ist,

gilt L(M) ⊆ H(M).

Hans U. Simon, Ruhr-Universität Bochum, Germany TI WS 2007/2008
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DTMs versus realistischere Rechnermodelle

Die
”
Programmiersprache“ für eine Turingmaschine ist

• leicht zu erlernen,

• aber wenig problemorientiert und daher mühselig zu handhaben.

Wir werden an einem späteren Punkt der Vorlesung folgendes aufzeigen:

1. DTMs sind
”
universelle“ Rechnermodelle: alles was in einem intuitiven

Sinne berechenbar ist, ist auch durch eine DTM berechenbar.

2. DTMs können ohne wesentlichen Effizienzverlust realistischere Modelle

moderner Rechner simulieren.

Da die Angabe von Turing–Tafeln sehr mühselig ist, werden wir im folgenden

die Strategie einer TM zur Lösung eines Problems mehr informell beschreiben

(eine Vorgehensweise, die später durch den Nachweis der Universalität der

DTM gerechtfertigt wird).

Hans U. Simon, Ruhr-Universität Bochum, Germany TI WS 2007/2008
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Linear beschränkte TMs

Definition: Für ein Zeichen a ∈ Σ heißt â das zugehörige markierte Zeichen.

Bei Wörtern der Form

a1 · · · an−1ân mit a1, . . . , an ∈ Σ

sprechen wir von einem Eingabewort mit Endmarkierung.

Definition: Eine TM M heißt linear beschränkt, wenn sie, gestartet auf einem

Eingabewort mit Endmarkierung, im Laufe ihrer Rechnung nur die Zellen

besucht, welche im Eingabebereich liegen. Ihr Eingabealphabet hat dann die

Form Σ ∪ Σ̂ und die von ihr erkannte Sprache ist gegeben durch

T (M) := {a1 · · · an−1an ∈ Σ+| ∃z ∈ E, α, β ∈ Γ∗ : z0a1 · · · an−1ân `∗ αzβ}

Bemerkung: Da eine linear beschränkte TM auf dem ersten Zeichen des

Eingabewortes gestartet wird, kann sie für eine etwaige Markierung des linken

Wortendes gleich im ersten Rechenschritt selber sorgen.

Hans U. Simon, Ruhr-Universität Bochum, Germany TI WS 2007/2008
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LBA und DLBA

• Eine linear beschränkte NTM heißt kurz LBA (Linear Bounded Automa-

ton).

• Eine linear beschränkte DTM heißt kurz DLBA (Deterministic Linear

Bounded Automaton).

Wir werden die folgenden Resultate zeigen:

• Die Klasse der von LBAs erkennbaren Sprachen stimmt überein mit der

Klasse der kontextsensitiven Sprachen.

• Die Klasse der von NTMs erkennbaren Sprachen stimmt überein mit der

Klasse der Sprachen vom Typ 0.

Hans U. Simon, Ruhr-Universität Bochum, Germany TI WS 2007/2008
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Von der kontextsensitiven Grammatik zum LBA

Satz: Jede kontextsensitive Grammatik G kann in einen äquivalenten LBA M

transformiert werden.

Hans U. Simon, Ruhr-Universität Bochum, Germany TI WS 2007/2008
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Eine Beweisskizze

Gestartet auf der (mit Endmarkierung versehenen) Eingabe w = a1 · · · an−1ân

versucht M eine Ableitung S⇒∗

G
a1 · · · an−1an ”

rückwärts“ zu rekonstruieren:

• Die letzte
”
Satzform“ dieser Ableitung steht (in Form der Eingabe) bereits

zu Anfang auf dem Band (mal abgesehen von der Endmarkierung).

• Nehmen wir induktiv an, eine Satzform β der Ableitung steht auf dem

Band. Um zur Vorgängersatzform α gelangen zu können, darf M

– eine Regel u → v ∈ P und einen Teilstring v in β (sofern vorhanden)

auswählen,

– v durch u ersetzen

– und die Bandinschrift wieder komprimieren falls |u| < |v|.

• M versetzt sich in einen Endzustand gdw bei der beschriebenen Vorge-

hensweise irgendwann die
”
Satzform“ S auf dem Band steht.

Hans U. Simon, Ruhr-Universität Bochum, Germany TI WS 2007/2008
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Beweisskizze (fortgesetzt)
Beachte: Da für jede Regel u → v ∈ P die Bedingung |u| ≤ |v| erfüllt ist,

führen die von M vorgenommenen Stringersetzungen niemals aus dem Einga-

bebereich heraus.

Offensichtlich sind die folgenden Aussagen äquivalent:

1. w ∈ L(G).

2. Es existiert eine Ableitung von w aus S mit Regeln von G.

3. Es existiert eine Rechnung von M , die die Satzformen der Ableitung in

umgekehrter Reihenfolge rekonstruiert (von w in Richtung S).

4. w ∈ T (M).

Technische Umsetzung der Beweisskizze durch Angabe der Komponenten von

M lassen wir aus.

Hans U. Simon, Ruhr-Universität Bochum, Germany TI WS 2007/2008
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Vom LBA zur kontextsensitiven Grammatik

Satz: Jeder LBA M kann in eine äquivalente kontextsensitive Grammatik G

transformiert werden.

Aufbau des Beweises:

• Fasse eine Konfiguration als Satzform auf.

• Entwerfe kontextsensitive Regeln für G, die Rechenschritte von M simu-

lieren.

• Erweitere das Regelsystem, damit das Eingabewort erhalten bleibt.

• Folgere schließlich die Äquivalenz von G und M .

Hans U. Simon, Ruhr-Universität Bochum, Germany TI WS 2007/2008
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Von der Konfiguration zur Satzform

Eine Konfiguration αzβ ist ein String über Z ∪ Γ.

Problem: Dieser String kann Länge n+1 haben (für n = Eingabelänge). Eine

kontextsensitive Grammatik darf aber bei der Ableitung eines Wortes der

Länge n keine Satzformen einer n überschreitenden Länge verwenden.

Lösung: Fasse z und das erste Zeichen von β, sagen wir A, zu einem

”
Superzeichen“ (z, A) zusammen. Die Grammatik benötigt dazu Zeichen

aus Γ ∪ (Z × Γ).

Beispiel Konfiguration azbcd aufgefasst als Satzform liest sich als a(z, b)cd

(bestehend aus vier Zeichen des erweiterten Alphabetes).

Hans U. Simon, Ruhr-Universität Bochum, Germany TI WS 2007/2008
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”
Rechnende“ grammatische Regeln

Ein möglicher Rechenschritt von M kann nach folgendem Schema in einen

möglichen Ableitungsschritt von G übersetzt werden:

Eintrag der Turing–Tafel grammatische Regeln

(z′, A′, L) ∈ δ(z, A) B(z, A) → (z′, B)A′ für jedes B ∈ Γ

(z′, A′, R) ∈ δ(z, A) (z, A)B → A′(z′, B) für jedes B ∈ Γ

(z′, A′, N) ∈ δ(z, A) (z, A) → (z′, A′)

Das auf diese Weise aus der Turing–Tafel resultierende (kontextsensitive!)

Regelsystem notieren wir als P ′.

Für eine Konfiguration K bezeichne K̃ die zugehörige Satzform. Offensichtlich

gilt

K `∗ K ′ gdw K̃ ⇒∗ K̃ ′ .

Hans U. Simon, Ruhr-Universität Bochum, Germany TI WS 2007/2008
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Erweiterung des Regelsystems

Problem: Die Ableitung soll nicht die zur Endkonfiguration passende Satzform

generieren (die evtl. mit dem Eingabewort nicht viel gemein hat) sondern

gerade das Eingabewort von M (abgesehen von der Endmarkierung).

Lösung: Blähe die Zeichen der Grammatik zu Paaren auf,

• deren erste Komponenten die Konfiguration repräsentieren (auf die

oben besprochene Weise)

• und deren zweite Komponenten das Eingabewort konservieren.

Zur Umsetzung dieser Idee benötigen wir

Anfangsregeln zur Erzeugung von Startkonfiguration plus Eingabewort,

erweiterte Regeln zum Rechnen Regeln von P ′ erweitert um die zweite

Komponente,

Schlussregeln zur Generierung des Eingabewortes von M (Wegschmeißen

der ersten Komponenten).

Hans U. Simon, Ruhr-Universität Bochum, Germany TI WS 2007/2008



Kontextsensitive und Typ 0 Sprachen Slide 24'

&

$

%

Erweiterung des Regelsystems (fortgesetzt)

Die von P ′ verwendeten Zeichen waren aus der Menge

∆ := Γ ∪ (Z × Γ) .

Die zu M passende Grammatik G hat Variablenmenge

V = {S, T} ∪ (∆ × Σ)

mit S als Startsymbol und folgende Regeln:

Anfangsregeln: S → T (â, a) , T → T (a, a) | ((z0, a), a) für jedes a ∈ Σ.

Erweiterte Regeln zum Rechnen: Für alle a, b ∈ Σ:

(X, a)(Y, b) → (X ′, a)(Y ′, b) für jede Regel XY → X ′Y ′ ∈ P ′

(X, a) → (X ′, a) für jede Regel X → X ′ ∈ P ′

Schlussregeln: (A, a) → a und ((z, A), a) → a für alle z ∈ E, A ∈ Γ, a ∈ Σ.

Hans U. Simon, Ruhr-Universität Bochum, Germany TI WS 2007/2008



Kontextsensitive und Typ 0 Sprachen Slide 25'

&

$

%

Das große Finale

Folgende Aussagen sind äquivalent:

1. a1 · · · an−1an ∈ T (M).

2. Es existiert eine Rechnung von M auf Eingabe a1 · · ·an−1ân, die eine

akzeptierende Endkonfiguration K erreicht.

3. Es existiert eine Ableitung mit Regeln aus G, die eine Satzform mit Zeichen

aus ∆ × Σ generiert. Dabei liefern die ersten Komponenten die Satzform

K̃ zu einer akzeptierenden Endkonfiguration K von M und die zweiten

Komponenten liefern a1 · · · an−1an. (Mit den Schlussregeln ist dann hieraus

a1 · · · an−1an ableitbar.)

4. a1 · · · an−1an ∈ L(G).

Hans U. Simon, Ruhr-Universität Bochum, Germany TI WS 2007/2008
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Von der Grammatik vom Typ 0 zur NTM

Satz: Jede Grammatik G vom Typ 0 kann in eine äquivalente NTM M

transformiert werden.

Beweis analog zum entsprechenden Beweis für kontextsensitive Grammatiken

und LBAs:

• M , gestartet auf Eingabe w, versucht eine Ableitung S⇒∗

G
w

”
rückwärts“

(von w in Richtung S) zu rekonstruieren.

• Diesmal ist die resultierende NTM nicht linear beschränkt, da (wegen der

bei Typ 0 Grammatiken fehlenden Monotonie–Eigenschaft) die Satzformen,

die bei der Generierung eines Eingabewortes auftreten, i.A. länger sind als

das Eingabewort selbst.

Hans U. Simon, Ruhr-Universität Bochum, Germany TI WS 2007/2008
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Von der NTM zur Grammatik vom Typ 0

Satz: Jede NTM M kann in eine äquivalente Grammatik G vom Typ 0

transformiert werden.

Beweis analog zum entsprechenden Beweis für LBAs und kontextsensitive

Grammatiken:

• Kernstück beim Entwurf der Grammatik sind wiederum die
”
rechnenden“

grammatischen Regeln.

• Wenn jedoch die NTM, gestartet auf einer Eingabe w der Länge n, Band-

inhalte der Länge m > n produziert, dann liefert die korrespondierende

grammatische Ableitung auch Satzformen der Länge N > n. Um daraus

schließlich w abzuleiten, werden nicht–kontextsensitive ε–Regeln (als

Schlussregeln) zugelassen, welche die Löschung von den Teilen der Satzform

außerhalb des Eingabebereiches erlauben.

Hans U. Simon, Ruhr-Universität Bochum, Germany TI WS 2007/2008
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Determinismus versus Nondeterminismus

Jede DTM kann als Spezialfall einer NTM aufgefasst werden. Es gilt aber auch

umgekehrt der

Satz: Jede NTM kann in eine äquivalente DTM transformiert werden.

Hans U. Simon, Ruhr-Universität Bochum, Germany TI WS 2007/2008
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Beweis des Satzes

Die Simulation einer NTM M durch eine DTM M ′ beruht auf folgenden Ideen;

• Jede NTM kann (ohne Abänderung der von ihr erkannten Sprache) so

modifiziert werden, dass sie in jedem Schritt genau zwei Wahlmöglichkeiten

hat (s. Übungen).

• Ein Bit b ∈ {0, 1} kann als Vorschrift interpretiert werden, die klärt,

welcher von zwei möglichen Rechenschritten getätigt werden soll.

• Ein Bitstring b1 · · · bt liefert dann eine solche Vorschrift für t Schritte.

• Die deterministische Simulation von M hält einen Binärzähler BZ aufrecht,

der auf 0 initialisiert und dann in einer
”
äußeren Schleife“ so hochgezählt

wird, dass er die Binärstrings in der
”
natürlichen“ Reihenfolge

0, 1, 00, 01, 10, 11, 000 · · ·

durchläuft.

Hans U. Simon, Ruhr-Universität Bochum, Germany TI WS 2007/2008
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Beweis des Satzes (fortgesetzt)

• Wenn b1 · · · bt der aktuelle Zählerstand ist, dann wird zunächst M in der

oben besprochenen Weise für t Schritte deterministisch simuliert, bevor

BZ inkrementiert wird.

• Wenn jemals ein Endzustand von M erreicht wird, dann wird die Simulation

abgebrochen und die Eingabe akzeptiert.

Die beschriebene Simulation hat zu jedem Zeitpunkt immer nur einen möglichen

nächsten Rechenschritt und ist daher deterministisch. Man kann eine DTM M ′

entwerfen, welche diese Simulation durchführt.

Hans U. Simon, Ruhr-Universität Bochum, Germany TI WS 2007/2008
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Beweis des Satzes (fortgesetzt)

Offensichtlich sind die folgenden Aussagen äquivalent:

1. w ∈ T (M).

2. Es existiert ein t ≥ 1, so dass M auf Eingabe w und bei geeigneter Wahl

der Rechenschritte nach t Schritten einen Endzustand erreicht.

3. Es existiert ein t ≥ 1 und ein Binärstring b1 · · · bt, so dass M ′ in der

Iteration mit BZ=b1 · · · bt in einen Endzustand gerät.

4. w ∈ T (M ′).

Bemerkungen:

• M ′ probiert im Prinzip alle möglichen Rechnungen von M auf Eingabe w

systematisch aus (Technik der
”
Exhaustive Search“).

• Wenn M die Eingabe nach t Rechenschritten akzeptieren kann, dann

benötigt M ′ mindestens 2t − 1 Iterationen der äußeren Schleife, um diese

akzeptierende Rechnung aufzuspüren.

Hans U. Simon, Ruhr-Universität Bochum, Germany TI WS 2007/2008
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Folgerung und das LBA–Problem

Folgerung: Auch die Klasse der von DTMs erkennbaren Sprachen stimmt

überein mit der Klasse der Sprachen vom Typ 0.

Die entsprechende Frage für LBAs, DLBAs und kontextsensitive Sprachen ist

schon lange Zeit offen:

Das LBA–Problem: Kann jeder LBA (oder alternativ jede kontextsensitive

Grammatik) in einen äquivalenten DLBA transformiert werden ??
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Abschlusseigenschaften

Satz: Die Klasse der kontextsensitiven Sprachen und die Klasse der Sprachen

vom Typ 0 sind abgeschlossen unter den Operationen
”
∪,∩, ·, ∗“.

Beweisidee: Es ist leicht NTMs M1, M2 mit T (M1) = L1 und T (M2) = L2

zu NTMs zusammenzusetzen, welche L1 ∪ L2, L1 ∩ L2, oder L1 · L2 erkennen.

Weiterhin kann M1 so modifiziert werden, dass ein Akzeptor von L∗

1 entsteht.

Wir verzichten auf die Angabe technischer Details.

Wir werden später zeigen, dass folgendes gilt:

Satz: Die Klasse der Sprachen vom Typ 0 ist nicht abgeschlossen unter der

Operation ¬.

Die entsprechende Frage fur kontextsensitive Sprachen (zum LBA–Problem

verwandt) war lange Zeit offen, wurde dann aber im Jahre 1987 von Immerman

und Szelepcsényi gelöst.
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Satz von Immerman und Szelepcsényi

Satz: Die Klasse der kontextsensitiven Sprachen ist unter Komplementbildung

abgeschlossen.

Zum Beweis konstruieren wir für eine gegebene kontextsensitive Sprache L

mit einer kontextsensitiven Grammatik G einen LBA, der die Sprache L̄

(Komplement von L) erkennt.

Problem: Erkennen, dass ein Eingabewort w zu L gehört, gelang durch

”
Raten“ der grammatischen Ableitung S ⇒∗ w. Aber wie können wir

nichtdeterministisch erkennen, dass w nicht zu L gehört ?

Idee: Setze n := |w|. Angenommen wir kennen die Anzahl a(n) aller ableit-

baren Satzformen einer Länge ≤ n. Dann können wir versuchen w /∈ L

zu verifizieren, indem wir verifizieren, dass a(n) von w verschiedene

Satzformen einer Länge ≤ n ableitbar sind.
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Fortführung des Beweises

Bleiben also zwei technische Probleme:

1. Gegeben a(n) implementiere die besprochene Strategie auf einem LBA.

2. Erweitere diesen LBA um die Vorausberechnung von a(n).

Das zweite technische Problem wird mit der sogenannten Methode des

induktiven Zählens gelöst werden.
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Erkennen von L̄ mit Hilfe von a(n)

Input: w ∈ Σ∗ and the number a(n)

Output: ACCEPT provided that w ∈ L̄ has been verified

begin

a:=0

for all α ∈
(

∪n

l=1(V ∪ Σ)l
)

\ {w}

do GUESS a derivation S⇒∗

G
α

if SUCCESS then a:=a+1 fi

od

if a := a(n) then ACCEPT w fi

end
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Vorausberechnung von a(n)

Es bezeichne a(m, n) die Anzahl aller Satzformen einer Länge ≤ n die in ≤ m

Schritten aus Startsymbol S mit Regeln aus G ableitbar sind. Offensichtlich

gilt:

• a(0, n) = 1.

• a(n) = a(m∗, n), wobei m∗ das kleinste m mit der Eigenschaft

a(m, n) = a(m + 1, n)

bezeichne.

Die wesentliche Schwierigkeit bei der Berechnung von a(n) besteht also darin,

a(m, n) aus a(m − 1, n) auszurechnen.

•
”
Pseudocode“ für die Berechnung von a(m, n) aus a(m−1, n) auf folgender

Folie

• Zusätzliche Erläuterungen in der Vorlesung
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begin

b:=0 (Comment: Variable b should have value a(m, n) at the end.)

for all β ∈ ∪n

l=1(V ∪ Σ)l

do (Comment: Outer Loop (OL))

a:=0

for all α ∈ ∪n

l=1(V ∪ Σ)l

do (Comment: Inner Loop (IL))

GUESS a derivation S⇒∗

G
α of length at most m − 1

if SUCCESS

then a:=a+1

if α ⇒G β then b := b + 1; goto next iteration of OL fi

fi

od

if a 6= a(m − 1, n) then STOP (without success)

od

end
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Korrektheit des skizzierten LBA

Offensichtlich gilt:

• Die beschriebene Vorgehensweise zum Erkennen von L̄ ist auf einem LBA

implementierbar (detailliertere Information in der Vorlesung).

• Falls w ∈ L, dann gibt es keine akzeptierende Rechnung auf Eingabe w.

• Falls w ∈ L̄, dann gibt es eine Rechnung, die

– a(n) mit der Technik des induktiven Zählens korrekt bestimmt detail-

liertere Information in der Vorlesung),

– a(n) grammatische Ableitungen von Satzformen 6= w der Länge ≤ n

ausfindig macht

– und schließlich w akzeptiert

Der skizzierte LBA ist daher ein Akzeptor von L̄.
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Lernziele (kontextsensitive und Typ 0 Sprachen)

• Kenntnis der wesentlichen Konzepte und Resultate auf dem Level der

kontextsensitiven und Typ 0 Sprachen besitzen und Zusammenhänge

verstehen

• zu einer kontextsensitiven Sprache die passende kontextsensitive Gram-

matik bzw. den passenden LBA (falls möglich DLBA) angeben können

(Angabe der Turing–Tafel oder evtl. auch nur informelle Beschreibung der

Arbeitsweise)

• zu einer gegebenen kontextsensitiven Grammatik (bzw. einem gegebenen

LBA oder DLBA) die zugehörige Sprache ableiten können

• zu einer Typ 0 Sprache die passende Typ 0 Grammatik bzw. die passende

TM (mit Turing–Tafel oder evtl. auch nur mit informeller Beschreibung

der Arbeitsweise) angeben können

• zu einer gegebenen Typ 0 Grammatik (bzw. einer gegebenen TM) die

zugehörige Sprache ableiten können
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Lernziele (fortgesetzt)

Zu folgenden Punkten genügt es die
”
zündende Idee“ zu kennen:

• Äquivalenz von LBAs und kontextsensitiven Grammatiken

• Äquivalenz von NTMs und Typ 0 Grammatiken

• Äquivalenz von NTMs und DTMs

• die besprochenen Abschlusseigenschaften (inklusive des Satzes von Immer-

man und Szelepcsényi)
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